Abstract
This work analyzes the action of enacyloxin Ila, an inhibitor of bacterial protein biosynthesis. Enacyloxin IIa [IC50 on poly(Phe) synthesis approximately 70 nM] is shown to affect the interaction between elongation factor (EF) Tu and GTP or GDP; in particular, the dissociation of EF-Tu-GTP is strongly retarded, causing the Kd of EF- Tu-GTP to decrease from 500 to 0.7 nM. In its presence, the migration velocity of both GTP- and GDP-bound EF-Tu on native PAGE is increased. The stimulation of EF-Tu-GDP dissociation by EF-Ts is inhibited. EF- Tu-GTP can still form a stable complex with aminoacyl-tRNA (aa-tRNA), but it no longer protects aa-tRNA against spontaneous deacylation, showing that the EF-Tu-GTP orientation with respect to the 3' end of aa-tRNA is modified. However, the EF-Tu-dependent binding of aa-tRNA to the ribosomal A-site is impaired only slightly by the antibiotic and the activity of the peptidyl-transferase center, as determined by puromycin reactivity, is not affected. In contrast, the C-terminal incorporation of Phe into poly(Phe)-tRNA bound to the P-site is inhibited, an effect that is observed if Phe-tRNA is bound to the A-site nonenzymatically as well. Thus, enacyloxin IIa can affect both EF-Tu and the ribosomal A-site directly, inducing an anomalous positioning of aa-tRNA, that inhibits the incorporation of the amino acid into the polypeptide chain. Therefore, it is the first antibiotic found to have a dual specificity targeted to EF-Tu and the ribosome.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abdulkarim F., Liljas L., Hughes D. Mutations to kirromycin resistance occur in the interface of domains I and III of EF-Tu.GTP. FEBS Lett. 1994 Sep 26;352(2):118–122. doi: 10.1016/0014-5793(94)00937-6. [DOI] [PubMed] [Google Scholar]
- Anborgh P. H., Parmeggiani A. New antibiotic that acts specifically on the GTP-bound form of elongation factor Tu. EMBO J. 1991 Apr;10(4):779–784. doi: 10.1002/j.1460-2075.1991.tb08009.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anborgh P. H., Parmeggiani A. Probing the reactivity of the GTP- and GDP-bound conformations of elongation factor Tu in complex with the antibiotic GE2270 A. J Biol Chem. 1993 Nov 25;268(33):24622–24628. [PubMed] [Google Scholar]
- Anborgh P. H., Swart G. W., Parmeggiani A. Kirromycin-induced modifications facilitate the separation of EF-Tu species and reveal intermolecular interactions. FEBS Lett. 1991 Nov 4;292(1-2):232–236. doi: 10.1016/0014-5793(91)80874-3. [DOI] [PubMed] [Google Scholar]
- Berchtold H., Reshetnikova L., Reiser C. O., Schirmer N. K., Sprinzl M., Hilgenfeld R. Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature. 1993 Sep 9;365(6442):126–132. doi: 10.1038/365126a0. [DOI] [PubMed] [Google Scholar]
- Boon K., Krab I., Parmeggiani A., Bosch L., Kraal B. Substitution of Arg230 and Arg233 in Escherichia coli elongation factor Tu strongly enhances its pulvomycin resistance. Eur J Biochem. 1995 Feb 1;227(3):816–822. doi: 10.1111/j.1432-1033.1995.tb20206.x. [DOI] [PubMed] [Google Scholar]
- Bosch L., Kraal B., Van der Meide P. H., Duisterwinkel F. J., Van Noort J. M. The elongation factor EF-Tu and its two encoding genes. Prog Nucleic Acid Res Mol Biol. 1983;30:91–126. doi: 10.1016/s0079-6603(08)60684-4. [DOI] [PubMed] [Google Scholar]
- Chinali G., Wolf H., Parmeggiani A. Effect of kirromycin on elongation factor Tu. Location of the catalytic center for ribosome-elongation-factor-Tu GTPase activity on the elongation factor. Eur J Biochem. 1977 May 2;75(1):55–65. doi: 10.1111/j.1432-1033.1977.tb11503.x. [DOI] [PubMed] [Google Scholar]
- Ehrenberg M., Rojas A. M., Weiser J., Kurland C. G. How many EF-Tu molecules participate in aminoacyl-tRNA binding and peptide bond formation in Escherichia coli translation? J Mol Biol. 1990 Feb 20;211(4):739–749. doi: 10.1016/0022-2836(90)90074-V. [DOI] [PubMed] [Google Scholar]
- Fasano O., Bruns W., Crechet J. B., Sander G., Parmeggiani A. Modification of elongation-factor-Tu . guanine-nucleotide interaction by kirromycin. A comparison with the effect of aminoacyl-tRNA and elongation factor Ts. Eur J Biochem. 1978 Sep 1;89(2):557–565. doi: 10.1111/j.1432-1033.1978.tb12560.x. [DOI] [PubMed] [Google Scholar]
- Landini P., Bandera M., Goldstein B. P., Ripamonti F., Soffientini A., Islam K., Denaro M. Inhibition of bacterial protein synthesis by elongation-factor-Tu-binding antibiotics MDL 62,879 and efrotomycin. Biochem J. 1992 May 1;283(Pt 3):649–652. doi: 10.1042/bj2830649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mesters J. R., Zeef L. A., Hilgenfeld R., de Graaf J. M., Kraal B., Bosch L. The structural and functional basis for the kirromycin resistance of mutant EF-Tu species in Escherichia coli. EMBO J. 1994 Oct 17;13(20):4877–4885. doi: 10.1002/j.1460-2075.1994.tb06815.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nissen P., Kjeldgaard M., Thirup S., Polekhina G., Reshetnikova L., Clark B. F., Nyborg J. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science. 1995 Dec 1;270(5241):1464–1472. doi: 10.1126/science.270.5241.1464. [DOI] [PubMed] [Google Scholar]
- Parlato G., Guesnet J., Crechet J. B., Parmeggiani A. The GTPase activity of elongation factor Tu and the 3'-terminal end of aminoacyl-tRNA. FEBS Lett. 1981 Mar 23;125(2):257–260. doi: 10.1016/0014-5793(81)80733-8. [DOI] [PubMed] [Google Scholar]
- Parmeggiani A., Sander G. Properties and regulation of the GTPase activities of elongation factors Tu and G, and of initiation factor 2. Mol Cell Biochem. 1981 Mar 27;35(3):129–158. doi: 10.1007/BF02357085. [DOI] [PubMed] [Google Scholar]
- Parmeggiani A., Swart G. W. Mechanism of action of kirromycin-like antibiotics. Annu Rev Microbiol. 1985;39:557–577. doi: 10.1146/annurev.mi.39.100185.003013. [DOI] [PubMed] [Google Scholar]
- Pingoud A., Block W., Urbanke C., Wolf H. The antibiotics kirromycin and pulvomycin bind to different sites on the elongation factor Tu from Escherichia coli. Eur J Biochem. 1982 Apr 1;123(2):261–265. doi: 10.1111/j.1432-1033.1982.tb19762.x. [DOI] [PubMed] [Google Scholar]
- Pingoud A., Urbanke C., Krauss G., Peters F., Maass G. Ternary complex formation between elongation factor Tu, GTP and aminoacyl-tRNA: an equilibrium study. Eur J Biochem. 1977 Sep;78(2):403–409. doi: 10.1111/j.1432-1033.1977.tb11752.x. [DOI] [PubMed] [Google Scholar]
- Scarano G., Krab I. M., Bocchini V., Parmeggiani A. Relevance of histidine-84 in the elongation factor Tu GTPase activity and in poly(Phe) synthesis: its substitution by glutamine and alanine. FEBS Lett. 1995 May 29;365(2-3):214–218. doi: 10.1016/0014-5793(95)00469-p. [DOI] [PubMed] [Google Scholar]
- Shimanaka K., Iinuma H., Hamada M., Ikeno S., Tsuchiya K. S., Arita M., Hori M. Novel antibiotics, amythiamicins. IV. A mutation in the elongation factor Tu gene in a resistant mutant of B. subtilis. J Antibiot (Tokyo) 1995 Feb;48(2):182–184. doi: 10.7164/antibiotics.48.182. [DOI] [PubMed] [Google Scholar]
- Swart G. W., Parmeggiani A., Kraal B., Bosch L. Effects of the mutation glycine-222----aspartic acid on the functions of elongation factor Tu. Biochemistry. 1987 Apr 7;26(7):2047–2054. doi: 10.1021/bi00381a038. [DOI] [PubMed] [Google Scholar]
- Vijgenboom E., Bosch L. Translational frameshifts induced by mutant species of the polypeptide chain elongation factor Tu of Escherichia coli. J Biol Chem. 1989 Aug 5;264(22):13012–13017. [PubMed] [Google Scholar]
- Watanabe T., Izaki K., Takahashi H. New polyenic antibiotics active against gram-positive and -negative bacteria. I. Isolation and purification of antibiotics produced by Gluconobacter sp. W-315. J Antibiot (Tokyo) 1982 Sep;35(9):1141–1147. doi: 10.7164/antibiotics.35.1141. [DOI] [PubMed] [Google Scholar]
- Watanabe T., Sugiyama T., Izaki K. New polyenic antibiotics active against gram-positive and gram-negative bacteria. IX. Reclassification of a strain W-315 producing enacyloxins. J Antibiot (Tokyo) 1994 Apr;47(4):496–498. doi: 10.7164/antibiotics.47.496. [DOI] [PubMed] [Google Scholar]
- Watanabe T., Sugiyama T., Takahashi M., Shima J., Yamashita K., Izaki K., Furihata K., Seto H. New polyenic antibiotics active against gram-positive and gram-negative bacteria. IV. Structural elucidation of enacyloxin IIa. J Antibiot (Tokyo) 1992 Apr;45(4):470–475. doi: 10.7164/antibiotics.45.470. [DOI] [PubMed] [Google Scholar]
- Watanabe T., Suzuki T., Izaki K. New polyenic antibiotics active against gram-positive and gram-negative bacteria. V. Mode of action of enacyloxin IIa. J Antibiot (Tokyo) 1991 Dec;44(12):1457–1459. doi: 10.7164/antibiotics.44.1457. [DOI] [PubMed] [Google Scholar]
- Weijland A., Harmark K., Cool R. H., Anborgh P. H., Parmeggiani A. Elongation factor Tu: a molecular switch in protein biosynthesis. Mol Microbiol. 1992 Mar;6(6):683–688. doi: 10.1111/j.1365-2958.1992.tb01516.x. [DOI] [PubMed] [Google Scholar]
- Weijland A., Parmeggiani A. Toward a model for the interaction between elongation factor Tu and the ribosome. Science. 1993 Feb 26;259(5099):1311–1314. doi: 10.1126/science.8446899. [DOI] [PubMed] [Google Scholar]
- Wolf H., Chinali G., Parmeggiani A. Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4910–4914. doi: 10.1073/pnas.71.12.4910. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolf H., Chinali G., Parmeggiani A. Mechanism of the inhibition of protein synthesis by kirromycin. Role of elongation factor Tu and ribosomes. Eur J Biochem. 1977 May 2;75(1):67–75. doi: 10.1111/j.1432-1033.1977.tb11504.x. [DOI] [PubMed] [Google Scholar]
- Zeef L. A., Bosch L., Anborgh P. H., Cetin R., Parmeggiani A., Hilgenfeld R. Pulvomycin-resistant mutants of E.coli elongation factor Tu. EMBO J. 1994 Nov 1;13(21):5113–5120. doi: 10.1002/j.1460-2075.1994.tb06840.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

