Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1996 Jan 15;15(2):344–350.

Conserved function of anopheles gambiae midgut-specific promoters in the fruitfly.

G Skavdis 1, I Sidén-Kiamos 1, H M Müller 1, A Crisanti 1, C Louis 1
PMCID: PMC449949  PMID: 8617209

Abstract

Control of malaria by a methodology that would permit the effective blockage of the Anopheles gambiae midgut wall penetration by Plasmodium parasites requires a detailed understanding of both the physiology of the mosquito's digestion, and of the interactions between the parasite and its host. We have transformed Drosophila melanogaster with several constructs that allow the study of the promoter region of two of the major late trypsin genes of A. gambiae. Using several deletions, we have identified, for both genes, small genomic segments that are sufficient to confer tissue specificity to the promoter in a species that is far away in evolution from the mosquito. This will allow further studies that will enable both the understanding of the blood meal digestion, and may potentially be useful for the design of anti-plasmodial constructs at a later stage.

Full text

PDF
344

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Collins F. H., Besansky N. J. Vector biology and the control of malaria in Africa. Science. 1994 Jun 24;264(5167):1874–1875. doi: 10.1126/science.8009215. [DOI] [PubMed] [Google Scholar]
  4. Collins F. H. Prospects for malaria control through the genetic manipulation of its vectors. Parasitol Today. 1994 Oct;10(10):370–371. doi: 10.1016/0169-4758(94)90221-6. [DOI] [PubMed] [Google Scholar]
  5. Curtis C. F. The case for malaria control by genetic manipulation of its vectors. Parasitol Today. 1994 Oct;10(10):371–374. doi: 10.1016/0169-4758(94)90222-4. [DOI] [PubMed] [Google Scholar]
  6. Davis C. A., Riddell D. C., Higgins M. J., Holden J. J., White B. N. A gene family in Drosophila melanogaster coding for trypsin-like enzymes. Nucleic Acids Res. 1985 Sep 25;13(18):6605–6619. doi: 10.1093/nar/13.18.6605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Favia G., Dimopoulos G., della Torre A., Touré Y. T., Coluzzi M., Louis C. Polymorphisms detected by random PCR distinguish between different chromosomal forms of Anopheles gambiae. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10315–10319. doi: 10.1073/pnas.91.22.10315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hill S. M., Urwin R., Crampton J. M. A simplified, non-radioactive DNA probe protocol for the field identification of insect vector specimens. Trans R Soc Trop Med Hyg. 1992 Mar-Apr;86(2):213–215. doi: 10.1016/0035-9203(92)90578-z. [DOI] [PubMed] [Google Scholar]
  10. Hiromi Y., Gehring W. J. Regulation and function of the Drosophila segmentation gene fushi tarazu. Cell. 1987 Sep 11;50(6):963–974. doi: 10.1016/0092-8674(87)90523-x. [DOI] [PubMed] [Google Scholar]
  11. James A. A. Mosquito molecular genetics: the hands that feed bite back. Science. 1992 Jul 3;257(5066):37–38. doi: 10.1126/science.1352413. [DOI] [PubMed] [Google Scholar]
  12. Karess R. E., Rubin G. M. Analysis of P transposable element functions in Drosophila. Cell. 1984 Aug;38(1):135–146. doi: 10.1016/0092-8674(84)90534-8. [DOI] [PubMed] [Google Scholar]
  13. Mismer D., Rubin G. M. Analysis of the promoter of the ninaE opsin gene in Drosophila melanogaster. Genetics. 1987 Aug;116(4):565–578. doi: 10.1093/genetics/116.4.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mitsialis S. A., Kafatos F. C. Regulatory elements controlling chorion gene expression are conserved between flies and moths. Nature. 1985 Oct 3;317(6036):453–456. doi: 10.1038/317453a0. [DOI] [PubMed] [Google Scholar]
  15. Müller H. M., Crampton J. M., della Torre A., Sinden R., Crisanti A. Members of a trypsin gene family in Anopheles gambiae are induced in the gut by blood meal. EMBO J. 1993 Jul;12(7):2891–2900. doi: 10.1002/j.1460-2075.1993.tb05951.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Paskewitz S. M., Brown M. R., Collins F. H., Lea A. O. Ultrastructural localization of phenoloxidase in the midgut of refractory Anopheles gambiae and association of the enzyme with encapsulated Plasmodium cynomolgi. J Parasitol. 1989 Aug;75(4):594–600. [PubMed] [Google Scholar]
  17. Reichhart J. M., Meister M., Dimarcq J. L., Zachary D., Hoffmann D., Ruiz C., Richards G., Hoffmann J. A. Insect immunity: developmental and inducible activity of the Drosophila diptericin promoter. EMBO J. 1992 Apr;11(4):1469–1477. doi: 10.1002/j.1460-2075.1992.tb05191.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rosenberg R., Koontz L. C., Alston K., Friedman F. K. Plasmodium gallinaceum: erythrocyte factor essential for zygote infection of Aedes aegypti. Exp Parasitol. 1984 Apr;57(2):158–164. doi: 10.1016/0014-4894(84)90075-4. [DOI] [PubMed] [Google Scholar]
  19. Scott J. A., Brogdon W. G., Collins F. H. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993 Oct;49(4):520–529. doi: 10.4269/ajtmh.1993.49.520. [DOI] [PubMed] [Google Scholar]
  20. Shahabuddin M., Toyoshima T., Aikawa M., Kaslow D. C. Transmission-blocking activity of a chitinase inhibitor and activation of malarial parasite chitinase by mosquito protease. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4266–4270. doi: 10.1073/pnas.90.9.4266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Simon J. A., Lis J. T. A germline transformation analysis reveals flexibility in the organization of heat shock consensus elements. Nucleic Acids Res. 1987 Apr 10;15(7):2971–2988. doi: 10.1093/nar/15.7.2971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Spielman A. Why entomological antimalaria research should not focus on transgenic mosquitoes. Parasitol Today. 1994 Oct;10(10):374–376. doi: 10.1016/0169-4758(94)90223-2. [DOI] [PubMed] [Google Scholar]
  23. Thummel C. S., Boulet A. M., Lipshitz H. D. Vectors for Drosophila P-element-mediated transformation and tissue culture transfection. Gene. 1988 Dec 30;74(2):445–456. doi: 10.1016/0378-1119(88)90177-1. [DOI] [PubMed] [Google Scholar]
  24. Vernick K. D., Fujioka H., Seeley D. C., Tandler B., Aikawa M., Miller L. H. Plasmodium gallinaceum: a refractory mechanism of ookinete killing in the mosquito, Anopheles gambiae. Exp Parasitol. 1995 Jun;80(4):583–595. doi: 10.1006/expr.1995.1074. [DOI] [PubMed] [Google Scholar]
  25. Wilkerson R. C., Parsons T. J., Albright D. G., Klein T. A., Braun M. J. Random amplified polymorphic DNA (RAPD) markers readily distinguish cryptic mosquito species (Diptera: Culicidae: Anopheles). Insect Mol Biol. 1993;1(4):205–211. doi: 10.1111/j.1365-2583.1993.tb00093.x. [DOI] [PubMed] [Google Scholar]
  26. Yun Y., Davis R. L. Levels of RNA from a family of putative serine protease genes are reduced in Drosophila melanogaster dunce mutants and are regulated by cyclic AMP. Mol Cell Biol. 1989 Feb;9(2):692–700. doi: 10.1128/mcb.9.2.692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zheng L., Collins F. H., Kumar V., Kafatos F. C. A detailed genetic map for the X chromosome of the malaria vector, Anopheles gambiae. Science. 1993 Jul 30;261(5121):605–608. doi: 10.1126/science.8342025. [DOI] [PubMed] [Google Scholar]
  28. Zheng L., Saunders R. D., Fortini D., della Torre A., Coluzzi M., Glover D. M., Kafatos F. C. Low-resolution genome map of the malaria mosquito Anopheles gambiae. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11187–11191. doi: 10.1073/pnas.88.24.11187. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES