Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1996 Jan 15;15(2):392–398.

Preferential binding of an unfolded protein to DsbA.

C Frech 1, M Wunderlich 1, R Glockshuber 1, F X Schmid 1
PMCID: PMC449954  PMID: 8617214

Abstract

The oxidoreductase DsbA from the periplasm of escherichia coli introduces disulfide bonds into proteins at an extremely high rate. During oxidation, a mixed disulfide is formed between DsbA and the folding protein chain, and this covalent intermediate reacts very rapidly either to form the oxidized protein or to revert back to oxidized DsbA. To investigate its properties, a stable form of the intermediate was produced by reacting the C33A variant of DsbA with a variant of RNase T1. We find that in this stable mixed disulfide the conformational stability of the substrate protein is decreased by 5 kJ/mol, whereas the conformational stability of DsbA is increased by 5 kJ/mol. This reciprocal effect suggests strongly that DsbA interacts with the unfolded substrate protein not only by the covalent disulfide bond, but also by preferential non-covalent interactions. The existence of a polypeptide binding site explains why DsbA oxidizes protein substrates much more rapidly than small thiol compounds. Such a very fast reaction is probably important for protein folding in the periplasm, because the accessibility of the thiol groups for DsbA can decrease rapidly when newly exported polypeptide chains begin to fold.

Full text

PDF
392

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bardwell J. C., Beckwith J. The bonds that tie: catalyzed disulfide bond formation. Cell. 1993 Sep 10;74(5):769–771. doi: 10.1016/0092-8674(93)90455-y. [DOI] [PubMed] [Google Scholar]
  2. Bardwell J. C., Lee J. O., Jander G., Martin N., Belin D., Beckwith J. A pathway for disulfide bond formation in vivo. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1038–1042. doi: 10.1073/pnas.90.3.1038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bardwell J. C., McGovern K., Beckwith J. Identification of a protein required for disulfide bond formation in vivo. Cell. 1991 Nov 1;67(3):581–589. doi: 10.1016/0092-8674(91)90532-4. [DOI] [PubMed] [Google Scholar]
  4. Bulleid N. J., Freedman R. B. Defective co-translational formation of disulphide bonds in protein disulphide-isomerase-deficient microsomes. Nature. 1988 Oct 13;335(6191):649–651. doi: 10.1038/335649a0. [DOI] [PubMed] [Google Scholar]
  5. Cai H., Wang C. C., Tsou C. L. Chaperone-like activity of protein disulfide isomerase in the refolding of a protein with no disulfide bonds. J Biol Chem. 1994 Oct 7;269(40):24550–24552. [PubMed] [Google Scholar]
  6. Creighton T. E. Disulfide bonds as probes of protein folding pathways. Methods Enzymol. 1986;131:83–106. doi: 10.1016/0076-6879(86)31036-x. [DOI] [PubMed] [Google Scholar]
  7. Darby N. J., Creighton T. E. Catalytic mechanism of DsbA and its comparison with that of protein disulfide isomerase. Biochemistry. 1995 Mar 21;34(11):3576–3587. doi: 10.1021/bi00011a012. [DOI] [PubMed] [Google Scholar]
  8. Darby N. J., Creighton T. E. Dissecting the disulphide-coupled folding pathway of bovine pancreatic trypsin inhibitor. Forming the first disulphide bonds in analogues of the reduced protein. J Mol Biol. 1993 Aug 5;232(3):873–896. doi: 10.1006/jmbi.1993.1437. [DOI] [PubMed] [Google Scholar]
  9. Darby N. J., Freedman R. B., Creighton T. E. Dissecting the mechanism of protein disulfide isomerase: catalysis of disulfide bond formation in a model peptide. Biochemistry. 1994 Jun 28;33(25):7937–7947. doi: 10.1021/bi00191a022. [DOI] [PubMed] [Google Scholar]
  10. Fischer G., Bang H., Mech C. Nachweis einer Enzymkatalyse für die cis-trans-Isomerisierung der Peptidbindung in prolinhaltigen Peptiden. Biomed Biochim Acta. 1984;43(10):1101–1111. [PubMed] [Google Scholar]
  11. Frech C., Schmid F. X. Influence of protein conformation on disulfide bond formation in the oxidative folding of ribonuclease T1. J Mol Biol. 1995 Aug 4;251(1):135–149. doi: 10.1006/jmbi.1995.0421. [DOI] [PubMed] [Google Scholar]
  12. Freedman R. B., Hirst T. R., Tuite M. F. Protein disulphide isomerase: building bridges in protein folding. Trends Biochem Sci. 1994 Aug;19(8):331–336. doi: 10.1016/0968-0004(94)90072-8. [DOI] [PubMed] [Google Scholar]
  13. Goldenberg D. P. Native and non-native intermediates in the BPTI folding pathway. Trends Biochem Sci. 1992 Jul;17(7):257–261. doi: 10.1016/0968-0004(92)90405-x. [DOI] [PubMed] [Google Scholar]
  14. Laminet A. A., Plückthun A. The precursor of beta-lactamase: purification, properties and folding kinetics. EMBO J. 1989 May;8(5):1469–1477. doi: 10.1002/j.1460-2075.1989.tb03530.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Martin J. L., Bardwell J. C., Kuriyan J. Crystal structure of the DsbA protein required for disulphide bond formation in vivo. Nature. 1993 Sep 30;365(6445):464–468. doi: 10.1038/365464a0. [DOI] [PubMed] [Google Scholar]
  16. Mayr L. M., Schmid F. X. A purification method for labile variants of ribonuclease T1. Protein Expr Purif. 1993 Feb;4(1):52–58. doi: 10.1006/prep.1993.1008. [DOI] [PubMed] [Google Scholar]
  17. Mayr L. M., Willbold D., Landt O., Schmid F. X. Role of the Cys 2-Cys 10 disulfide bond for the structure, stability, and folding kinetics of ribonuclease T1. Protein Sci. 1994 Feb;3(2):227–239. doi: 10.1002/pro.5560030207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mücke M., Schmid F. X. A kinetic method to evaluate the two-state character of solvent-induced protein denaturation. Biochemistry. 1994 Nov 1;33(43):12930–12935. doi: 10.1021/bi00209a025. [DOI] [PubMed] [Google Scholar]
  19. Mücke M., Schmid F. X. Enzymatic catalysis of prolyl isomerization in an unfolding protein. Biochemistry. 1992 Sep 1;31(34):7848–7854. doi: 10.1021/bi00149a015. [DOI] [PubMed] [Google Scholar]
  20. Mücke M., Schmid F. X. Folding mechanism of ribonuclease T1 in the absence of the disulfide bonds. Biochemistry. 1994 Dec 6;33(48):14608–14619. doi: 10.1021/bi00252a029. [DOI] [PubMed] [Google Scholar]
  21. Mücke M., Schmid F. X. Intact disulfide bonds decelerate the folding of ribonuclease T1. J Mol Biol. 1994 Jun 24;239(5):713–725. doi: 10.1006/jmbi.1994.1408. [DOI] [PubMed] [Google Scholar]
  22. Nelson J. W., Creighton T. E. Reactivity and ionization of the active site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo. Biochemistry. 1994 May 17;33(19):5974–5983. doi: 10.1021/bi00185a039. [DOI] [PubMed] [Google Scholar]
  23. Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
  24. Pace C. N., Grimsley G. R., Thomson J. A., Barnett B. J. Conformational stability and activity of ribonuclease T1 with zero, one, and two intact disulfide bonds. J Biol Chem. 1988 Aug 25;263(24):11820–11825. [PubMed] [Google Scholar]
  25. Riddles P. W., Blakeley R. L., Zerner B. Reassessment of Ellman's reagent. Methods Enzymol. 1983;91:49–60. doi: 10.1016/s0076-6879(83)91010-8. [DOI] [PubMed] [Google Scholar]
  26. Ruoppolo M., Freedman R. B. Protein-S-S-glutathione mixed disulfides as models of unfolded proteins. Biochemistry. 1994 Jun 21;33(24):7654–7662. doi: 10.1021/bi00190a020. [DOI] [PubMed] [Google Scholar]
  27. Santoro M. M., Bolen D. W. Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry. 1988 Oct 18;27(21):8063–8068. doi: 10.1021/bi00421a014. [DOI] [PubMed] [Google Scholar]
  28. Takahashi K., Uchida T., Egami F. Ribonuclease T1, Structure and function. Adv Biophys. 1970;1:53–98. [PubMed] [Google Scholar]
  29. Tanford C. Protein denaturation. Adv Protein Chem. 1968;23:121–282. doi: 10.1016/s0065-3233(08)60401-5. [DOI] [PubMed] [Google Scholar]
  30. Walker K. W., Gilbert H. F. Effect of redox environment on the in vitro and in vivo folding of RTEM-1 beta-lactamase and Escherichia coli alkaline phosphatase. J Biol Chem. 1994 Nov 11;269(45):28487–28493. [PubMed] [Google Scholar]
  31. Weissman J. S., Kim P. S. Reexamination of the folding of BPTI: predominance of native intermediates. Science. 1991 Sep 20;253(5026):1386–1393. doi: 10.1126/science.1716783. [DOI] [PubMed] [Google Scholar]
  32. Wunderlich M., Glockshuber R. Redox properties of protein disulfide isomerase (DsbA) from Escherichia coli. Protein Sci. 1993 May;2(5):717–726. doi: 10.1002/pro.5560020503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wunderlich M., Jaenicke R., Glockshuber R. The redox properties of protein disulfide isomerase (DsbA) of Escherichia coli result from a tense conformation of its oxidized form. J Mol Biol. 1993 Oct 20;233(4):559–566. doi: 10.1006/jmbi.1993.1535. [DOI] [PubMed] [Google Scholar]
  34. Wunderlich M., Otto A., Maskos K., Mücke M., Seckler R., Glockshuber R. Efficient catalysis of disulfide formation during protein folding with a single active-site cysteine. J Mol Biol. 1995 Mar 17;247(1):28–33. doi: 10.1006/jmbi.1995.0119. [DOI] [PubMed] [Google Scholar]
  35. Wunderlich M., Otto A., Seckler R., Glockshuber R. Bacterial protein disulfide isomerase: efficient catalysis of oxidative protein folding at acidic pH. Biochemistry. 1993 Nov 16;32(45):12251–12256. doi: 10.1021/bi00096a039. [DOI] [PubMed] [Google Scholar]
  36. Zapun A., Bardwell J. C., Creighton T. E. The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo. Biochemistry. 1993 May 18;32(19):5083–5092. doi: 10.1021/bi00070a016. [DOI] [PubMed] [Google Scholar]
  37. Zapun A., Cooper L., Creighton T. E. Replacement of the active-site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo. Biochemistry. 1994 Feb 22;33(7):1907–1914. doi: 10.1021/bi00173a038. [DOI] [PubMed] [Google Scholar]
  38. Zapun A., Creighton T. E., Rowling P. J., Freedman R. B. Folding in vitro of bovine pancreatic trypsin inhibitor in the presence of proteins of the endoplasmic reticulum. Proteins. 1992 Sep;14(1):10–15. doi: 10.1002/prot.340140104. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES