Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Sep 27;91(20):9588–9592. doi: 10.1073/pnas.91.20.9588

A potential peptide vaccine against two different strains of influenza virus isolated at intervals of about 10 years.

H Naruse 1, K Ogasawara 1, R Kaneda 1, S Hatakeyama 1, T Itoh 1, H Kida 1, T Miyazaki 1, R A Good 1, K Onoé 1
PMCID: PMC44858  PMID: 7937811

Abstract

We have developed a strategy for making synthetic peptide vaccines, in which a peptide, HA127-133, derived from the hemagglutinin (HA) of A/Aichi/2/68(H3N2) influenza virus (Aichi/68) is introduced into the Ab binding component consisting of 43-46 and 54-58 residues of a pigeon cytochrome c analogue peptide, 46F50V54A. Indeed, this hybrid peptide, 46F/HA127-133/54A, induced impressive T-cell responses and antibody production neutralizing infectivity of Aichi/68 in vitro. In a subsequent study we found that 46F/HA127-133/54A(18mer) peptide antigen, which had been prepared by substitution at the central five residues of 46F50V54A with HA127-133, generated T-cell responses and neutralizing antibody responses as well. On the basis of these prior findings, in the present study we analyzed immunopotency of 46F/HA127-133/54A(18mer) in vivo administered in several ways to I-Ab mice. We show herein that this peptide vaccine loaded in multilamellar liposomes without adjuvant protects the mice against infection with Aichi/68 within 2 weeks after final immunization. Further, this peptide vaccine was shown to be effective in preventing infection with a naturally occurring antigenic variant, A/Texas/1/77(H3N2), carrying the same sequence at 127-133 of the HA as Aichi/68 virus. Since this part of the HA is relatively conserved among H3 subtype influenza viruses, our peptide vaccine may become the basis for a new strategy to prepare effective vaccines that will overcome the ineffectiveness of classical vaccines attributable to antigenic drift of influenza viruses.

Full text

PDF
9588

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen P. M., Matsueda G. R., Evans R. J., Dunbar J. B., Jr, Marshall G. R., Unanue E. R. Identification of the T-cell and Ia contact residues of a T-cell antigenic epitope. 1987 Jun 25-Jul 1Nature. 327(6124):713–715. doi: 10.1038/327713a0. [DOI] [PubMed] [Google Scholar]
  2. Briand J. P., Barin C., Van Regenmortel M. H., Muller S. Application and limitations of the multiple antigen peptide (MAP) system in the production and evaluation of anti-peptide and anti-protein antibodies. J Immunol Methods. 1992 Dec 8;156(2):255–265. doi: 10.1016/0022-1759(92)90033-p. [DOI] [PubMed] [Google Scholar]
  3. Davis M. M., Bjorkman P. J. T-cell antigen receptor genes and T-cell recognition. Nature. 1988 Aug 4;334(6181):395–402. doi: 10.1038/334395a0. [DOI] [PubMed] [Google Scholar]
  4. Defoort J. P., Nardelli B., Huang W., Ho D. D., Tam J. P. Macromolecular assemblage in the design of a synthetic AIDS vaccine. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3879–3883. doi: 10.1073/pnas.89.9.3879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dillon S. B., Demuth S. G., Schneider M. A., Weston C. B., Jones C. S., Young J. F., Scott M., Bhatnaghar P. K., LoCastro S., Hanna N. Induction of protective class I MHC-restricted CTL in mice by a recombinant influenza vaccine in aluminium hydroxide adjuvant. Vaccine. 1992;10(5):309–318. doi: 10.1016/0264-410x(92)90369-u. [DOI] [PubMed] [Google Scholar]
  6. Fidler I. J., Fogler W. E., Kleinerman E. S., Saiki I. Abrogation of species specificity for activation of tumoricidal properties in macrophages by recombinant mouse or human interferon-gamma encapsulated in liposomes. J Immunol. 1985 Dec;135(6):4289–4296. [PubMed] [Google Scholar]
  7. Hatakeyama S., Ogasawara K., Fukushi N., Iwabuchi C., Iwabuchi K., Wang B. Y., Kajiwara M., Good R. A., Onoé K. Sequential analysis of distributions of donor-derived thymocytes bearing T-cell antigen receptor (TCR) and donor-derived Ia+ cells in thymuses of fully allogeneic bone marrow chimera in mice. Acta Pathol Jpn. 1990 Jun;40(6):391–401. doi: 10.1111/j.1440-1827.1990.tb01578.x. [DOI] [PubMed] [Google Scholar]
  8. Itoh Y., Ogasawara K., Gotohda T., Takami K., Naruse H., Onoe K. A hole in the T cell repertoire specific for a pigeon cytochrome c related peptide associated with amino acid substitutions on I-Ab molecules. Int Immunol. 1992 Jul;4(7):779–787. doi: 10.1093/intimm/4.7.779. [DOI] [PubMed] [Google Scholar]
  9. Kida H., Kawaoka Y., Naeve C. W., Webster R. G. Antigenic and genetic conservation of H3 influenza virus in wild ducks. Virology. 1987 Jul;159(1):109–119. doi: 10.1016/0042-6822(87)90353-9. [DOI] [PubMed] [Google Scholar]
  10. Naruse H., Ogasawara K., Takami K., Kajino K., Gotohda T., Itoh Y., Miyazaki T., Good R. A., Onoè K. Analysis of epitopic residues introduced into the hybrid peptide vaccines prepared according to the cassette theory. Vaccine. 1994 Jul;12(9):776–782. doi: 10.1016/0264-410x(94)90285-2. [DOI] [PubMed] [Google Scholar]
  11. Ogasawara K., Maloy W. L., Beverly B., Schwartz R. H. Functional analysis of the antigenic structure of a minor T cell determinant from pigeon cytochrome C. Evidence against an alpha-helical conformation. J Immunol. 1989 Mar 1;142(5):1448–1456. [PubMed] [Google Scholar]
  12. Ogasawara K., Maloy W. L., Schwartz R. H. Failure to find holes in the T-cell repertoire. 1987 Jan 29-Feb 4Nature. 325(6103):450–452. doi: 10.1038/325450a0. [DOI] [PubMed] [Google Scholar]
  13. Ogasawara K., Naruse H., Itoh Y., Gotohda T., Arikawa J., Kida H., Good R. A., Onoé K. A strategy for making synthetic peptide vaccines. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):8995–8999. doi: 10.1073/pnas.89.19.8995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ogasawara K., Onoé K. MHC-binding motifs and the design of peptide-based vaccines. Trends Microbiol. 1993 Oct;1(7):276–279. doi: 10.1016/0966-842x(93)90051-r. [DOI] [PubMed] [Google Scholar]
  15. Schaeffer E. B., Sette A., Johnson D. L., Bekoff M. C., Smith J. A., Grey H. M., Buus S. Relative contribution of "determinant selection" and "holes in the T-cell repertoire" to T-cell responses. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4649–4653. doi: 10.1073/pnas.86.12.4649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schwartz R. H. T-lymphocyte recognition of antigen in association with gene products of the major histocompatibility complex. Annu Rev Immunol. 1985;3:237–261. doi: 10.1146/annurev.iy.03.040185.001321. [DOI] [PubMed] [Google Scholar]
  17. Sette A., Buus S., Colon S., Smith J. A., Miles C., Grey H. M. Structural characteristics of an antigen required for its interaction with Ia and recognition by T cells. 1987 Jul 30-Aug 5Nature. 328(6129):395–399. doi: 10.1038/328395a0. [DOI] [PubMed] [Google Scholar]
  18. Tam J. P. Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5409–5413. doi: 10.1073/pnas.85.15.5409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tamura S., Kurata H., Funato H., Nagamine T., Aizawa C., Kurata T. Protection against influenza virus infection by a two-dose regimen of nasal vaccination using vaccines combined with cholera toxin B subunit. Vaccine. 1989 Aug;7(4):314–320. doi: 10.1016/0264-410x(89)90192-8. [DOI] [PubMed] [Google Scholar]
  20. Wiley D. C., Wilson I. A., Skehel J. J. Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature. 1981 Jan 29;289(5796):373–378. doi: 10.1038/289373a0. [DOI] [PubMed] [Google Scholar]
  21. Wilson I. A., Cox N. J. Structural basis of immune recognition of influenza virus hemagglutinin. Annu Rev Immunol. 1990;8:737–771. doi: 10.1146/annurev.iy.08.040190.003513. [DOI] [PubMed] [Google Scholar]
  22. Wilson I. A., Skehel J. J., Wiley D. C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature. 1981 Jan 29;289(5796):366–373. doi: 10.1038/289366a0. [DOI] [PubMed] [Google Scholar]
  23. el Guink N., Kris R. M., Goodman-Snitkoff G., Small P. A., Jr, Mannino R. J. Intranasal immunization with proteoliposomes protects against influenza. Vaccine. 1989 Apr;7(2):147–151. doi: 10.1016/0264-410x(89)90055-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES