Abstract
The effects of multiple changes in hydrogen bond interactions between the electron donor, a bacteriochlorophyll dimer, and histidine residues in the reaction center from Rhodobacter sphaeroides have been investigated. Site-directed mutations were designed to add or remove hydrogen bonds between the 2-acetyl groups of the dimer and histidine residues at the symmetry-related sites His-L168 and Phe-M197, and between the 9-keto groups and Leu-L131 and Leu-M160. The addition of a hydrogen bond was correlated with an increase in the dimer midpoint potential. Measurements on double and triple mutants showed that changes in the midpoint potential due to alterations at the individual sites were additive. Midpoint potentials ranging from 410 to 765 mV, compared with 505 mV for wild type, were achieved by various combinations of mutations. The optical absorption spectra of the reaction centers showed relatively minor changes in the position of the donor absorption band, indicating that the addition of hydrogen bonds to histidines primarily destabilized the oxidized state of the donor and had little effect on the excited state relative to the ground state. Despite the change in energy of the charge-separated states by up to 260 meV, the mutant reaction centers were still capable of electron transfer to the primary quinone. The increase in midpoint potential was correlated with an increase in the rate of charge recombination from the primary quinone, and a fit of these data using the Marcus equation indicated that the reorganization energy for this reaction is approximately 400 meV higher than the change in free energy in wild type. The mutants were still capable of photosynthetic growth, although at reduced rates relative to the wild type. These results suggest a role for protein-cofactor interactions--in particular, histidine-donor interactions--in establishing the redox potentials needed for electron transfer in biological systems.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bylina E. J., Youvan D. C. Directed mutations affecting spectroscopic and electron transfer properties of the primary donor in the photosynthetic reaction center. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7226–7230. doi: 10.1073/pnas.85.19.7226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang C. H., el-Kabbani O., Tiede D., Norris J., Schiffer M. Structure of the membrane-bound protein photosynthetic reaction center from Rhodobacter sphaeroides. Biochemistry. 1991 Jun 4;30(22):5352–5360. doi: 10.1021/bi00236a005. [DOI] [PubMed] [Google Scholar]
- Chirino A. J., Lous E. J., Huber M., Allen J. P., Schenck C. C., Paddock M. L., Feher G., Rees D. C. Crystallographic analyses of site-directed mutants of the photosynthetic reaction center from Rhodobacter sphaeroides. Biochemistry. 1994 Apr 19;33(15):4584–4593. doi: 10.1021/bi00181a020. [DOI] [PubMed] [Google Scholar]
- Kleinfeld D., Okamura M. Y., Feher G. Electron transfer in reaction centers of Rhodopseudomonas sphaeroides. I. Determination of the charge recombination pathway of D+QAQ(-)B and free energy and kinetic relations between Q(-)AQB and QAQ(-)B. Biochim Biophys Acta. 1984 Jul 27;766(1):126–140. doi: 10.1016/0005-2728(84)90224-x. [DOI] [PubMed] [Google Scholar]
- Kleinherenbrink F. A., Chiou H. C., LoBrutto R., Blankenship R. E. Spectroscopic evidence for the presence of an iron-sulfur center similar to Fx of Photosystem I in Heliobacillus mobilis. Photosynth Res. 1994 Jul;41(1):115–123. doi: 10.1007/BF02184151. [DOI] [PubMed] [Google Scholar]
- Komiya H., Yeates T. O., Rees D. C., Allen J. P., Feher G. Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1: symmetry relations and sequence comparisons between different species. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9012–9016. doi: 10.1073/pnas.85.23.9012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mattioli T. A., Hoffmann A., Robert B., Schrader B., Lutz M. Primary donor structure and interactions in bacterial reaction centers from near-infrared Fourier transform resonance Raman spectroscopy. Biochemistry. 1991 May 14;30(19):4648–4654. doi: 10.1021/bi00233a002. [DOI] [PubMed] [Google Scholar]
- Mattioli T. A., Williams J. C., Allen J. P., Robert B. Changes in primary donor hydrogen-bonding interactions in mutant reaction centers from Rhodobacter sphaeroides: identification of the vibrational frequencies of all the conjugated carbonyl groups. Biochemistry. 1994 Feb 22;33(7):1636–1643. doi: 10.1021/bi00173a004. [DOI] [PubMed] [Google Scholar]
- McDowell L. M., Gaul D., Kirmaier C., Holten D., Schenck C. C. Investigation into the source of electron transfer asymmetry in bacterial reaction centers. Biochemistry. 1991 Aug 27;30(34):8315–8322. doi: 10.1021/bi00098a006. [DOI] [PubMed] [Google Scholar]
- Moss D. A., Leonhard M., Bauscher M., Mäntele W. Electrochemical redox titration of cofactors in the reaction center from Rhodobacter sphaeroides. FEBS Lett. 1991 May 20;283(1):33–36. doi: 10.1016/0014-5793(91)80547-g. [DOI] [PubMed] [Google Scholar]
- Murchison H. A., Alden R. G., Allen J. P., Peloquin J. M., Taguchi A. K., Woodbury N. W., Williams J. C. Mutations designed to modify the environment of the primary electron donor of the reaction center from Rhodobacter sphaeroides: phenylalanine to leucine at L167 and histidine to phenylalanine at L168. Biochemistry. 1993 Apr 6;32(13):3498–3505. doi: 10.1021/bi00064a038. [DOI] [PubMed] [Google Scholar]
- Nabedryk E., Allen J. P., Taguchi A. K., Williams J. C., Woodbury N. W., Breton J. Fourier transform infrared study of the primary electron donor in chromatophores of Rhodobacter sphaeroides with reaction centers genetically modified at residues M160 and L131. Biochemistry. 1993 Dec 21;32(50):13879–13885. doi: 10.1021/bi00213a017. [DOI] [PubMed] [Google Scholar]
- Nagarajan V., Parson W. W., Davis D., Schenck C. C. Kinetics and free energy gaps of electron-transfer reactions in Rhodobacter sphaeroides reaction centers. Biochemistry. 1993 Nov 23;32(46):12324–12336. doi: 10.1021/bi00097a008. [DOI] [PubMed] [Google Scholar]
- Paddock M. L., Rongey S. H., Feher G., Okamura M. Y. Pathway of proton transfer in bacterial reaction centers: replacement of glutamic acid 212 in the L subunit by glutamine inhibits quinone (secondary acceptor) turnover. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6602–6606. doi: 10.1073/pnas.86.17.6602. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peloquin J. M., Williams J. C., Lin X., Alden R. G., Taguchi A. K., Allen J. P., Woodbury N. W. Time-dependent thermodynamics during early electron transfer in reaction centers from Rhodobacter sphaeroides. Biochemistry. 1994 Jul 5;33(26):8089–8100. doi: 10.1021/bi00192a014. [DOI] [PubMed] [Google Scholar]
- Stocker J. W., Taguchi A. K., Murchison H. A., Woodbury N. W., Boxer S. G. Spectroscopic and redox properties of sym1 and (M)F195H: Rhodobacter capsulatus reaction center symmetry mutants which affect the initial electron donor. Biochemistry. 1992 Oct 27;31(42):10356–10362. doi: 10.1021/bi00157a025. [DOI] [PubMed] [Google Scholar]
- Taguchi A. K., Stocker J. W., Alden R. G., Causgrove T. P., Peloquin J. M., Boxer S. G., Woodbury N. W. Biochemical characterization and electron-transfer reactions of sym1, a Rhodobacter capsulatus reaction center symmetry mutant which affects the initial electron donor. Biochemistry. 1992 Oct 27;31(42):10345–10355. doi: 10.1021/bi00157a024. [DOI] [PubMed] [Google Scholar]
- Wachtveitl J., Farchaus J. W., Das R., Lutz M., Robert B., Mattioli T. A. Structure, spectroscopic, and redox properties of Rhodobacter sphaeroides reaction centers bearing point mutations near the primary electron donor. Biochemistry. 1993 Nov 30;32(47):12875–12886. doi: 10.1021/bi00210a041. [DOI] [PubMed] [Google Scholar]
- Wells J. A. Additivity of mutational effects in proteins. Biochemistry. 1990 Sep 18;29(37):8509–8517. doi: 10.1021/bi00489a001. [DOI] [PubMed] [Google Scholar]
- Williams J. C., Alden R. G., Murchison H. A., Peloquin J. M., Woodbury N. W., Allen J. P. Effects of mutations near the bacteriochlorophylls in reaction centers from Rhodobacter sphaeroides. Biochemistry. 1992 Nov 17;31(45):11029–11037. doi: 10.1021/bi00160a012. [DOI] [PubMed] [Google Scholar]
- Woodbury N. W., Peloquin J. M., Alden R. G., Lin X., Lin S., Taguchi A. K., Williams J. C., Allen J. P. Relationship between thermodynamics and mechanism during photoinduced charge separation in reaction centers from Rhodobacter sphaeroides. Biochemistry. 1994 Jul 5;33(26):8101–8112. doi: 10.1021/bi00192a015. [DOI] [PubMed] [Google Scholar]
- Yeates T. O., Komiya H., Chirino A., Rees D. C., Allen J. P., Feher G. Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1: protein-cofactor (bacteriochlorophyll, bacteriopheophytin, and carotenoid) interactions. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7993–7997. doi: 10.1073/pnas.85.21.7993. [DOI] [PMC free article] [PubMed] [Google Scholar]