Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2015 Jul 7.
Published in final edited form as: Genet Med. 2001 Sep-Oct;3(5):359–371. doi: 10.1097/00125817-200109000-00006

FMR1 and the Fragile X Syndrome: Human Genome Epidemiology Review

Dana C Crawford 1,2, Juan M Acuña 3,4, Stephanie L Sherman 5
PMCID: PMC4493892  NIHMSID: NIHMS701776  PMID: 11545690

Abstract

The fragile X syndrome, an X-linked dominant disorder with reduced penetrance, is one of the most common forms of inherited mental retardation. The cognitive, behavioral, and physical phenotype varies by sex, with males being more severely affected because of the X-linked inheritance of the mutation. The disorder-causing mutation is the amplification of a CGG repeat in the 5′ untranslated region of FMR1 located at Xq27.3. The fragile X CGG repeat has four forms: common (6–40 repeats), intermediate (41–60 repeats), premutation (61–200 repeats), and full mutation (>200–230 repeats). Population-based studies suggest that the prevalence of the full mutation, the disorder-causing form of the repeat, ranges from 1/3,717 to 1/8,918 Caucasian males in the general population. The full mutation is also found in other racial/ethnic populations; however, few population-based studies exist for these populations. No population-based studies exist for the full mutation in a general female population. In contrast, several large, population-based studies exist for the premutation or carrier form of the disorder, with prevalence estimates ranging from 1/246 to 1/468 Caucasian females in the general population. For Caucasian males, the prevalence of the premutation is ∼1/1,000. Like the full mutation, little information exists for the premutation in other populations. Although no effective cure or treatment exists for the fragile X syndrome, all persons affected with the syndrome are eligible for early intervention services. The relatively high prevalence of the premutation and full mutation genotypes coupled with technological advances in genetic testing make the fragile X syndrome amendable to screening. The timing as well as benefits and harms associated with the different screening strategies are the subject of current research and discussion.

MeSH keywords: Fragile X syndrome, FMR1, FRAXA, Mental retardation, Epidemiology, Review

FMR1 and FMRP

FMR1, located at Xq27.3, consists of 17 exons and is approximately 38kb in size 1;2. The mRNA is approximately 4.4kb and contains 1.9kb of coding sequence. Within the 5′ untranslated region (UTR) of FMR1 is a polymorphic CGG repeat coincident with a rare fragile site on the X chromosome known as FRAXA. FRAXA was a cytogenetic marker instrumental in the identification of patients and, ultimately, the gene itself (see Disease section, below).

FMR1 is highly conserved at the sequence and amino acid level as evidenced by its presence in the human, mouse, Caenorhabditis elegans, Xenopus laevis, Drosophila melanogaster, and chicken 1;36. FMR1 is widely expressed in both human and mouse embryos, with the highest expression located in the brain, testes, ovaries, esophageal epithelium, thymus, eye, and spleen7. Extensive alternative splicing of the 3′ end of the gene produces different mRNAs and isoforms of the protein, each predicted to have distinct biochemical properties 1;reviewed in 8. Only a few isoforms are commonly detected in lymphoblasts; however, the existence of other predicted isoforms in different cell types has not been thoroughly investigated 8.

The fragile X mental retardation protein (FMRP) is the protein product of FMR1. FMRP contains two ribonucleoprotein K homology domains (KH domains) and clusters of arginine and glycine residues (RGG boxes), two features commonly associated with RNA-binding proteins 1;9. FMRP binds in vitro to itself as well as to two fragile X-related autosomal homologs, FXR1P and FXR2P 10. However, some experiments suggest that these FXR interactions may not exist in vivo 1113. Also, recent experiments in rabbit reticulocyte lysate and X. laevis oocytes demonstrate that FMRP strongly inhibits translation of various mRNAs at nanomolar concentrations, an effect not seen with its homologs FXR1P and FXR2P14.

In addition to its RNA-binding properties, FMRP contains both a nuclear localization signal (NLS) and a nuclear export signal (NES) 15. The current model suggests that oligomerized FMRP, in conjunction with other proteins, shuttles specific mRNAs from the nucleus to the cytoplasm for translation. Consistent with this model is the RNA-dependent association of FMRP with actively translating polyribosomes 16;17. Also, other proteins such as nucleolin and nuclear FMRP interacting protein (NUFIP) have been shown to interact with FMRP, possibly modulating mRNA binding to FMRP 18;19. Furthermore, recent experiments based on the fragile X patient with a Ile to Asn substitution at amino acid position 304 (I304N) suggest that FMRP must oligomerize to properly modulate the transcription of these other mRNAs 14. Finally, although FMRP has been shown to be primarily a cytoplasmic protein 20;21, recent immunogold experiments have localized FMRP in the neuronal nucleoplasm and within the nuclear pore 22, suggesting nuclear export capabilities. Inconsistent with this model, however, is the observation that the D. melanogaster homolog, dFMR1, remains in the nucleus even though the conserved NES is present 6. Despite this inconsistency of biological conservation and significance, identification of the specific, shuttled mRNAs and their respective genes as well as modulating proteins will greatly increase the understanding of FMRP’s role in the fragile X syndrome phenotype.

FMR1 CGG repeat variants

The FMR1 polymorphic CGG repeat located in the 5′ UTR of the gene can be categorized in at least four forms based on the size of the repeat: full mutation (>200–230 repeats), premutation (61–200 repeats), intermediate (41–60 repeats), and common (6–40 repeats). Among the general population, the common repeats are usually transmitted from parent to offspring in a stable manner. Intermediate alleles are larger repeats that may or may not be transmitted stably from parent to offspring. Thus, these alleles overlap the boundary between common and premutation alleles23. While intermediate alleles may be unstable, very few expand to the disorder-causing mutation in the next generation. Recent evidence, in fact, suggests that intermediate alleles identified among families with the fragile X syndrome are more susceptible to disorder-causing expansions in the next generation compared with intermediate alleles identified in the general population 2326. To date, 59 repeats is the smallest size known to expand to the disorder-causing mutation in the next generation within a family with the fragile X syndrome 23;24. More prospective studies are needed to better quantify the risks of disorder-causing expansions for the purpose of genetic counseling the women identified with intermediate alleles.

Unlike common and intermediate alleles, premutation alleles are unstable when transmitted from parent to offspring and usually expand in the next generation. The size of the repeat expansion is positively correlated with maternal CGG repeat size, with >90 repeats almost always expanding to the full mutation in the next generation 25. The transition from premutation to full mutation is thought to occur pre-zygotically 27;28. In contrast to the female germline, paternal transmission of the full mutation to the offspring is rare. Recent studies suggest that selection against full mutation in sperm is responsible for the differences observed between female and male germline transmissions 27;29.

The full mutation allele is the form associated with the fragile X syndrome phenotype. All full mutations identified to date are derived from premutation or full mutation alleles from the previous generation. The full mutation allele leads to hypermethylation 30 and deacetylation 31 of FMR1, which effectively shuts down transcription of the gene 32.

Since the molecular characterization of the CGG repeat in 1991 33, most forms of the repeat have been characterized in all populations studied. This review describes the genotype frequencies of the full mutation and premutation, as both of these are directly related to the expression of the fragile X syndrome phenotype.

Full mutation

Before the cloning of FMR1, the inducible FRAXA fragile site was developed as a cytogenetic marker and proved valuable in diagnosing this nonspecific form of X-linked mental retardation 34. Several studies published in the 1980s using the fragile site as a diagnostic tool estimated that the prevalence of the syndrome was as high as 1 in 1,500 males and 1 in 2,500 females in the general population 35;36. The cytogenetic test employed by these studies has since been shown to be inaccurate, generating both false negative and positive results 37.

The cloning of the CGG repeat responsible for the fragile X syndrome provided the opportunity for a more accurate diagnosis using molecular techniques. For this review, published studies (abstracts excluded) that employed DNA-based screening for the fragile X syndrome were considered and described in Table 1. Most studies to date have screened target populations (e.g., special education or mentally retarded populations), yet only a few extrapolated these results to the general population (12/39 studies; Table 1). For these few studies, the general assumption is that all males with the fragile X syndrome will be mentally impaired to some significant degree and will be found only among the targeted population.

Table 1.

Prevalence of the fragile X syndrome among males determined by DNA-based techniques adapted from 8

Country Target population No. positive/ No.
tested
Estimated prevalence
Target Population
%
General Population
(95% CI)
U.K.
(Wessex)41;121
SpEd population
(ages 5–18 years),
unknown etiology
20/3,738 SpEd: 0.5 1/5,530
(1/8,992–1/4,007)
U.S.A.
(Atlanta, Georgia)38;122
SpEd population
(ages 7–10 years),
regardless of
etiology
Caucasian: 4/1,572

African-American: 3/752
Caucasian SpEd: 0.3

African-American SpEd: 0.4
Caucasian: 1/3,717
(1/7,692–1/1,869)

African-American: 1/2,545
(1/5,208–1/1,289)
Southwest Netherlands 47 Schools and
institutes for MR,
unknown etiology
9/866 Mild MR: 2.0
Moderate/ severe MR: 2.4
1/6,045
(1/9,981–1/3,851)
Hellenic population of
Greece and Cyprus 40
Referred clinical
population of
idiopathic MR
8/611 MR: 1.3 1/4,246
(1/16,440–1/1,333)
Australia
(Sydney) 36;37
Children with MR in
SpEd
10/472 MR: 2.1
Mild MR: 0.6
Moderate/ severe MR: 5.4
1/4,350b
France123 Children with
DSM-IIIR
classification of MR
10/403 MR: 2.5
Mild MR: 1.4
Moderate/ severe MR: 3.6
-
U.S.A.
(Baltimore, Maryland) 46
Preschool children
referred for language
delay
1/379 Language delay: 0.3 -
China
(mainland and Hong
Kong)124
Persons with MR
clinically referred or
in SpEd
31/902a MR: 3.4 -
India (Delhi) 125 Clinically referred
children with MR,
unknown etiology
19/360 MR: 5.3 -
Southern Häme, Finland
126
Adult males (>16
years) registered in
the Southern Häme
Care Organization
with MR, unknown
etiology
6/344 MR: 1.7 1/4,400c
Finland 45 Clinically referred
persons with MR
15/305 MR: 4.9 -
U.S.A.
(Colorado)127
Targeted “high risk”
children (ages 2–18
years with MR,
autism, LD, ADHD,
family history) in
SpEd population
1/299 SpEd: 0.3 -
Japan 128 Institutionalized
persons with MR
8/298 MR: 2.7 -
Indonesia
(primarily Javanese)129
Schools for mild
developmental
delay, no cytogenetic
abnormality
5/262 Mild MR: 1.9 -
Hellenic population of
Greece and Cyprus 130
Referred clinical
population of
idiopathic MR
4/257 MR: 1.6
Moderate/ severe MR: 2.9
Profound MR: 3.6
-
Brazil
131
Schools for the
mentally disabled
5/256 MR: 2.0
Mild MR: 2.3
Severe MR: 1.6
-
Japan 132 Males with MR or
psychomotor
developmental
delay, clinically
referred
2/256 MR: 0.8 -
Singapore 133 Children in schools
for mild to severe
MR, unknown
etiology
5/254 MR: 2.0 -
Hong Kong 134 Persons with mild
MR, unknown
etiology
1/243 Mild MR: 0.4 -
U.K.
(Coventry)35;37;135
Children with MR in
institutions or SpEd
6/219 MR: 2.7
Mild MR: 1.3
Moderate/ severe MR: 6.7
1/4,090d
Chile 136 Children in SpEd
with MR of
unknown etiology;
excluded profound
MR
4/214 MR: 1.9 -
Taiwan 137 Persons with MR of
unknown etiology
enrolled in SpEd or
private day-care
centers
4/206 MR: 1.9
Mild MR: 3.8
Moderate/ severe MR: 0.8
-
Poland
(Warsaw)42
Males in institutions
or SpEd with MR
6/201 MR: 3.0 1/2,857–1/5,882e
Southwest Netherlands 138 Clinically referred
persons with MR and
no known family
history of fragile X
10/197 MR: 5.1 -
U.S.A.
(New Mexico)139
Clinically referred
persons with MR or
behavior disorders,
unknown etiology
10/188 MR: 3.7
LD: 1.1
Hyperactivity/AD: 0.5
-
Spain 140 Persons with MR in
SpEd
11/182 MR: 6.0 -
U.K.
(Wessex)39
SpEd population
(ages 5–18 years),
unknown etiology
4/180 SpEd: 2.2 1/8,918f
Spain 43 Children in SpEd or
clinically referred
with MR of
unknown etiology;
no known family
history of MR
5/180 MR: 2.7 1/6,200–1/8,200g
Turkey 141 Clinically referred
children with
developmental
disability
5/166 MR: 3.0 -
Guadeloupe, French West
Indies 56
SpEd population,
unknown etiology
11/163 SpEd: 6.7 1/2,359 (1/4,484–1/276)
South Africa 142;143 Institutionalized
males (blacks) with
idiopathic MR
9/148 MR: 6.1
Mild MR: 4.2
Severe MR: 7.8
-
U.K.144 Institutionalized
males with learning
disabilities,
unknown etiology
1/138 LD: 0.7 -
U.K.
(Oxfordshire)44
Children in schools
for moderate to
severe learning
difficulties,
unknown etiology
4/103 MR: 3.9 1/4,130h
Thailand 145 Children with
developmental delay
or MR, unknown
etiology
5/94 MR: 5.3 -
India
(New Delhi)146
Institutionalized
persons with MR
with unknown
etiology that scored
above 40% on a
fragile X checklist
147
9/93 MR: 9.7 -
Spain 53 Persons in
institutions or SpEd
with idiopathic MR
8/92 MR: 8.7 -
Brazil 148 Institutionalized
persons with severe
MR, unknown
etiology
0/83 - -
Croatia 149 Children clinically
preselected for
fragile X DNA
analysis on the basis
of MR of unknown
etiology, a positive
family history, and at
least on physical
and/or behavioral
characteristic of the
fragile X syndrome
14/81 17.3 -
Mexico 150 Children clinically
referred with MR,
unknown etiology
2/53 MR: 3.8 -

Abbreviations: Special education or special schools (SpEd), mental retardation (MR), learning disability (LD), attention deficit/hyperactivity disorder (ADHD), attention deficit (AD).

a

Zhong et al.124 did not distinguish between males and females in the published manuscript. The numbers presented in table 1 are derived from personal communication with Dr. Zhong.

b

Turner et al.37 provided on a point estimate.

c

Arvio et al.126 provided only a range on the basis of past cytogenetic and DNA-based diagnoses.

d

Morton et al.135 provided only a point estimate.

e

Mazurczak et al 42 provided only a range, not a point estimate.

f

Jacobs et al 39 provided only a point estimate.

g

Millan et al 43 provided a range, not a point estimate. Millan et al 43 also acknowledged that persons with mild MR might have been missed, so the range could be as high as 1/5,000–1/6,800.

h

Slaney et al 44 only provided a lower boundary, not a point estimate.

Full mutation and males: Caucasian populations of northern European descent

For the Caucasian population, the point estimates for eight studies suggest that the prevalence of the fragile X syndrome ranges from 1 in 3,717 38 to 1 in 8,918 39 males in the general population. The confidence limits, available for only four of these studies, vary widely, with a lower boundary of 1 in 1,333 40 to an upper boundary of 1 in 8,922 41. Three studies summarized in Table 1 did not report point estimates: two 42;43 provided a range and one 44 provided a lower boundary, all of which fall within the point estimates and confidence intervals reported in the other studies (Table 1).

The problem encountered by all these studies is the extrapolation of the prevalence in the phenotypically-defined target population to that in the general population. Comparison of studies is also complicated because of the differences in the definitions of the target populations. For example, a study that examined clinically referred persons with mental retardation found a higher prevalence for fragile X in the target population 45 compared with a study that examined persons with language delay 46. Given the clinical phenotype of the syndrome, however, these differences in the prevalence between the target populations are expected.

To avoid the bias of clinical referrals, the largest studies presented in Table 1 38;40;41;47 screened broadly defined populations with mental retardation in an attempt to capture all males affected with the syndrome. Two of these studies 38;41 broadened the definition to include persons receiving special education services regardless of mental retardation status. Although it is reasonable to assume that these studies have provided the most accurate estimates of the prevalence of the fragile X syndrome in the general population, some speculate that the true prevalence would be higher if ‘high functioning’ males were not placed in these target populations 48;49. Only the screening of a large population of consecutive newborns will solve this problem of complete ascertainment 50.

Full mutation and males: Other populations

Little is known about the prevalence of the fragile X syndrome in other populations. Results of the few available studies suggest the prevalence may in fact differ across populations. For example, a report demonstrates that the majority of fragile X cases reported in Israel are of Tunisian Jewish descent. Given that most of the population of Israel is of Ashkenazi descent, investigators proposed that the prevalence of the fragile X syndrome is higher among Tunisian Jews compared with Caucasians by as much as 10-fold 51. Also, investigators have noted the lack of large CGG repeats in Native American populations and have suggested a lower prevalence of the syndrome in these populations 52. Similarly, the Spanish Basque population has been reported to have lower prevalence of males with the fragile X syndrome of pure Basque origin in a mentally retarded population and a lower frequency of large CGG repeats compared with Caucasian populations of northern European descent 53;54. Finally, investigators in Nova Scotia reported an absence of fragile X cases among their mentally retarded population 55.

Although intriguing and suggestive, none of these studies in other populations were large and/or population-based. The only two population-based estimates for non-Caucasians were both conducted in African-derived populations. Elbaz et al 56 examined an Afro-Caribbean population in the French West Indies, and Crawford et al 38 examined an African-American population in metropolitan Atlanta, Georgia, USA. Surprisingly, both studies suggested that the point estimate in these admixed, African-derived populations is approximately 1 in 2,500 in the general population, which is higher than that observed in Caucasian populations (Table 1). Further studies are needed to explore this possible higher general population prevalence as the confidence intervals for both studies overlap with estimates in Caucasian populations of northern European descent.

Full mutation and females

Even less is known about the prevalence of the full mutation among females in the general population. Based on the prevalence of the full mutation among Caucasian males in the general population (∼1 in 4,000) and the fact that only females can transmit the full mutation to their offspring, the expected prevalence among females affected with the fragile X syndrome is approximately 1 in 8,000 to 1 in 9,000 in the general population. In a voluntary screening of 8,462 women in Israel who had no family history of mental retardation, Pesso et al 57 identified one woman with the full mutation. Although the screening scheme described by Pesso et al 57 is not population-based, the point estimate for females in a Caucasian population is close to that expected.

Premutation

The estimates for premutations available in the literature for males and females in the general population are summarized in Table 2. Because the frequency of premutations is close to zero, 95% confidence intervals were calculated using the equations recommended by Fleiss 58. For this review, we have chosen to define premutations as 61–200 repeats since these repeats are always unstable and have been found to expand to the full mutation 23;59. Premutations of smaller size are found in families with the fragile X syndrome; however, these smaller sized premutations found in the general population may or may not be unstable. Thus, the estimate of premutations in Table 2 represent the lower limits of premutation carriers.

Table 2.

Prevalence of premutation (61–200 repeats) among females and males in the general population adapted from 8

Country Target population No. positive/
No. tested
Estimated
prevalence (95%
CI):
Estimated
prevalence
(95% CI):
Females Males Females Males
Canada
(Quebec)60
Unselected female
blood donors
28/10,624 - 1/379
(1/560-1/267)
-
Israel61 Women of
reproductive age with
no family history of
fragile X or MR
39/10,587 - 1/271
(1/377-1/201)
-
Israel57 Women of
reproductive age with
no history of fragile X
or MR
18/8,426 - 1/468
(1/766-1/303)
-
Finland 63 Pregnant women with
no known history of
fragile X
6/1,477 - 1/246
(1/605-1/119)
-
U.K.
(Wessex)41;121
SpEd population of
boys (ages 5–18
years), unknown
etiology
- 2/3,732 - 1/1,866
(1/5,376-1/288)
U.S.A.
(Atlanta,
Georgia)38;122
SpEd population
(ages 7–10 years) and
their parents
Caucasian: 2/670

African-American: 0/321
Caucasian: 2/2,016

African-American: 0/805
Caucasian: 1/335
(1/1,934-1/84)
Caucasian: 1/1,008
(1/5,814-1/250)
Canada
(Ontario) and
U.S.A.
(Michigan)151
Guthrie spots from
consecutive male
births
- 1/1,000 - 1/1,000
(1/19,154-1/210)
Canada
(Winnipeg,
Manitoba)152
Anonymous,
consecutive newborn
blood spots
0/735 1/778 - 1/778
(1/14,904-1/163)
U.S.A.
(Fairfax,
Virginia)62
Screening egg donors
or pregnant women
with no history of MR
or LD
3/745a - 1/248
(1/961-1/93)
-
U.S.A.
(Baltimore,
Maryland)153
Families referred for
genetic disorders
1/561 0/416 1/561
(1/10,741-1/118)
-
U.S.A.
(Baltimore,
Maryland)154
Children (ages 5–18
years) with learning
or school difficulties,
mixed ethnicity
0/341 1/673 - 1/673
(1/12,892-1/141)
Hellenic
population of
Greece and
Cyprus 130
Referred clinical
population of
idiopathic MR
0/176 1/257 - 1/257
(1/4,923-1/54)
U.S.A.
(Colorado)127
Targeted “high risk”
children (ages 2–18
years with MR,
autism, LD, ADHD,
family history) in
SpEd population
0/140 1/299 - 1/299
(1/5,727-1/63)
U.S.A.
(Rochester,
Minnesota)155
Caucasian female
blood donors
1/197 0/50 1/197
(1/3,774-1/42)
-

Abbreviations: Special education or special schools (SpEd), mental retardation (MR), learning disability (LD), attention deficit/hyperactivity disorder (ADHD), attention deficit (AD).

a

Spence et al 62 reported one of the premutations as 60±3 repeats.

Premutation and males

Similar to the data for the prevalence of the full mutation, most of the data on the prevalence of premutations were collected from Caucasian populations. Results from two large, population-based studies and several smaller studies suggest that the prevalence of premutations in males is approximately 1 in 1,000 in the general Caucasian population (Table 2).

Premutation and females

For females, recent large studies have established that the prevalence of premutation carriers is high, with point estimates ranging from 1 in 246 to 1 in 468 in the Caucasian general population 38;57;6063. Curiously, the point estimates for the large studies derived from different populations in Israel 57;61 differ, and the confidence intervals for both of these estimates barely overlap (1 in 271 vs 1 in468). Although the authors do not comment on the racial/ethnic background of these populations, it is worth noting that population differences that impact prevalence may exist as suggested in the full mutation data.

Disease(s)

The hallmark of the fragile X syndrome is mental retardation, which was noted as early as 1943 in a report of a large family with 11 mentally retarded males and two mildly retarded females 64. The clinical phenotype associated with the syndrome has since been widened to include a variety of cognitive, physical, and behavioral characteristics reviewed in 65. Almost all males with the full mutation exhibit some clinical features of the fragile X syndrome. Also, most affected males do not reproduce, presumably due to the severity of mental retardation. With regard to cognitive function, affected males often exhibit developmental delay very early in childhood. By the age of three years, most males will test in the mentally retarded range 66. Ultimately, almost all males with the fragile X syndrome are mentally retarded, with severity ranging from profound (IQ <20) to mild mental retardation (IQ 50–70), with most being moderately retarded (IQ 40–54) reviewed in 67. Physically, adult males often have a long narrow face, prominent ears, a prominent jaw, and macroorchidism reviewed in 67. Other common physical features include a high arched palate, hyper-extensible finger joints, double jointed thumbs, single palmar crease, hand calluses, velvet-like skin, flat feet, and mitral valve prolapse reviewed in 8. Males with the fragile X syndrome also tend to exhibit behavioral features such as hyperactivity, social anxiety, perseverative speech and language, tactile defensiveness, stereotypies (e.g. hand-flapping), and hand biting reviewed in 67. Autistic-like behavior is also described in these males, with as many as 25% of males with the fragile X syndrome meeting the diagnostic criteria for autism 68. The association of fragile X with autism, however, is not clear because the proportion of males with the fragile X syndrome meeting the diagnostic criteria for autism seems to diminish with age 68.

Compared with males, females with the full mutation are often less affected, presumably because of X-inactivation 69;70. Approximately 30% to 50% of females with the full mutation have an IQ of <70, and 50% to 70% of females with the full mutation have an IQ of <85 e.g. 71. Unlike males with the full mutation, females with the full mutation do not typically have reduced reproductive fitness. Thus, these women are at-risk of transmitting the full mutation to their offspring.

Associations

Traditionally, persons with premutations were considered clinically normal. However, behavior and cognitive studies of both males and females with the premutation suggest that there may be a mild, measurable phenotype related to this repeat size, although there is also evidence to the contrary 7275,7679. At the molecular level, recent experiments using more sensitive techniques than previously employed suggest that males with large premutation alleles (100–199 repeats) have fewer FMRP-positive cells and an elevated FMR1 mRNA level 80. Furthermore, experiments also suggest that the decrease of FMRP and the increase of FMR1 transcript are related to the increasing size of the repeat 81. These results suggest a mechanism in which the lower translational efficiency presumedly caused by the large repeat is being compensated by the increase in transcription 80;81. Alternatively, the expanded CGG repeat could lead to a proportionally more open promoter conformation and enhanced transcription 81;82. What behavioral or cognitive phenotypic effect, if any, these mechanisms have on the individual with the premutation allele is unclear.

The most convincing evidence of a phenotype among female premutation carriers is the ∼21% (95% confidence interval: 15% to 27%) who experience premature ovarian failure (POF), compared with 1% in the general population 83. Whereas the mean age of menopause is 51 years, women with POF experience the cessation of mensus before the age of 40. The molecular basis of this phenotype remains unknown. Because full mutation female carriers are not at elevated risk for POF, compared with premutation carriers, the lack of FMRP does not seem to be responsible for POF. The transcript with a large repeat has been suggested to somehow cause the POF phenotype, as this transcript is absent among persons with the full mutation. The exact molecular mechanism of the altered transcript causing POF remains to be elucidated.

Interactions

No interactions with environmental factors or other genes have been identified for the fragile X syndrome. However, such interactions may be possible as witnessed by the range in clinical severity of fully methylated, full mutation males and females, even among monozygotic twins 8486. Among repeat-size or methylation mosaic males and females, variability in IQ can be partially explained by the variability in FMRP levels 87. However, neither features of FMR1 nor its gene product FMRP can account for the majority of the variability among fully methlyated, full mutation males. For example, size of the methylated full mutation is not correlated with IQ nor related to the occurrence other specific characteristics of affected males such as attention deficit hyperactivity disorder 88. Also, while the low but measurable level of FMRP seems to be related to level of development among affected males, it does not seem to be related to the rate of development or to the expression of autism 89;89. In fact, the co-occurrence of autistic behavior and the fragile X syndrome more accurately predicts developmental status than does the level of FMRP 89, possibly suggesting the existence of additional factors involved in the fragile X phenotype.

Interactions affecting CGG repeat stability may also exist. Expansion and resulting size of the premutation are more similar among families than between families, and risk for expansion of premutations is greater among families with affected persons compared with the general population 23;26. Supportive evidence for an unidentified ‘familial’ factor can be found in a study that showed full mutation repeat sizes are more similar among siblings than among unrelated patients 90. Finally, studies examining repeat size variation in sperm suggest that only a small portion of the variance can be explained by factors already identified 91;92. Identification and description of new factors will lead to a better understanding of which families are at risk of developing a hyper-expanding allele.

Laboratory Tests

The Quality Assurance Subcommittee of the American College of Medical Genetics Laboratory Practice Committee has recently published technical standards and guidelines for fragile X syndrome testing 24. According to the subcommittee, DNA-based tests that determine the size of the fragile X CGG repeat are considered diagnostic and are 99% sensitive and 100% specific 24. These DNA-based tests are also applicable for prenatal diagnosis in both amniotic fluid cells and chorionic villus samples (CVS). However, all DNA-based tests for the fragile X syndrome have important caveats that impact the interpretation of the test, most of which are reviewed below. For a more comprehensive checklist, please refer to the standards and guidelines published by the Quality Assurance Subcommittee 24.

The most popular and accepted method for DNA-based testing for the expanded CGG repeat is the Southern blot. Many different restriction enzymes can be used in combination to determine both expansion (EcoRI, PstI, BglII, HindIII, BclI) and methylation (SacII, BssHII, EagI, BstZI) status for an individual for a review, see 8;93. Methylation status is particularly useful for distinguishing between borderline premutation and full mutation alleles (200–230 repeats)24. Methylation sensitive enzymes can also describe the degree of methylation of the full mutation allele for both males and females as well as the X-inactivation pattern for females. However, neither of these measures can be used to predict the degree of mental retardation status for either sex 24. The main disadvantage of the Southern blot is that it requires a large amount of DNA and is laborious, both of which are features that prevent the rapid and inexpensive screening of large populations. Because of these limitations, other diagnostic tests based on DNA and protein properties of the fragile X syndrome have been developed for fragile X screening.

New DNA diagnostic tests have concentrated on the use of the polymerase chain reaction (PCR). Many different PCR protocols have been developed for the fragile X CGG repeat, with different degrees of amplification abilities and sizing accuracies. Regardless of the variations in protocol, compared with Southern blots, the PCR test is inexpensive, automated, and fast. Also, PCR can be performed on very small amounts of DNA, making collection of the samples relatively painless and convenient for the patients. The disadvantage of PCR is that the test results may not be straightforward for several reasons. The amplification of large repeats is difficult, especially in the presence of a second, smaller repeat. For many PCR protocols, the DNA fragment with the expanded repeat does not amplify. This is especially problematic for females and persons with repeat-size mosaicism who could appear to have a single, normal repeat size. To avoid these false negatives, many screening programs follow-up by Southern blot any sample that fails to amplify by PCR and any female who appears to be homozygous. This strategy could potentially produce a false-negative result for persons who are normal/full mutation mosaic; however, few data exist to suggest that this occurs frequently.

Most DNA-based methods can distinguish between premutations and full mutations. Because of ethical issues in identifying asymptomatic carriers, some proposed screening strategies are designed to identify only affected persons. Also, affected persons with point mutations and deletions would not be identified because the sequencing of FMR1 is not routinely practiced for screening strategies 94. For the fragile X syndrome, affection status depends not only on the expansion of the repeat, but the subsequent lack of FMRP as well. The development of antibodies against FMRP has made screening possible on the basis of affection status only 9;21. In this protein-based assay, the percentage of FMRP detected in lymphocytes from blood smears is used to determine affection status 9597. Typically, fewer than 40% of the lymphocytes from males with the fragile X syndrome have detectable amounts of FMRP 96. This protein-based test has recently been adapted for hair root 98;99 and prenatal 100;101 samples. Although promising, this technique cannot accurately identify affected females 87.

Population testing

Syndrome screening

No large, routine programs exist to screen for the fragile X syndrome. As a result, most cases are diagnosed through a referral for testing. In 1994, a working group for the American College of Medical Genetics published guidelines in making referrals for fragile X testing 102. These include testing any person with unexplained mental retardation, developmental delay, or autism, especially if physical or behavioral characteristics commonly associated with the fragile X syndrome are evident. The working group also recommends testing on the basis of a family history of unexplained mental retardation. On the basis of these recommendations, 1% to 2% of samples referred for molecular testing for the fragile X syndrome are actually positive for the syndrome 103105.

Beyond the referral system, investigators in the United Kingdom, United States, and Netherlands have employed active screening systems geared toward school-aged children with mental retardation or other learning difficulties, regardless of family history (Table 1) 38;41;47. The decision for fragile X testing among these nonclinically referred populations differed among the studies. For example, the studies in the United Kingdom and Netherlands tested children with mental retardation or learning difficulties of unknown etiology 41;47, and the study in the United States screened all eligible children with parental consent regardless of etiology 38. Despite differences in the decision to test, all three studies identified the fragile X syndrome in school-aged children previously undiagnosed.

Identification of new cases of the fragile X syndrome among school-aged children suggests that the syndrome is not being diagnosed through the referral system 106. Despite the combination of mental retardation and specific physical and behavioral characteristics associated with the fragile X syndrome (see Disease section), the development of clinical checklists designed to identify children for fragile X screening has been hampered by several factors. First, the physical characteristics in affected adult males may not be seen in young affected males 107. Maccroorchidism is also often absent until the onset of puberty in males. Also, some of the facial features, such as the prominent jaw, may be racial- or ethnic-specific 108. Second, the degree of mental retardation and developmental delay among affected males varies widely. This variation in cognitive ability greatly affects the timing of diagnosis. Often, males with severe mental retardation are tested for the fragile X syndrome much earlier in childhood compared with males with moderate or mild mental retardation 109;110.

Carrier screening

In this section, “carrier screening” refers to identifying women with premutation or full mutation alleles because both are at-risk of transmitting a full mutation to their offspring in the next generation. The working group for the American College of Medical Genetics currently does not recommend population carrier screening 102. In the United States, population-based carrier screening programs for the fragile X syndrome targeting women of reproductive age do not exist. The literature contains reports of smaller screening studies based on self-referral or a family history of mental retardation. One such program at the New York State Institute for Basic Research screened over a three-year period 344 pregnant women with family histories of mental retardation 111. Among these women, two had full mutations and four had premutations (defined as >55 repeats). Another program at the Genetics & IVF Institute in Fairfax, Virginia, offered fragile X carrier screening to women on a self-pay basis 62;112. Most women were referred to the clinic because of their advanced reproductive age. From December 1993 through June 1995, 3,345 women were offered testing, and 668 accepted (21%). Most (69%) of these women did not have family histories of mental retardation. Among these women, three premutation carriers (60–199 repeats) were identified 62. In a third study conducted at the Center for Obstetric Research at the University of Alabama at Birmingham during 1994–1998, 263 (2.1%) of 12,349 pregnant women reported a family history of mental retardation and underwent carrier testing 113, and no full mutations or premutations were identified.

Unlike the screening studies performed in the United States, investigators in Finland have implemented a large, population-based carrier-screening program. The program implemented by the Kuopio University Hospital in Finland offered an FMR1 gene test free of charge to all pregnant women seeking prenatal care from July 1995 until December 1996 63. According to Ryynanen et al 63, almost all pregnant women in Finland seek prenatal care and are registered in antenatal clinics during the 6th through 10th weeks of pregnancy because this registration is required for maternity allowance provided by the state. Among women without family histories of the fragile X syndrome, 1,477 (85%) elected genetic testing. Of these women, six were identified as premutation carriers (60–199 repeats) and all six women elected prenatal testing. The program has since screened an additional 1,358 women through December 1997. Six more women with the premutation allele were identified, and all six elected prenatal diagnosis 114. The program has also expanded to offer an FMR1 genetic test to pregnant women undergoing invasive prenatal testing for advanced maternal age or history of a trisomy pregnancy. In this expanded program, 241 (80%) of the 302 women offered the test consented, and one woman was identified as a premutation carrier 114.

As in Finland, carrier testing is also widely employed and accepted in Israel. At least three groups have published results obtained from their large screening programs. Unlike the program in Finland, these programs offer the test on a self-pay basis and rely on either a self-referral or physician referral for testing. In one published report, the Rabin Medical Center screened 10,587 women who were self-referred and had no family histories of mental retardation during 1995–1998 61. Women identified as carriers were offered prenatal testing free of charge as instructed by the Israeli Ministry of Health. A total of 39 women were identified as premutation carriers (61–200 repeats), and all elected prenatal diagnosis 61. In a second report, the Genetic Institute of the Tel Aviv Sourasky Medical Center offered an FMR1 genetic test to 9,660 women during September 1994 through October 1998 26. A total of 38 premutation carriers (60–200 repeats) were identified, and all of these women consented to prenatal diagnosis 26. Finally, during January 1994 through March 1999, the Danek-Gertner Institute of Human Genetics screened 8,426 women of reproductive age who had no family histories of the fragile X syndrome or mental retardation 57. Among these women, 18 were identified as premutation carriers (61–199 repeats), and one was identified as a full mutation carrier (>200 repeats).

Compared with preconceptional or prenatal screening described above, the most employed strategy for fragile X carrier screening is cascade screening of families identified through an affected proband. This method of screening relies heavily on both identification of the index case and communication among relatives. Using this strategy, the Fragile X Program of the Prince of Wales Children’s Hospital in New South Wales, Australia, has identified and counseled 195 families with the fragile X syndrome (or X-linked mental retardation with macroochidism) since the late 1960s 115. Follow-up of 44 women identified as carriers by DNA testing who became pregnant during 1990–1993 revealed that 34 (77%) elected prenatal testing. Also, follow-up of the reproductive decisions and outcomes of carrier women demonstrated a 10-fold decline in the birth incidence of males affected with the fragile X syndrome, reflecting both a reduction in the birth rate and an increase in termination of affected pregnancies 115.

Gaps in research related to screening

The Task Force on Newborn Screening suggests that a disease or condition must meet several criteria to be considered for inclusion in newborn screening programs. The fragile X syndrome arguably meets many of these criteria 116. Specifically, based on its morbidity and prevalence, the fragile X syndrome is an important public health problem. Approximately 99% of cases diagnosed to date are caused by a single, inherited mutation, making the fragile X syndrome particularly amendable to DNA-based testing for an accurate diagnosis 24. Furthermore, preliminary studies suggest that case finding and carrier screening may be economically feasible 117;118. Finally, although few data exist for the United States, data in Finland and Israel (see, Carrier screening section) suggest that the fragile X test is acceptable.

Although testing for the fragile X syndrome may be feasible and economical, it does not meet several other key criteria for screening in the public health arena. One crucial gap in research is the lack of a cure or effective treatment available for persons with the disorder. This research gap, however, will be difficult to fill. While children with the fragile X syndrome are eligible for early invention services, the effectiveness of these services cannot be proven unless infants are diagnosed with the fragile X syndrome soon after birth 119. A second gap, at least in the United States, is the lack of general consensus for the appropriate time to screen. Newborn screening will identify affected infants that are eligible for early intervention services. However, identification of an affected person will also identify at-risk families. Although these identified families could benefit from genetic counseling, newborn screening is neither ideal nor designed for identifying most at-risk families for the fragile X syndrome in the general population 120. Finally, many other issues including educating health-care professionals and the public about the syndrome, assessing the psychological impact of carrier status, and maintaining families’ privacy should be thoroughly researched and adequately resolved before implementation of any type of routine screening for the fragile X syndrome in the general population.

Abbreviations

FMR1

fragile-X-mental-retardation-gene 1

Appendix A

Online resources for the fragile X syndrome

Resource World Wide Web URL
Support Groups
The National Fragile X Foundation http://nfxf.org
FRAXA Research Foundation http://www.fraxa.org/
Research
X-Linked Mental Retardation (XLMR) http://xlmr.interfree.it/home.htm
Educational
Human Genome Epidemiology Network
(HuGE Net)a
http://www.cdc.gov/genetics/hugenet/default.htm
National Institute of Child Health and Human
Development
http://www.nichd.nih.gov
GeneClinics http://www.geneclinics.com/profiles/fragilex/details.html
Carolina Fragile X Project http://www.fpg.unc.edu/~fx/index.htm
The ARC of the United States http://www.thearc.org
Genetic Databases
Online Mendelian Inheritance in Man
(OMIM)
http://www.ncbi.nlm.nih.gov/htbin-post/Omim/dispmim?309550
Human Gene Mutation Database http://archive.uwcm.ac.uk/uwcm/mg/search/129038.html
Policy
American Academy of Pediatrics http://www.aap.org/
The American College of Medical Genetics http://www.faseb.org/genetics/acmg/pol-16.htm
http://www.faseb.org/genetics/acmg/index.html
a

This review will be published on the HuGE Net website with modifications.

References

  • 1.Ashley CT, Sutcliffe JS, Kunst CB, Leiner HA, Eichler EE, Nelson DL, Warren ST. Human and murine FMR-1: alternative splicing and translational initiation downstream of the CGG repeat. Nature Genet. 1993;4:244–251. doi: 10.1038/ng0793-244. [DOI] [PubMed] [Google Scholar]
  • 2.Eichler EE, Richards S, Gibbs RA, Nelson DL. Fine structure of the human FMR1 gene. Hum Mol Genet. 1993;3:684–685. [PubMed] [Google Scholar]
  • 3.Verkerk AJM, Pieretti M, Sutcliffe JS, Fu Y-H, Kuhl DPA, Pizzuti A, Reiner O, Richards S, Victoria MF, Zhang F, Eussen BE, van Ommen G-JB, Blonden LAJ, Riggins GJ, Chastain JL, Kunst CB, Galjaard H, Caskey CT, Nelson DL, Oostra BA, Warren ST. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell. 1991;65:905–914. doi: 10.1016/0092-8674(91)90397-h. [DOI] [PubMed] [Google Scholar]
  • 4.Siomi MC, Siomi H, Sauer WH, Srinivasan S, Nussbaum RL, Dreyfuss G. FXR1, an autosomal homolog of the fragile X mental retardation gene. EMBO J. 1995;14:2401–2408. doi: 10.1002/j.1460-2075.1995.tb07237.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Price DK, Zhang F, Ashley CT, Warren ST. The chicken FMR1 gene is highly conserved with a CCT 5’-untranslated repeat and encodes an RNA-binding protein. Genomics. 1996;31:3–12. doi: 10.1006/geno.1996.0002. [DOI] [PubMed] [Google Scholar]
  • 6.Wan L, Dockendorff TC, Jongens TA, Dreyfuss G. Characterization of dFMR1, a Drosophila melanogaster homolog of the fragile X mental retardation protein. Mol Cell Biol. 2000;20:8536–8547. doi: 10.1128/mcb.20.22.8536-8547.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Hinds HL, Ashley CT, Sutcliffe JS, Nelson DL, Warren ST, Housman DE, Schalling M. Tissue specific expression of FMR-1 provides evidence for a functional role in fragile X syndrome. Nature Genet. 1993;3:36–43. doi: 10.1038/ng0193-36. [DOI] [PubMed] [Google Scholar]
  • 8.Warren ST, Sherman SL. The fragile X syndrome. In: Scriver CR, Beaudet AL, Sly WS, et al., editors. Valle D, The metabolic and molecular basis of inherited disease. New York: McGraw-Hill; 2001. pp. 1257–1289. [Google Scholar]
  • 9.Siomi H, Siomi MC, Nussbaum RL, Dreyfuss G. The protein product of the fragile X gene, FMR1, has characteristics of an RNA-binding protein. Cell. 1993;74:291–298. doi: 10.1016/0092-8674(93)90420-u. [DOI] [PubMed] [Google Scholar]
  • 10.Siomi MC, Zhang Y, Siomi H, Dreyfuss G. Specific sequences in the fragile X syndrome protein FMR1 and the FXR proteins mediate their binding to 60S ribosomal subunits and the interactions among them. Mol Cell Biol. 1996;16:3825–3832. doi: 10.1128/mcb.16.7.3825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Tamanini F, Willemsen R, van Unen L, Bontekoe C, Galjaard H, Oostra BA, Hoogeveen AT. Differential expression of FMR1, FXR1 and FXR2 proteins in human brain and testis. Hum Mol Genet. 1997;6:1315–1322. doi: 10.1093/hmg/6.8.1315. [DOI] [PubMed] [Google Scholar]
  • 12.Tamanini F, Bontekoe C, Bakker CE, van Unen L, Anar B, Willemsen R, Yoshida M, Galjaard H, Oostra BA, Hoogeveen AT. Different targets for the fragile X-related proteins revealed by their distinct nuclear localizations. Hum Mol Genet. 1999;8:863–869. doi: 10.1093/hmg/8.5.863. [DOI] [PubMed] [Google Scholar]
  • 13.Tamanini F, van Unen L, Bakker C, Sacchi N, Galjaard H, Oostra BA, Hoogeveen AT. Oligomerization properties of fragile-X mental-retardation protein (FMRP) and the fragile-X-related proteins FXR1P and FXR2P. Biochem J. 1999;343:517–523. [PMC free article] [PubMed] [Google Scholar]
  • 14.Laggerbauer B, Ostareck D, Keidel EM, Ostareck-Lederer A, Fischer U. Evidence that fragile X mental retardation protein is a negative regulator of translation. Hum Mol Genet. 2001;10:329–338. doi: 10.1093/hmg/10.4.329. [DOI] [PubMed] [Google Scholar]
  • 15.Eberhart DE, Malter HE, Feng Y, Warren ST. The fragile X mental retardation protein is a ribosonucleoprotein containing both nuclear localization and nuclear export signals. Hum Mol Genet. 1996;5:1083–1091. doi: 10.1093/hmg/5.8.1083. [DOI] [PubMed] [Google Scholar]
  • 16.Corbin F, Bouillon M, Fortin A, Morin S, Rousseau F, Khandjian EW. The fragile X mental retardation protein is associated with poly(A)+ mRNA in actively translating polyribosomes. Hum Mol Genet. 1997;6:1465–1472. doi: 10.1093/hmg/6.9.1465. [DOI] [PubMed] [Google Scholar]
  • 17.Tamanini F, Meijer N, Verheij C, Willems PJ, Galjaard H, Oostra BA, Hoogeveen AT. FMRP is associated to the ribosomes via RNA. Hum Mol Genet. 1996;5:809–813. doi: 10.1093/hmg/5.6.809. [DOI] [PubMed] [Google Scholar]
  • 18.Ceman S, Brown V, Warren ST. Isolation of an FMRP-associated messenger ribonuleoprotein particle and identification of nucleolin and the fragile X-related proteins as components of the complex. Mol Cell Biol. 1999;19:7925–7932. doi: 10.1128/mcb.19.12.7925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Bardoni B, Schenck A, Mandel J. A novel RNA-binding nuclear protein that interacts with the fragile X mental retardation ( FMR1) protein. Hum Mol Genet. 1999;8:2557–2566. doi: 10.1093/hmg/8.13.2557. [DOI] [PubMed] [Google Scholar]
  • 20.Devys D, Lutz Y, Rouyer N, Bellocq J-P, Mandel J-L. The FMR-1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutations. Nature Genet. 1993;4:335–340. doi: 10.1038/ng0893-335. [DOI] [PubMed] [Google Scholar]
  • 21.Verheij C, Bakker CE, de Graaff E, Keulemans J, Willemsen R, Verkerk AJ, Galjaard H, Reuser AJ, Hoogeveen AT, Oostra BA. Characterization and localization of the FMR-1 gene product associated with fragile X syndrome. Nature. 1993;363:722–724. doi: 10.1038/363722a0. [DOI] [PubMed] [Google Scholar]
  • 22.Feng Y, Gutekunst CA, Eberhart DE, Yi H, Warren ST, Hersch SM. Fragile X mental retardation protein: nucleocytoplasmic shuttling and association with somatodendritic ribosomes. J Neurosci. 1997;17:1539–1547. doi: 10.1523/JNEUROSCI.17-05-01539.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Nolin SL, Lewis FA, Ye LL, Houck GE, Glicksman AE, Limprasert P, Li SY, Zhong N, Ashley AE, Feingold E, Sherman SL, Brown WT. Familial transmission of the FMR1 CGG repeat. Am J Hum Genet. 1996;59:1252–1261. [PMC free article] [PubMed] [Google Scholar]
  • 24.Maddalena A, Richards CS, McGinniss MJ, Brothman A, Desnick RJ, Grier RE, Hirsch B, Jacky P, McDowell GA, Popovich B, Watson M, Wolff DJ. Technical Standards and Guidelines for Fragile X: The First of a Series of Disease-Specific Supplements to the Standards and Guidelines for Clinical Genetics Laboratories of the American College of Medical Genetics. Genet Med. 2001;3:200–205. doi: 10.1097/00125817-200105000-00010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Ashley-Koch AE, Robinson H, Glicksman AE, Nolin SL, Schwartz CE, Brown WT, Turner G, Sherman SL. Examination of factors associated with instability of the FMR1 CGG repeat. Am J Hum Genet. 1998;63:776–785. doi: 10.1086/302018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Geva E, Yaron Y, Shomrat R, Ben-Yehuda A, Zabari S, Peretz H, Naiman T, Yeger H, Orr-Urtreger A. The risk of fragile X premutation expansion is lower in carriers detected by general prenatal screening than in carriers from known fragile X families. Genet Testing. 2000;4:289–292. doi: 10.1089/10906570050501524. [DOI] [PubMed] [Google Scholar]
  • 27.Malter HE, Iber JC, Willemsen R, de Graaff E, Tarleton JC, Leisti J, Warren ST, Oostra BA. Characterization of the full fragile X syndrome mutation in fetal gametes. Nature Genet. 1997;15:165–169. doi: 10.1038/ng0297-165. [DOI] [PubMed] [Google Scholar]
  • 28.Moutou C, Vincent MC, Biancalana V, Mandel JL. Transition from premutation to full mutation in fragile X syndrome is likely to be prezygotic. Hum Mol Genet. 1997;6:971–979. doi: 10.1093/hmg/6.7.971. [DOI] [PubMed] [Google Scholar]
  • 29.Reyniers E, Vits L, De Boulle K, Van Roy B, Van Velzen D, de Graaff E, Verkerk AJ, Jorens HZ, Darby JK, Oostra B. The full mutation in the FMR-1 gene of male fragile X patients is absent in their sperm. Nature Genet. 1993;4:143–146. doi: 10.1038/ng0693-143. [DOI] [PubMed] [Google Scholar]
  • 30.Sutcliffe JS, Nelson DL, Zhang F, Pieretti M, Caskey CT, Saxe D, Warren ST. DNA methylation represses FMR-1 transcription in fragile X syndrome. Hum Mol Genet. 1992;1:397–400. doi: 10.1093/hmg/1.6.397. [DOI] [PubMed] [Google Scholar]
  • 31.Coffee B, Zhang F, Warren ST, Reines D. Acetylated histones are associated with FMR1 in normal but not fragile X syndrome cells. Nature Genet. 1999;22:98–101. doi: 10.1038/8807. [DOI] [PubMed] [Google Scholar]
  • 32.Pieretti M, Zhang F, Fu YH, Warren ST, Oostra BA, Caskey CT, Nelson DL. Absences of expression of the FMR-1 gene in fragile X syndrome. Cell. 1991;66:817–822. doi: 10.1016/0092-8674(91)90125-i. [DOI] [PubMed] [Google Scholar]
  • 33.Fu Y-H, Kuhl DPA, Pizzuti A, Pieretti M, Sutcliffe JS, Richards S, Verkerk AJM, Holden JH, Fenwick RG, Warren ST, Oostra BA, Nelson DL, Caskey CT. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell. 1991;67:1047–1058. doi: 10.1016/0092-8674(91)90283-5. [DOI] [PubMed] [Google Scholar]
  • 34.Sutherland GR. Fragile sites on human chromosomes: demonstration of their dependence on the type of tissue culture medium. Science. 1977;197:265–266. doi: 10.1126/science.877551. [DOI] [PubMed] [Google Scholar]
  • 35.Webb T, Bundey S, Thake J, Todd A. The frequency of the fragile X chromosome among schoolchildren in Coventry. J Med Genet. 1986;23:396–399. doi: 10.1136/jmg.23.5.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Turner G, Robinson H, Laing S, Purvis-Smith S. Preventive screening for the fragile X syndrome. N Engl J Med. 1986;315:607–609. doi: 10.1056/NEJM198609043151002. [DOI] [PubMed] [Google Scholar]
  • 37.Turner G, Webb T, Robinson H. Prevalence of fragile X syndrome. Am J Med Genet. 1996;64:196–197. doi: 10.1002/(SICI)1096-8628(19960712)64:1<196::AID-AJMG35>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  • 38.Crawford DC, Meadows KL, Newman JL, Taft LF, Scott E, Leslie M, Shubek L, Holmgreen P, Yeargin-Allsopp M, Boyle C, Sherman SL. Prevalence of the fragile X syndrome in African Americans (submitted) doi: 10.1002/ajmg.10427. [DOI] [PubMed] [Google Scholar]
  • 39.Jacobs PA, Bullman H, Macpherson J, Youings S, Rooney V, Watson A, Dennis NR. Population studies of the fragile X: a molecular approach. J Med Genet. 1993;30:454–459. doi: 10.1136/jmg.30.6.454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Patsalis PC, Sismani C, Hettinger JA, Boumba I, Georgiou I, Stylianidou G, Anastasiadou V, Koukoulli R, Pagoulatos G, Syrrou M. Molecular screening of fragile X (FRAXA) and FRAXE mental retardation syndromes in the Hellenic population of Greece and Cyprus: incidence, genetic variation, and stability. Am J Med Genet. 1999;84:184–190. [PubMed] [Google Scholar]
  • 41.Youings SA, Murray A, Dennis N, Ennis S, Lewis C, McKechnie N, Pound M, Sharrock A, Jacobs P. FRAXA and FRAXE: the results of a five year survey. J Med Genet. 2000;37:415–421. doi: 10.1136/jmg.37.6.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Mazurczak T, Bocian E, Milewski M, Obersztyn E, Stanczak H, Bal J, Szamotulska K, Karwacki MW. Frequency of Fra X syndrome among institutionalized mentally retarded males in Poland. Am J Med Genet. 1996;64:184–186. doi: 10.1002/(SICI)1096-8628(19960712)64:1<184::AID-AJMG32>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  • 43.Millan JM, Martinez F, Cadroy A, Gandia J, Casquero M, Beneyto M, Badia L, Prieto F. Screening for FMR1 mutations among the mentally retarded: prevalence of the fragile X syndrome in Spain. Clin Genet. 1999;56:98–99. doi: 10.1034/j.1399-0004.1999.560116.x. [DOI] [PubMed] [Google Scholar]
  • 44.Slaney SF, Wilkie AOM, Hirst MC, Charlton R, McKinley M, Pointon J, Christodoulou Z, Huson SM, Davies KE. DNA testing for fragile X syndrome in schools for learning difficulties. Arch Dis Child. 1995;72:33–37. doi: 10.1136/adc.72.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.von Koskull H, Gahmberg N, Salonen R, Salo A, Peippo M. FRAXA locus in fragile X diagnosis: family studies, prenatal diagnosis, and diagnosis of sporadic cases of mental retardation. Am J Med Genet. 1994;51:486–489. doi: 10.1002/ajmg.1320510438. [DOI] [PubMed] [Google Scholar]
  • 46.Mazzocco MMM, Myers GF, Hamner JL, Panoscha R, Shapiro BK, Reiss AL. The prevalence of the FMR1 and FMR2 mutations among preschool children with language delay. J Pediatr. 1998;132:795–801. doi: 10.1016/s0022-3476(98)70306-3. [DOI] [PubMed] [Google Scholar]
  • 47.de Vries BBA, van den Ouweland AMW, Mohkamsing S, Duivenvoorden HJ, Mol E, Gelsema K, van Rijn M, Halley DJJ, Sandkuijl LA, Oostra BA, Tibben A, Niermeijer MF, Collaborative Fragile X Study Group Screening and diagnosis for the fragile X syndrome among the mentally retarded: an epidemiological and psychological survey. Am J Hum Genet. 1997;61:660–667. doi: 10.1086/515496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Harris SW, Hagerman RJ. Fragile X syndrome: new developments. Current Opinion in Psychiatry. 1999;12:573–578. [Google Scholar]
  • 49.Hagerman R. Prevelance of fragile X syndrome. 2000 Available at http://www.fragilex.org/testing/prevalence/prevalence.htm.
  • 50.Neri G, Chiurazzi P. Fragile X syndrome screening: a current opinion. Community Genet. 2000;3:38–40. [Google Scholar]
  • 51.Falik-Zaccai TC, Shachak E, Yalon M, Lis Z, Borochowitz Z, Macpherson JN, Nelson DL, Eichler EE. Predisposition to the fragile X syndrome in Jews of Tunisian descent is due to the absence of AGG interruptions on a rare Mediterranean haplotype. Am J Hum Genet. 1997;60:103–112. [PMC free article] [PubMed] [Google Scholar]
  • 52.Kunst CB, Zerylnick C, Karickhoff L, Eichler E, Bullard J, Chalifoux M, Holden JJ, Torroni A, Nelson DL, Warren ST. FMR1 in global populations. Am J Hum Genet. 1996;58:513–522. [PMC free article] [PubMed] [Google Scholar]
  • 53.Arrieta I, Criado B, Martinez B, Telez M, Nunez T, Penagarikano O, Ortega B, Lostao CM. A survey of fragile X syndrome in a sample from Spanish Basque country. Ann Genet. 1999;42:197–201. [PubMed] [Google Scholar]
  • 54.Arrieta I, Gil A, Nunez T, Elez M, Artinez B, Criado B, Stao C. Stability of the FMR1 CGG repeat in a Basque sample. Hum Biol. 1999;71:55–68. [PubMed] [Google Scholar]
  • 55.Beresford RG, Tatlidil C, Riddell DC, Welch JP, Ludman MD, Neumann PE, Greer WL. Absence of fragile X syndrome in Nova Scotia. J Med Genet. 2000;37:77–79. doi: 10.1136/jmg.37.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Elbaz A, Suedois J, Duquesnoy M, Beldjord C, Berchel C, Merault G. Prevalence of fragile X syndrome and FRAXE among children with intellectual disability in a Caribbean island, Guadeloupe, French West Indies. J Intellect Disabil Res. 1998;42:81–89. doi: 10.1046/j.1365-2788.1998.00064.x. [DOI] [PubMed] [Google Scholar]
  • 57.Pesso R, Berkenstadt M, Cuckle H, Gak E, Peleg L, Frydman M, Barkai G. Screening for fragile X syndrome in women of reproductive age. Prenat Diagn. 2000;20:611–614. doi: 10.1002/1097-0223(200008)20:8<611::aid-pd881>3.0.co;2-m. [DOI] [PubMed] [Google Scholar]
  • 58.Fleiss JL. Statistical methods for rates and proportions. New York: John Wiley and Sons; 1981. An introduction to applied probability; pp. 1–18. [Google Scholar]
  • 59.Murray A, Macpherson JN, Pound MC, Sharrock A, Youings SA, Dennis NR, McKechnie N, Linehan P, Morton NE, Jacobs PA. The role of size, sequence and haplotype in the stability of FRAXA and FRAXE alleles during transmission. Hum Mol Genet. 1997;6:173–184. doi: 10.1093/hmg/6.2.173. [DOI] [PubMed] [Google Scholar]
  • 60.Rousseau F, Rouillard P, Morel M-L, Khandjian EW, Morgan K. Prevalence of carriers of premutation-size alleles of the FMR1 gene--and implications for the population genetics of the fragile X syndrome. Am J Hum Genet. 1995;57:1006–1018. [PMC free article] [PubMed] [Google Scholar]
  • 61.Drasinover V, Ehrlich S, Magal N, Taub E, Libman V, Shohat T, Halpern GJ, Shohat M. Increased transmission of intermediate alleles of the FMR1 gene compared with normal alleles among female heterozygotes. Am J Med Genet. 2000;93:155–157. doi: 10.1002/1096-8628(20000717)93:2<155::aid-ajmg13>3.0.co;2-g. [DOI] [PubMed] [Google Scholar]
  • 62.Spence WC, Black SH, Fallon L, Maddalena A, Cummings E, Menapace-Drew G, Bick DP, Levinson G, Schulman JD, Howard-Peebles PN. Molecular fragile X screening in normal populations. Am J Med Genet. 1996;64:181–183. doi: 10.1002/(SICI)1096-8628(19960712)64:1<181::AID-AJMG31>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  • 63.Ryynanen M, Heinonen S, Makkonen M, Kajanoja E, Mannermaa A, Pertti K. Feasibility and acceptance of screening for fragile X mutations in low-risk pregnancies. Eur J Hum Genet. 1999;7:212–216. doi: 10.1038/sj.ejhg.5200285. [DOI] [PubMed] [Google Scholar]
  • 64.Martin JP, Bell J. A pedigree of mental defect showing sex-linkage. J Neur Psychiat. 1943;6:154–157. doi: 10.1136/jnnp.6.3-4.154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Mazzocco MMM. Advances in research on the fragile X syndrome. Ment Retard Dev Disabil Res Rev. 2000;6:96–106. doi: 10.1002/1098-2779(2000)6:2<96::AID-MRDD3>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  • 66.Bailey DB, Hatton DD, Skinner M. Early developmental trajectories of males with fragile X syndrome. Am J Ment Retard. 1998;1:29–39. doi: 10.1352/0895-8017(1998)103<0029:EDTOMW>2.0.CO;2. [DOI] [PubMed] [Google Scholar]
  • 67.Hagerman RJ. Physical and behavioral phenotype. In: Hagerman RJ, Cronister A, editors. Fragile X syndrome: diagnosis, treatment, and research. Baltimore: Johns Hopkins University Press; 1996. pp. 3–88. [Google Scholar]
  • 68.Bailey DB, Mesibov GB, Hatton DD, Clark RD, Roberts JE, Mayhew L. Autistic behavior in young boys with fragile X syndrome. J Autism Dev Dis. 1998;28:499–508. doi: 10.1023/a:1026048027397. [DOI] [PubMed] [Google Scholar]
  • 69.Wolff PH, Gardner J, Lappen J, Paccia J, Meryash D. Variable expression of the fragile X syndrome in heterozygous females of normal intelligence. Am J Med Genet. 1988;30:213–225. doi: 10.1002/ajmg.1320300121. [DOI] [PubMed] [Google Scholar]
  • 70.Rousseau F, Heitz D, Tarleton J, Macpherson J, Malmgren H, Dahl N, Barnicoat A. A multicenter study on genotype-phenotype correlations in fragile X syndrome, using direct diagnosis with probe StB128: the first 2,253 cases. Am J Hum Genet. 1994;55:225–237. [PMC free article] [PubMed] [Google Scholar]
  • 71.de Vries BBA, Wiegers AM, Smits APT, Mohkamsing S, Duivenvoorden HJ, Fryns J-P, Curfs LMG, Halley DJJ, Oostra BA, van den Ouweland AMW, Niermeijer MF. Mental status of females with an FMR1 gene full mutation. Am J Hum Genet. 1996;58:1025–1032. [PMC free article] [PubMed] [Google Scholar]
  • 72.Reiss AL, Freund L, Abrams MT, Boehm C, Kazazian H. Neurobehavioral effects of the fragile X premutation in adult women: a controlled study. Am J Hum Genet. 1993;52:884–894. [PMC free article] [PubMed] [Google Scholar]
  • 73.Hull C, Hagerman RJ. A study of the physical, behavioral, and medical phenotype, including anthropometric measures, of females with the fragile X syndrome. Am J Dis Child. 1993;147:1236–1241. doi: 10.1001/archpedi.1993.02160350110017. [DOI] [PubMed] [Google Scholar]
  • 74.Mazzocco MMM, Pennington BF, Hagerman RJ. The neurocognitive phenotype of female carriers of fragile X: additional evidence for specificity. J Dev Behav Pediatr. 1993;14:328–335. [PubMed] [Google Scholar]
  • 75.Loesch DZ, Hay DA, Mulley J. Transmitting males and carrier females in fragile X--revisited. Am J Med Genet. 1994;51:392–399. doi: 10.1002/ajmg.1320510418. [DOI] [PubMed] [Google Scholar]
  • 76.Allingham-Hawkins DJ, Brown CA, Babul R, Chitayat D, Krekewich K, Humphries T, Ray PN, Teshima IE. Tissue-specific methylation differences and cognitive function in fragile X premutation females. Am J Med Genet. 1996;64:329–333. doi: 10.1002/(SICI)1096-8628(19960809)64:2<329::AID-AJMG19>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  • 77.Franke P, Maier W, Hautzinger M, Weiffenbach O, Gansicke M, Iwers B, Poustka F, Schwab SG, Froster U. Fragile-X carrier females: evidence for a distinct psychopathological phenotype? Am J Med Genet. 1996;64:334–339. doi: 10.1002/(SICI)1096-8628(19960809)64:2<334::AID-AJMG20>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  • 78.Riddle JE, Cheema A, Sobesky WE, Gardner SC, Taylor AK, Pennington BF, Hagerman RJ. Phenotypic involvement in females with the FMR1 gene mutation. Am J Ment Retard. 1998;102:590–601. doi: 10.1352/0895-8017(1998)102<0590:piifwt>2.0.co;2. [DOI] [PubMed] [Google Scholar]
  • 79.Franke P, Leboyer M, Gansicke M, Weiffenbach O, Biancalana V, Cornillet-Lefebre P, Delobel B, Froster U, Schwab SG, Poustka F, Hautzinger M, Maier W. Genotype-phenotype relationship in female carriers of the premutation and full mutation of FMR-1. Psychiatry Res. 1998;80:113–127. doi: 10.1016/s0165-1781(98)00055-9. [DOI] [PubMed] [Google Scholar]
  • 80.Tassone F, Hagerman R, Taylor AK, Gane LW, Hagerman PJ. Elevated levels of FMR1 mRNA in carrier males: a new mechanism of involvement in the fragile X syndrome. Am J Hum Genet. 2000;66:6–15. doi: 10.1086/302720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Kenneson A, Zhang F, Hagedorn CH, Warren ST. Reduced FMRP and increased FMR1 transcription is proportionally associated with CGG-repeat number in intermediate-length and premutation carriers. Hum Mol Genet. in press doi: 10.1093/hmg/10.14.1449. [DOI] [PubMed] [Google Scholar]
  • 82.Tassone F, Hagerman RJ, Chamberlain WD, Hagerman PJ. Transcription of the FMR1 gene in individuals with fragile X syndrome. Am J Med Genet (Semin Med Genet) 2000;97:195–203. doi: 10.1002/1096-8628(200023)97:3<195::AID-AJMG1037>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  • 83.Sherman SL. Premature ovarian failure in the fragile X syndrome. Am J Med Genet (Semin Med Genet) 2000;97:189–194. doi: 10.1002/1096-8628(200023)97:3<189::AID-AJMG1036>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  • 84.Helderman-van den Enden AT, Maaswinkel-Mooij PD, Hoogendoorn E, Willemsen R, Maat-Kievit JA, Losekoot M, Oostra BA. Monozygotic twin brothers with the fragile X syndrome: different CGG repeat and different mental capacities. J Med Genet. 1999;36:253–257. [PMC free article] [PubMed] [Google Scholar]
  • 85.Willemsen R, Olmer R, De Diego Otero Y, Oostra BA. Twin sisters, monozygotic with the fragile X mutations, but with a different phenotype. J Med Genet. 2000;37:603–604. doi: 10.1136/jmg.37.8.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Sheldon L, Turk J. Monozygotic boys with fragile X syndrome. Dev Med Child Neuro. 2000;42:768–774. doi: 10.1017/s0012162200001420. [DOI] [PubMed] [Google Scholar]
  • 87.Tassone F, Hagerman RJ, Ikle DN, Dyer PN, Lampe M, Willemsen R, Oostra BA, Taylor AK. FMRP expression as a potential prognostic indicator in fragile X syndrome. Am J Med Genet. 1999;84:250–261. [PubMed] [Google Scholar]
  • 88.Backes M, Genc B, Schreck J, Doerfler W, Lehmkuhl G, von Gontard A. Cognitive and beaviroal profile of fragile X boys: correlations to molecular data. Am J Med Genet. 2000;95:150–156. [PubMed] [Google Scholar]
  • 89.Bailey DB, Hatton DD, Skinner M, Mesibov G. Autistic behavior, FMR1 protein, and developmental trajectories in young males with fragile X syndrome. J Autism Dev Dis. 2001;31:165–174. doi: 10.1023/a:1010747131386. [DOI] [PubMed] [Google Scholar]
  • 90.Burman RW, Anoe KS, Popovich BW. Fragile X full mutations are more similar in siblings than in unrelated patients: further evidence for a familial factor in CGG repeat dynamics. Genet Med. 2000;2:242–248. doi: 10.1097/00125817-200007000-00007. [DOI] [PubMed] [Google Scholar]
  • 91.Nolin SL, Houck GE, Gargano AD, Blumstein H, Dobkin CS, Brown WT. FMR1 CGG-repeat instability in single sperm and lymphocytes of fragile-X premutation males. Am J Hum Genet. 1999;65:680–688. doi: 10.1086/302543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Crawford DC, Wilson B, Sherman SL. Factors involved in the initial mutation of the fragile X CGG repeat as determined by sperm small pool PCR. Hum Mol Genet. 2000;9:2909–2918. doi: 10.1093/hmg/9.19.2909. [DOI] [PubMed] [Google Scholar]
  • 93.Murray J, Cuckle H, Taylor G, Hewison J. Screening for fragile X syndrome: information needs for health planners. J Med Screen. 1997;4:60–94. doi: 10.1177/096914139700400204. [DOI] [PubMed] [Google Scholar]
  • 94.Gronskov K, Hallberg A, Brondum-Nielsen K. Mutational analysis of the FMR1 gene in 118 mentally retarded males suspected of fragile X syndrome: absence of prevalent mutations. Hum Genet. 1998;102:440–445. doi: 10.1007/s004390050718. [DOI] [PubMed] [Google Scholar]
  • 95.Willemsen R, Mohkamsing S, de Vries BA, Devys D, van den Ouweland A, Mandel J-L, Galjaard H, Oostra BA. Rapid antibody test for fragile X syndrome. Lancet. 1995;345:1147–1148. doi: 10.1016/s0140-6736(95)90979-6. [DOI] [PubMed] [Google Scholar]
  • 96.Willemsen R, Smits A, Mohkamsing S, van Beerendonk H, de Haan A, de Vries B, an den Ouweland A, Sistermans E, Galjaard H, Oostra BA. Rapid antibody test for diagnosing fragile X syndrome: a validation of the technique. Hum Genet. 1997;99:308–311. doi: 10.1007/s004390050363. [DOI] [PubMed] [Google Scholar]
  • 97.de Vries BBA, Mohkamsing S, van den Ouweland AMW, Halley DJJ, Niermeijer MF, Oostra BA, Willemsen R. Screening with the FMR1 protein test among mentally retarded males. Hum Genet. 1998;103:520–522. doi: 10.1007/s004390050860. [DOI] [PubMed] [Google Scholar]
  • 98.Willemsen R, Anar B, De Diego Otero Y, de Vries BBA, Hilhorst-Hofstee Y, Smits A, van Looveren E, Willems PJ, Galjaard H, Oostra BA. Noninvasive test for fragile X syndrome, using hair root analysis. Am J Hum Genet. 1999;65:98–103. doi: 10.1086/302462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Tuncbilek E, Alikasifoglu M, Aktas D, Duman F, Yanik H, Anar B, Oostra BA, Willemsen R. Screening for the fragile X syndrome among mentally retarded males by hair root analysis. Am J Med Genet. 2000;95:105–107. doi: 10.1002/1096-8628(20001113)95:2<105::aid-ajmg3>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
  • 100.Jenkins EC, Wen GY, Kim KS, Zhong N, Sapienza VJ, Hong H, Chen J, Li S-Y, Houck GE, Ding X, Nolin SL, Dobkin CS, Brown WT. Prenatal fragile X detection using cytoplasmic and nuclear-specific monoclonal antibodies. Am J Med Genet. 1999;83:342–346. doi: 10.1002/(sici)1096-8628(19990402)83:4<342::aid-ajmg24>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
  • 101.Lambiris N, Peters H, Bollmann R, Leschik G, Leisti J, Salonen R, Cobet G, Oostra BA, Willemsen R. Rapid FMR1-protein analysis of fetal blood: an enhancement of prenatal diagnostics. Hum Genet. 1999;105:258–260. doi: 10.1007/s004390051098. [DOI] [PubMed] [Google Scholar]
  • 102.American College of Medical Genetics. Fragile X syndrome: diagnostic and carrier testing. Am J Med Genet. 1994;53:380–381. doi: 10.1002/ajmg.1320530416. [DOI] [PubMed] [Google Scholar]
  • 103.Curry CJ, Stevenson RE, Aughton D, Byrne J, Carey JC, Cassidy S, Cunniff C, Grahman JM, Jones MC, Kaback MM, Moeschler J, Schaefer GB, Schwartz S, Tarleton J, Opitz J. Evaluation of mental retardation: recommendations of a consensus conference. Am J Med Genet. 1997;72:468–477. doi: 10.1002/(sici)1096-8628(19971112)72:4<468::aid-ajmg18>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
  • 104.White BJ, Ayad M, Fraser A, Entwistle T, Winkler S, Sbeiti A, Fenwick R. A 6-year experience demonstrates the utility of screening for both cytogenetic and FMR-1 abnormalities in patients with mental retardation. Genet Testing. 1999;3:291–296. doi: 10.1089/109065799316617. [DOI] [PubMed] [Google Scholar]
  • 105.Hunter AGW. Outcome of the routine assessment of patients with mental retardation in a genetics clinic. Am J Med Genet. 2000;90:60–68. doi: 10.1002/(sici)1096-8628(20000103)90:1<60::aid-ajmg11>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
  • 106.Stoll C. Problems in the diagnosis of fragile X syndrome in young children are still present. Am J Med Genet. 2001;100:110–115. doi: 10.1002/1096-8628(20010422)100:2<110::aid-ajmg1242>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
  • 107.Lachiewicz AM, Dawson DV, Spiridigliozzi GA. Physical characteristics of young boys with fragile X syndrome: reasons for difficulties in making a diagnosis in young males. Am J Med Genet. 2000;92:229–236. doi: 10.1002/(sici)1096-8628(20000605)92:4<229::aid-ajmg1>3.0.co;2-k. [DOI] [PubMed] [Google Scholar]
  • 108.Schwartz CE, Phelan MC, Pulliam LH, Wilkes G, Vanner LV, Albiez KL, Potts WA, Rogers RC, Schroer RJ, Saul RA, Prouty LA, Dean JH, Taylor HA, Stevenson RE. Fragile X syndrome: incidence, clinical and cytogenetic findings in the black and white populations of South Carolina. Am J Med Genet. 1988;30:641–654. doi: 10.1002/ajmg.1320300165. [DOI] [PubMed] [Google Scholar]
  • 109.Epps S, Kroeker R. Effects of child age and level of developmental delay on family practice physicians' diagnostic impressions. Ment Retard. 1995;33:35–41. [PubMed] [Google Scholar]
  • 110.Bailey DB, Skinner D, Hatton D, Roberts J. Family experiences and factors associated with the diagnosis of fragile X syndrome. J Dev Behav Pediatr. 2000;21:315–321. doi: 10.1097/00004703-200010000-00001. [DOI] [PubMed] [Google Scholar]
  • 111.Brown WT, Nolin SL, Houck GE, Ding X, Glicksman AE, Li S-Y, Stark-Houck S, Brophy P, Duncan C, Dobkin C, Jenkins EC. Prenatal diagnosis and carrier screening for fragile X by PCR. Am J Med Genet. 1996;64:191–195. doi: 10.1002/(SICI)1096-8628(19960712)64:1<191::AID-AJMG34>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  • 112.Howard-Peebles PN, Maddalena A, Black SH, Levison G, Bick DD, Schulman JD. Fragile X screening in pediatric and obstetrical patients. Dev Brain Dysfunct. 1995;8:408–410. [Google Scholar]
  • 113.Wenstrom KD, Descartes M, Franklin J, Cliver SP. A five-year experience with fragile X screening of high-risk gravid women. Am J Obstet Gynecol. 1999;181:789–792. doi: 10.1016/s0002-9378(99)70302-9. [DOI] [PubMed] [Google Scholar]
  • 114.Kallinen J, Heinonen S, Mannermaa A, Ryynanen M. Prenatal diagnosis of fragile X syndrome and the risk of expansion of a premutation. Clin Genet. 2000;58:111–115. doi: 10.1034/j.1399-0004.2000.580204.x. [DOI] [PubMed] [Google Scholar]
  • 115.Robinson H, Wake S, Wright F, Laing S, Turner G. Informed choice in fragile X syndrome and its effects on prevalence. Am J Med Genet. 1996;64:198–202. doi: 10.1002/(SICI)1096-8628(19960712)64:1<198::AID-AJMG36>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  • 116.Newborn Screening Task Force. Serving the family from birth to the medical home. A report from the newborn screening task force convened in Washington DC, May 10–11, 1999. Pediatrics. 2000;106:379–427. [PubMed] [Google Scholar]
  • 117.van der Riet AA, van Hout BA, Rutten FFH. Cost effectiveness of DNA diagnosis for four monogenic diseases. J Med Genet. 1997;34:741–745. doi: 10.1136/jmg.34.9.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Wildhagen MF, van Os TAM, Polder JJ, ten Kate LP, Habbema JDF. Explorative study of costs, effects and savings of screening for female fragile X premutation and full mutation carriers in the general population. Community Genet. 1998;1:36–47. doi: 10.1159/000016133. [DOI] [PubMed] [Google Scholar]
  • 119.Bailey DB, Roberts JE, Mirrett P, Hatton DD. Identifying infants and toddlers with fragile X syndrome: issues and recommendations. Inf Young Children. in press [Google Scholar]
  • 120.Wildhagen MF, van Os TAM, Polder JJ, ten Kate LP, Habbema JDF. Efficacy of cascade testing for fragile X syndrome. J Med Screen. 1999;6:70–76. doi: 10.1136/jms.6.2.70. [DOI] [PubMed] [Google Scholar]
  • 121.Murray A, Youings SA, Dennis N, Latsky L, Linehan P, McKechnie N, Macpherson J, Pound M, Jacobs P. Population screening at the FRAXA and FRAXE loci: molecular analyses of boys with learning difficulties and their mothers. Hum Mol Genet. 1996;5:727–735. doi: 10.1093/hmg/5.6.727. [DOI] [PubMed] [Google Scholar]
  • 122.Crawford DC, Meadows KL, Newman JL, Taft LF, Pettay DL, Gold LB, Hersey SJ, Hinkle EF, Stanfield ML, Holmgreen P, Yeargin-Allsopp M, Boyle C, Sherman SL. Prevalence and phenotype consequence of FRAXA and FRAXE alleles in a large, ethnically diverse, special education-needs population. Am J Hum Genet. 1999;64:495–507. doi: 10.1086/302260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Gerard B, Le Heuzey MF, Brunie G, Lewine P, Saiag MC, Cacheux V, Da Silva F, Dugas M, Mouren-Simeoni MC, Elion J, Grandchamp B. Systematic screening for fragile X syndrome in a cohort of 574 mentally retarded children. Ann Genet. 1997;40:139–144. [PubMed] [Google Scholar]
  • 124.Zhong N, Ju W, Xu W, Ye L, Shen Y, Wu G, Chen S-H, Jin R, Hu X-F, Yang A, Liu X, Poon P, Pang C, Zheng Y, Song L, Zhao P, Fu B, Gu H, Brown WT. Frequency of the fragile X syndrome in Chinese mentally retarded populations is similar to that in Caucasians. Am J Med Genet. 1999;84:191–194. doi: 10.1002/(sici)1096-8628(19990528)84:3<191::aid-ajmg3>3.0.co;2-8. [DOI] [PubMed] [Google Scholar]
  • 125.Jain U, Verma IC, Kapoor AK. Prevalence of fragile X(A) syndrome in mentally retarded children at a genetics referral centre in Delhi, India. Indian J Med Res. 1998;108:12–16. [PubMed] [Google Scholar]
  • 126.Arvio M, Peippo M, Simola KOJ. Applicability of a checklist for clinical screening of the fragile X syndrome. Clin Genet. 1997;52:211–215. doi: 10.1111/j.1399-0004.1997.tb02549.x. [DOI] [PubMed] [Google Scholar]
  • 127.Hagerman RJ, Wilson P, Staley LW, Lang KA, Fan T, Uhlhorn C, Jewell-Smart S, Hull C, Drisko J, Flom K, Taylor AK. Evaluation of school children at high risk for fragile X syndrome utilizing buccal cell FMR-1 testing. Am J Med Genet. 1994;51:474–481. doi: 10.1002/ajmg.1320510436. [DOI] [PubMed] [Google Scholar]
  • 128.Hofstee Y, Arinami T, Hamaguchi H. Comparison between the cytogenetic test for fragile X and the molecular analysis of the FMR-1 gene in Japanese mentally retarded individuals. Am J Med Genet. 1994;51:466–470. doi: 10.1002/ajmg.1320510434. [DOI] [PubMed] [Google Scholar]
  • 129.Faradaz SMH, Buckley M, Tang L-P, Leigh D, Holden JJA. Molecular screening for fragile X syndrome among Indonesian children with developmental disability. Am J Med Genet. 1999;83:350–351. [PubMed] [Google Scholar]
  • 130.Syrrou M, Georgiou I, Grigoriadou M, Petersen MB, Kitsiou S, Pagoulatos G, Patsalis PC. FRAXA and FRAXE prevalence in patients with nonspecific mental retardation in the Hellenic population. Genet Epidemiol. 1998;15:103–109. doi: 10.1002/(SICI)1098-2272(1998)15:1<103::AID-GEPI8>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  • 131.Haddad LA, Aguiar MJB, Costa SS, Mingroni-Netto RC, Vianna-Morgante AM, Pena SDJ. Fully mutated and gray-zone FRAXA alleles in Brazilian mentally retarded boys. Am J Med Genet. 1999;84:198–201. doi: 10.1002/(sici)1096-8628(19990528)84:3<198::aid-ajmg5>3.0.co;2-w. [DOI] [PubMed] [Google Scholar]
  • 132.Nanba E, Kohno Y, Matsuda A, Yano M, Sato C, Hashimoto K, Koeda T, Yoshino K, Kimura M, Maeoka Y, Yamamoto T, Maegaki Y, Eda I, Takeshita K. Non-radioactive DNA diagnosis for the fragile X syndrome in mentally retarded Japanese males. Brain Dev. 1995;17:317–321. doi: 10.1016/0387-7604(95)00031-6. [DOI] [PubMed] [Google Scholar]
  • 133.Tan BS, Law HT, Zhao Y, Yoon CS, Ng ISL. DNA testing for fragile X syndrome in 255 males from special schools in Singapore. Ann Acad Med Singapore. 2000;29:207–212. [PubMed] [Google Scholar]
  • 134.Pang CP, Poon PMK, Chen QL, Lai KYC, Yin CH, Zhao Z, Zhong N, Lau CH, Lam STS, Wong CK, Brown WT. Trinucleotide CGG repeat in the FMR1 gene in Chinese mentally retarded patients. Am J Med Genet. 1999;84:179–183. [PubMed] [Google Scholar]
  • 135.Morton JE, Bundey S, Webb TP, MacDonald F, Rindl PM, Bullock S. Fragile X syndrome is less common than previously estimated. J Med Genet. 1997;34:1–5. doi: 10.1136/jmg.34.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136.Aspillaga HM, Jara SL, Avendano BI, Lopez SM. Fragile X syndrome. Clinical analysis of 200 Chilean patients with unspecific mental retardation. Rev Med Chile. 1998;126:1447–1454. [PubMed] [Google Scholar]
  • 137.Tzeng CC, Tzeng P-Y, Sun HS, Chen RM, Lin S-J. Implication of screening for FMR1 and FMR2 gene mutation in individuals with nonspecific mental retardation in Taiwan. Diagn Mol Path. 2000;9:75–80. doi: 10.1097/00019606-200006000-00002. [DOI] [PubMed] [Google Scholar]
  • 138.van den Ouweland AMW, de Vries BBA, Bakker PLG, Deelen WH, de Graaff E, van Hemel JO, Oostra BA, Niermeijer MF, Halley DJJ. DNA diagnosis of the fragile X syndrome in a series of 236 mentally retarded subjects and evidence for a reversal of mutation in the FMR-1 gene. Am J Med Genet. 1994;51:482–485. doi: 10.1002/ajmg.1320510437. [DOI] [PubMed] [Google Scholar]
  • 139.Kaplan G, Kung M, McClure M, Cronister A. Direct mutation analysis of 495 patients for fragile X carrier status/proband diagnosis. Am J Med Genet. 1994;51:501–502. doi: 10.1002/ajmg.1320510441. [DOI] [PubMed] [Google Scholar]
  • 140.Mila M, Sanchez A, Badenas C, Brun C, Jimenez D, Villa MP, Castellvi-Bel S, Estivill X. Screening for FMR1 and FMR2 mutations in 222 individuals from Spanish special schools: identification of a case of FRAXE-associated mental retardation. Hum Genet. 1997;100:503–507. doi: 10.1007/s004390050542. [DOI] [PubMed] [Google Scholar]
  • 141.Tuncbilek E, Alikasifoglu M, Boduroglu K, Aktas D, Anar B. Frequency of fragile X syndrome among Turkish patients with mental retardation of unknown etiology. Am J Med Genet. 1999;84:202–203. doi: 10.1002/(sici)1096-8628(19990528)84:3<202::aid-ajmg6>3.0.co;2-o. [DOI] [PubMed] [Google Scholar]
  • 142.Goldman A, Krause A, Jenkins T. Fragile X syndrome occurs in the South African black population. SAMJ. 1997;87:418–420. [PubMed] [Google Scholar]
  • 143.Goldman A, Jenkins T, Krause A. Molecular evidence that fragile X syndrome occurs in the South African black population. J Med Genet. 1998;35:878. doi: 10.1136/jmg.35.10.878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.O’Dwyer J, Holmes J, Mueller R, Taylor G. The prevalence of fragile X syndrome in an institution for people with learning disability. Psychiatr Genet. 1997;7:115–119. doi: 10.1097/00041444-199723000-00005. [DOI] [PubMed] [Google Scholar]
  • 145.Ruangdaraganon N, Limprasert P, Sura T, Sombuntham T, Sriwongpanich N, Kotchabhakdi N. Prevalence and clinical characteristics of fragile X syndrome at child evelopment clinic, Ramathibodi hospital. J Med Assoc Thai. 2000;83:69–76. [PubMed] [Google Scholar]
  • 146.Sharma D, Gupta M, Thelma BK. Expansion mutation frequency and CGG/GCC repeat polymorphism in FMR1 and FMR2 genes in an Indian population. Genet Epidemiol. 2001;20:129–144. doi: 10.1002/1098-2272(200101)20:1<129::AID-GEPI11>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  • 147.Hagerman R, Amiri K, Cronister A. Fragile X checklist. Am J Hum Genet. 1991;38:283–287. doi: 10.1002/ajmg.1320380223. [DOI] [PubMed] [Google Scholar]
  • 148.Mulatinho MV, Llerena JC, Pimentel MMG. FRAXA screening in Brazilian institutionalized individuals with nonspecific severe mental retardation. Genet Testing. 2000;4:283–287. doi: 10.1089/10906570050501515. [DOI] [PubMed] [Google Scholar]
  • 149.Hecimovic S, Barisic I, Pavelic K. DNA analysis of the fragile X syndrome in an at risk pediatric population in Croatia: simple clinical preselection criteria can considerably improve the cost-effectiveness of fragile X screening studies. Hum Hered. 1998;48:256–265. doi: 10.1159/000022813. [DOI] [PubMed] [Google Scholar]
  • 150.Gonzalez-del Angel A, Vidal S, Saldana Y, del Castillo V, Alcantara MA, Macias M, Luna JP, Orozco L. Molecular diagnosis of the fragile X and FRAXE syndromes in patients with mental retardation of unknown cause in Mexico. Ann Genet. 2000;43:29–34. doi: 10.1016/s0003-3995(00)00018-6. [DOI] [PubMed] [Google Scholar]
  • 151.Holden JJA, Chalifoux M, Wing M, Julien-Inalsingh C, Lawson JS, Higgins JV, Sherman S, White BN. Distribution and frequency of FMR1 CGG repeat numbers in the general population. Dev Brain Dysfunct. 1995;8:405–407. [Google Scholar]
  • 152.Dawson AJ, Chodirker BN, Chudley AE. Frequency of FMR1 premutations in a consecutive mewborn population by PCR screening of Guthrie blood spots. Biochem Mol Med. 1995;56:63–69. doi: 10.1006/bmme.1995.1057. [DOI] [PubMed] [Google Scholar]
  • 153.Reiss AL, Kazazian HH, Krebs CM, McAughan A, Boehm CD, Abrams MT, Nelson DL. Frequency and stability of the fragile X premutation. Hum Mol Genet. 1994;3:393–398. doi: 10.1093/hmg/3.3.393. [DOI] [PubMed] [Google Scholar]
  • 154.Mazzocco MMM, Sonna NL, Teisl JT, Pinit A, Shapiro BK, Shah N, Reiss AL. The FMR1 and FMR2 mutations are not common etiologies of academic difficulty among school-age children. J Dev Behav Pediatr. 1997;18:392–398. doi: 10.1097/00004703-199712000-00004. [DOI] [PubMed] [Google Scholar]
  • 155.Snow K, Doud LK, Hagerman R, Pergolizzi RG, Erster SH, Thibodeau SN. Analysis of a CGG sequence at the FMR-1 locus in fragile X families and in the general population. Am J Hum Genet. 1993;53:1217–1228. [PMC free article] [PubMed] [Google Scholar]

RESOURCES