Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1996 May 15;15(10):2604–2611.

Enacyloxin IIa, an inhibitor of protein biosynthesis that acts on elongation factor Tu and the ribosome.

R Cetin 1, I M Krab 1, P H Anborgh 1, R H Cool 1, T Watanabe 1, T Sugiyama 1, K Izaki 1, A Parmeggiani 1
PMCID: PMC450193  PMID: 8665868

Abstract

This work analyzes the action of enacyloxin Ila, an inhibitor of bacterial protein biosynthesis. Enacyloxin IIa [IC50 on poly(Phe) synthesis approximately 70 nM] is shown to affect the interaction between elongation factor (EF) Tu and GTP or GDP; in particular, the dissociation of EF-Tu-GTP is strongly retarded, causing the Kd of EF- Tu-GTP to decrease from 500 to 0.7 nM. In its presence, the migration velocity of both GTP- and GDP-bound EF-Tu on native PAGE is increased. The stimulation of EF-Tu-GDP dissociation by EF-Ts is inhibited. EF- Tu-GTP can still form a stable complex with aminoacyl-tRNA (aa-tRNA), but it no longer protects aa-tRNA against spontaneous deacylation, showing that the EF-Tu-GTP orientation with respect to the 3' end of aa-tRNA is modified. However, the EF-Tu-dependent binding of aa-tRNA to the ribosomal A-site is impaired only slightly by the antibiotic and the activity of the peptidyl-transferase center, as determined by puromycin reactivity, is not affected. In contrast, the C-terminal incorporation of Phe into poly(Phe)-tRNA bound to the P-site is inhibited, an effect that is observed if Phe-tRNA is bound to the A-site nonenzymatically as well. Thus, enacyloxin IIa can affect both EF-Tu and the ribosomal A-site directly, inducing an anomalous positioning of aa-tRNA, that inhibits the incorporation of the amino acid into the polypeptide chain. Therefore, it is the first antibiotic found to have a dual specificity targeted to EF-Tu and the ribosome.

Full text

PDF
2604

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdulkarim F., Liljas L., Hughes D. Mutations to kirromycin resistance occur in the interface of domains I and III of EF-Tu.GTP. FEBS Lett. 1994 Sep 26;352(2):118–122. doi: 10.1016/0014-5793(94)00937-6. [DOI] [PubMed] [Google Scholar]
  2. Anborgh P. H., Parmeggiani A. New antibiotic that acts specifically on the GTP-bound form of elongation factor Tu. EMBO J. 1991 Apr;10(4):779–784. doi: 10.1002/j.1460-2075.1991.tb08009.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anborgh P. H., Parmeggiani A. Probing the reactivity of the GTP- and GDP-bound conformations of elongation factor Tu in complex with the antibiotic GE2270 A. J Biol Chem. 1993 Nov 25;268(33):24622–24628. [PubMed] [Google Scholar]
  4. Anborgh P. H., Swart G. W., Parmeggiani A. Kirromycin-induced modifications facilitate the separation of EF-Tu species and reveal intermolecular interactions. FEBS Lett. 1991 Nov 4;292(1-2):232–236. doi: 10.1016/0014-5793(91)80874-3. [DOI] [PubMed] [Google Scholar]
  5. Berchtold H., Reshetnikova L., Reiser C. O., Schirmer N. K., Sprinzl M., Hilgenfeld R. Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature. 1993 Sep 9;365(6442):126–132. doi: 10.1038/365126a0. [DOI] [PubMed] [Google Scholar]
  6. Boon K., Krab I., Parmeggiani A., Bosch L., Kraal B. Substitution of Arg230 and Arg233 in Escherichia coli elongation factor Tu strongly enhances its pulvomycin resistance. Eur J Biochem. 1995 Feb 1;227(3):816–822. doi: 10.1111/j.1432-1033.1995.tb20206.x. [DOI] [PubMed] [Google Scholar]
  7. Bosch L., Kraal B., Van der Meide P. H., Duisterwinkel F. J., Van Noort J. M. The elongation factor EF-Tu and its two encoding genes. Prog Nucleic Acid Res Mol Biol. 1983;30:91–126. doi: 10.1016/s0079-6603(08)60684-4. [DOI] [PubMed] [Google Scholar]
  8. Chinali G., Wolf H., Parmeggiani A. Effect of kirromycin on elongation factor Tu. Location of the catalytic center for ribosome-elongation-factor-Tu GTPase activity on the elongation factor. Eur J Biochem. 1977 May 2;75(1):55–65. doi: 10.1111/j.1432-1033.1977.tb11503.x. [DOI] [PubMed] [Google Scholar]
  9. Ehrenberg M., Rojas A. M., Weiser J., Kurland C. G. How many EF-Tu molecules participate in aminoacyl-tRNA binding and peptide bond formation in Escherichia coli translation? J Mol Biol. 1990 Feb 20;211(4):739–749. doi: 10.1016/0022-2836(90)90074-V. [DOI] [PubMed] [Google Scholar]
  10. Fasano O., Bruns W., Crechet J. B., Sander G., Parmeggiani A. Modification of elongation-factor-Tu . guanine-nucleotide interaction by kirromycin. A comparison with the effect of aminoacyl-tRNA and elongation factor Ts. Eur J Biochem. 1978 Sep 1;89(2):557–565. doi: 10.1111/j.1432-1033.1978.tb12560.x. [DOI] [PubMed] [Google Scholar]
  11. Landini P., Bandera M., Goldstein B. P., Ripamonti F., Soffientini A., Islam K., Denaro M. Inhibition of bacterial protein synthesis by elongation-factor-Tu-binding antibiotics MDL 62,879 and efrotomycin. Biochem J. 1992 May 1;283(Pt 3):649–652. doi: 10.1042/bj2830649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mesters J. R., Zeef L. A., Hilgenfeld R., de Graaf J. M., Kraal B., Bosch L. The structural and functional basis for the kirromycin resistance of mutant EF-Tu species in Escherichia coli. EMBO J. 1994 Oct 17;13(20):4877–4885. doi: 10.1002/j.1460-2075.1994.tb06815.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nissen P., Kjeldgaard M., Thirup S., Polekhina G., Reshetnikova L., Clark B. F., Nyborg J. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science. 1995 Dec 1;270(5241):1464–1472. doi: 10.1126/science.270.5241.1464. [DOI] [PubMed] [Google Scholar]
  14. Parlato G., Guesnet J., Crechet J. B., Parmeggiani A. The GTPase activity of elongation factor Tu and the 3'-terminal end of aminoacyl-tRNA. FEBS Lett. 1981 Mar 23;125(2):257–260. doi: 10.1016/0014-5793(81)80733-8. [DOI] [PubMed] [Google Scholar]
  15. Parmeggiani A., Sander G. Properties and regulation of the GTPase activities of elongation factors Tu and G, and of initiation factor 2. Mol Cell Biochem. 1981 Mar 27;35(3):129–158. doi: 10.1007/BF02357085. [DOI] [PubMed] [Google Scholar]
  16. Parmeggiani A., Swart G. W. Mechanism of action of kirromycin-like antibiotics. Annu Rev Microbiol. 1985;39:557–577. doi: 10.1146/annurev.mi.39.100185.003013. [DOI] [PubMed] [Google Scholar]
  17. Pingoud A., Block W., Urbanke C., Wolf H. The antibiotics kirromycin and pulvomycin bind to different sites on the elongation factor Tu from Escherichia coli. Eur J Biochem. 1982 Apr 1;123(2):261–265. doi: 10.1111/j.1432-1033.1982.tb19762.x. [DOI] [PubMed] [Google Scholar]
  18. Pingoud A., Urbanke C., Krauss G., Peters F., Maass G. Ternary complex formation between elongation factor Tu, GTP and aminoacyl-tRNA: an equilibrium study. Eur J Biochem. 1977 Sep;78(2):403–409. doi: 10.1111/j.1432-1033.1977.tb11752.x. [DOI] [PubMed] [Google Scholar]
  19. Scarano G., Krab I. M., Bocchini V., Parmeggiani A. Relevance of histidine-84 in the elongation factor Tu GTPase activity and in poly(Phe) synthesis: its substitution by glutamine and alanine. FEBS Lett. 1995 May 29;365(2-3):214–218. doi: 10.1016/0014-5793(95)00469-p. [DOI] [PubMed] [Google Scholar]
  20. Shimanaka K., Iinuma H., Hamada M., Ikeno S., Tsuchiya K. S., Arita M., Hori M. Novel antibiotics, amythiamicins. IV. A mutation in the elongation factor Tu gene in a resistant mutant of B. subtilis. J Antibiot (Tokyo) 1995 Feb;48(2):182–184. doi: 10.7164/antibiotics.48.182. [DOI] [PubMed] [Google Scholar]
  21. Swart G. W., Parmeggiani A., Kraal B., Bosch L. Effects of the mutation glycine-222----aspartic acid on the functions of elongation factor Tu. Biochemistry. 1987 Apr 7;26(7):2047–2054. doi: 10.1021/bi00381a038. [DOI] [PubMed] [Google Scholar]
  22. Vijgenboom E., Bosch L. Translational frameshifts induced by mutant species of the polypeptide chain elongation factor Tu of Escherichia coli. J Biol Chem. 1989 Aug 5;264(22):13012–13017. [PubMed] [Google Scholar]
  23. Watanabe T., Izaki K., Takahashi H. New polyenic antibiotics active against gram-positive and -negative bacteria. I. Isolation and purification of antibiotics produced by Gluconobacter sp. W-315. J Antibiot (Tokyo) 1982 Sep;35(9):1141–1147. doi: 10.7164/antibiotics.35.1141. [DOI] [PubMed] [Google Scholar]
  24. Watanabe T., Sugiyama T., Izaki K. New polyenic antibiotics active against gram-positive and gram-negative bacteria. IX. Reclassification of a strain W-315 producing enacyloxins. J Antibiot (Tokyo) 1994 Apr;47(4):496–498. doi: 10.7164/antibiotics.47.496. [DOI] [PubMed] [Google Scholar]
  25. Watanabe T., Sugiyama T., Takahashi M., Shima J., Yamashita K., Izaki K., Furihata K., Seto H. New polyenic antibiotics active against gram-positive and gram-negative bacteria. IV. Structural elucidation of enacyloxin IIa. J Antibiot (Tokyo) 1992 Apr;45(4):470–475. doi: 10.7164/antibiotics.45.470. [DOI] [PubMed] [Google Scholar]
  26. Watanabe T., Suzuki T., Izaki K. New polyenic antibiotics active against gram-positive and gram-negative bacteria. V. Mode of action of enacyloxin IIa. J Antibiot (Tokyo) 1991 Dec;44(12):1457–1459. doi: 10.7164/antibiotics.44.1457. [DOI] [PubMed] [Google Scholar]
  27. Weijland A., Harmark K., Cool R. H., Anborgh P. H., Parmeggiani A. Elongation factor Tu: a molecular switch in protein biosynthesis. Mol Microbiol. 1992 Mar;6(6):683–688. doi: 10.1111/j.1365-2958.1992.tb01516.x. [DOI] [PubMed] [Google Scholar]
  28. Weijland A., Parmeggiani A. Toward a model for the interaction between elongation factor Tu and the ribosome. Science. 1993 Feb 26;259(5099):1311–1314. doi: 10.1126/science.8446899. [DOI] [PubMed] [Google Scholar]
  29. Wolf H., Chinali G., Parmeggiani A. Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4910–4914. doi: 10.1073/pnas.71.12.4910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wolf H., Chinali G., Parmeggiani A. Mechanism of the inhibition of protein synthesis by kirromycin. Role of elongation factor Tu and ribosomes. Eur J Biochem. 1977 May 2;75(1):67–75. doi: 10.1111/j.1432-1033.1977.tb11504.x. [DOI] [PubMed] [Google Scholar]
  31. Zeef L. A., Bosch L., Anborgh P. H., Cetin R., Parmeggiani A., Hilgenfeld R. Pulvomycin-resistant mutants of E.coli elongation factor Tu. EMBO J. 1994 Nov 1;13(21):5113–5120. doi: 10.1002/j.1460-2075.1994.tb06840.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES