Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1996 Jun 17;15(12):2988–2996.

Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants.

G Baum 1, S Lev-Yadun 1, Y Fridmann 1, T Arazi 1, H Katsnelson 1, M Zik 1, H Fromm 1
PMCID: PMC450240  PMID: 8670800

Abstract

Glutamate decarboxylase (GAD) catalyzes the decarboxylation of glutamate to CO2 and gamma-aminobutyrate (GABA). GAD is ubiquitous in prokaryotes and eukaryotes, but only plant GAD has been shown to bind calmodulin (CaM). Here, we assess the role of the GAD CaM-binding domain in vivo. Transgenic tobacco plants expressing a mutant petunia GAD lacking the CaM-binding domain (GADdeltaC plants) exhibit severe morphological abnormalities, such as short stems, in which cortex parenchyma cells fail to elongate, associated with extremely high GABA and low glutamate levels. The morphology of transgenic plants expressing the full-length GAD (GAD plants) is indistinguishable from that of wild-type (WT) plants. In WT and GAD plant extracts, GAD activity is inhibited by EGTA and by the CaM antagonist trifluoperazine, and is associated with a CaM-containing protein complex of approximately 500 kDa. In contrast, GADdeltaC plants lack normal GAD complexes, and GAD activity in their extracts is not affected by EGTA and trifluoperazine. We conclude that CaM binding to GAD is essential for the regulation of GABA and glutamate metabolism, and that regulation of GAD activity is necessary for normal plant development. This study is the first to demonstrate an in vivo function for CaM binding to a target protein in plants.

Full text

PDF
2988

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aeschbacher R. A., Hauser M. T., Feldmann K. A., Benfey P. N. The SABRE gene is required for normal cell expansion in Arabidopsis. Genes Dev. 1995 Feb 1;9(3):330–340. doi: 10.1101/gad.9.3.330. [DOI] [PubMed] [Google Scholar]
  2. Arazi T., Baum G., Snedden W. A., Shelp B. J., Fromm H. Molecular and biochemical analysis of calmodulin interactions with the calmodulin-binding domain of plant glutamate decarboxylase. Plant Physiol. 1995 Jun;108(2):551–561. doi: 10.1104/pp.108.2.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker T. S., Eisenberg D., Eiserling F. Ribulose bisphosphate carboxylase: a two-layered, square-shaped molecule of symmetry 422. Science. 1977 Apr 15;196(4287):293–295. doi: 10.1126/science.196.4287.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baum G., Chen Y., Arazi T., Takatsuji H., Fromm H. A plant glutamate decarboxylase containing a calmodulin binding domain. Cloning, sequence, and functional analysis. J Biol Chem. 1993 Sep 15;268(26):19610–19617. [PubMed] [Google Scholar]
  5. Benfey P. N., Chua N. H. The Cauliflower Mosaic Virus 35S Promoter: Combinatorial Regulation of Transcription in Plants. Science. 1990 Nov 16;250(4983):959–966. doi: 10.1126/science.250.4983.959. [DOI] [PubMed] [Google Scholar]
  6. Bieleski R. L., Turner N. A. Separation and estimation of amino acids in crude plant extracts by thin-layer electrophoresis and chromatography. Anal Biochem. 1966 Nov;17(2):278–293. doi: 10.1016/0003-2697(66)90206-5. [DOI] [PubMed] [Google Scholar]
  7. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  8. Chen Y., Baum G., Fromm H. The 58-Kilodalton Calmodulin-Binding Glutamate Decarboxylase Is a Ubiquitous Protein in Petunia Organs and Its Expression Is Developmentally Regulated. Plant Physiol. 1994 Dec;106(4):1381–1387. doi: 10.1104/pp.106.4.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Crawford L. A., Bown A. W., Breitkreuz K. E., Guinel F. C. The Synthesis of [gamma]-Aminobutyric Acid in Response to Treatments Reducing Cytosolic pH. Plant Physiol. 1994 Mar;104(3):865–871. doi: 10.1104/pp.104.3.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. De Greve H., Dhaese P., Seurinck J., Lemmers M., Van Montagu M., Schell J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene. J Mol Appl Genet. 1982;1(6):499–511. [PubMed] [Google Scholar]
  11. Doremus H. D. Organization of the pathway of de novo pyrimidine nucleotide biosynthesis in pea (Pisum sativum L. cv Progress No. 9) leaves. Arch Biochem Biophys. 1986 Oct;250(1):112–119. doi: 10.1016/0003-9861(86)90707-1. [DOI] [PubMed] [Google Scholar]
  12. Edgerton M. D., Jones A. M. Localization of protein-protein interactions between subunits of phytochrome. Plant Cell. 1992 Feb;4(2):161–171. doi: 10.1105/tpc.4.2.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Erlander M. G., Tobin A. J. The structural and functional heterogeneity of glutamic acid decarboxylase: a review. Neurochem Res. 1991 Mar;16(3):215–226. doi: 10.1007/BF00966084. [DOI] [PubMed] [Google Scholar]
  14. Gallego P. P., Whotton L., Picton S., Grierson D., Gray J. E. A role for glutamate decarboxylase during tomato ripening: the characterisation of a cDNA encoding a putative glutamate decarboxylase with a calmodulin-binding site. Plant Mol Biol. 1995 Mar;27(6):1143–1151. doi: 10.1007/BF00020887. [DOI] [PubMed] [Google Scholar]
  15. Gallie D. R., Lucas W. J., Walbot V. Visualizing mRNA expression in plant protoplasts: factors influencing efficient mRNA uptake and translation. Plant Cell. 1989 Mar;1(3):301–311. doi: 10.1105/tpc.1.3.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gogarten J. P., Fichmann J., Braun Y., Morgan L., Styles P., Taiz S. L., DeLapp K., Taiz L. The use of antisense mRNA to inhibit the tonoplast H+ ATPase in carrot. Plant Cell. 1992 Jul;4(7):851–864. doi: 10.1105/tpc.4.7.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hedden P. 2-Oxoglutarate-dependent dioxygenases in plants: mechanism and function. Biochem Soc Trans. 1992 May;20(2):373–377. doi: 10.1042/bst0200373. [DOI] [PubMed] [Google Scholar]
  18. Inatomi K., Slaughter J. C. Glutamate decarboxylase from barley embryos and roots. General properties and the occurrence of three enzymic forms. Biochem J. 1975 Jun;147(3):479–484. doi: 10.1042/bj1470479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jones R. S., Mitchell C. A. Calcium ion involvement in growth inhibition of mechanically stressed soybean (Glycine max) seedlings. Physiol Plant. 1989;76:598–602. doi: 10.1111/j.1399-3054.1989.tb05485.x. [DOI] [PubMed] [Google Scholar]
  20. Kim J. H., Delauney A. J., Verma D. P. Control of de novo purine biosynthesis genes in ureide-producing legumes: induction of glutamine phosphoribosylpyrophosphate amidotransferase gene and characterization of its cDNA from soybean and Vigna. Plant J. 1995 Jan;7(1):77–86. doi: 10.1046/j.1365-313x.1995.07010077.x. [DOI] [PubMed] [Google Scholar]
  21. Lam H. M., Coschigano K., Schultz C., Melo-Oliveira R., Tjaden G., Oliveira I., Ngai N., Hsieh M. H., Coruzzi G. Use of Arabidopsis mutants and genes to study amide amino acid biosynthesis. Plant Cell. 1995 Jul;7(7):887–898. doi: 10.1105/tpc.7.7.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ling V., Snedden W. A., Shelp B. J., Assmann S. M. Analysis of a soluble calmodulin binding protein from fava bean roots: identification of glutamate decarboxylase as a calmodulin-activated enzyme. Plant Cell. 1994 Aug;6(8):1135–1143. doi: 10.1105/tpc.6.8.1135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. MOORE S., STEIN W. H. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J Biol Chem. 1954 Dec;211(2):907–913. [PubMed] [Google Scholar]
  24. Mayer R. R., Cherry J. H., Rhodes D. Effects of heat shock on amino Acid metabolism of cowpea cells. Plant Physiol. 1990 Oct;94(2):796–810. doi: 10.1104/pp.94.2.796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mody I., De Koninck Y., Otis T. S., Soltesz I. Bridging the cleft at GABA synapses in the brain. Trends Neurosci. 1994 Dec;17(12):517–525. doi: 10.1016/0166-2236(94)90155-4. [DOI] [PubMed] [Google Scholar]
  26. Nathan B., Hsu C. C., Bao J., Wu R., Wu J. Y. Purification and characterization of a novel form of brain L-glutamate decarboxylase. A Ca(2+)-dependent peripheral membrane protein. J Biol Chem. 1994 Mar 11;269(10):7249–7254. [PubMed] [Google Scholar]
  27. Porter J. A., Minke B., Montell C. Calmodulin binding to Drosophila NinaC required for termination of phototransduction. EMBO J. 1995 Sep 15;14(18):4450–4459. doi: 10.1002/j.1460-2075.1995.tb00124.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rhodes D., Handa S., Bressan R. A. Metabolic changes associated with adaptation of plant cells to water stress. Plant Physiol. 1986 Dec;82(4):890–903. doi: 10.1104/pp.82.4.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Romano C. P., Robson P. R., Smith H., Estelle M., Klee H. Transgene-mediated auxin overproduction in Arabidopsis: hypocotyl elongation phenotype and interactions with the hy6-1 hypocotyl elongation and axr1 auxin-resistant mutants. Plant Mol Biol. 1995 Mar;27(6):1071–1083. doi: 10.1007/BF00020881. [DOI] [PubMed] [Google Scholar]
  30. Satyanarayan V., Nair P. M. Purification and characterization of glutamate decarboxylase from Solanum tuberosum. Eur J Biochem. 1985 Jul 1;150(1):53–60. doi: 10.1111/j.1432-1033.1985.tb08987.x. [DOI] [PubMed] [Google Scholar]
  31. Snedden W. A., Arazi T., Fromm H., Shelp B. J. Calcium/Calmodulin Activation of Soybean Glutamate Decarboxylase. Plant Physiol. 1995 Jun;108(2):543–549. doi: 10.1104/pp.108.2.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Snedden W. A., Koutsia N., Baum G., Fromm H. Activation of a recombinant petunia glutamate decarboxylase by calcium/calmodulin or by a monoclonal antibody which recognizes the calmodulin binding domain. J Biol Chem. 1996 Feb 23;271(8):4148–4153. doi: 10.1074/jbc.271.8.4148. [DOI] [PubMed] [Google Scholar]
  33. Streeter J. G., Thompson J. F. Anaerobic Accumulation of gamma-Aminobutyric Acid and Alanine in Radish Leaves (Raphanus sativus, L.). Plant Physiol. 1972 Apr;49(4):572–578. doi: 10.1104/pp.49.4.572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stürzbecher H. W., Brain R., Addison C., Rudge K., Remm M., Grimaldi M., Keenan E., Jenkins J. R. A C-terminal alpha-helix plus basic region motif is the major structural determinant of p53 tetramerization. Oncogene. 1992 Aug;7(8):1513–1523. [PubMed] [Google Scholar]
  35. Takahashi T., Gasch A., Nishizawa N., Chua N. H. The DIMINUTO gene of Arabidopsis is involved in regulating cell elongation. Genes Dev. 1995 Jan 1;9(1):97–107. doi: 10.1101/gad.9.1.97. [DOI] [PubMed] [Google Scholar]
  36. Tillakaratne N. J., Medina-Kauwe L., Gibson K. M. gamma-Aminobutyric acid (GABA) metabolism in mammalian neural and nonneural tissues. Comp Biochem Physiol A Physiol. 1995 Oct;112(2):247–263. doi: 10.1016/0300-9629(95)00099-2. [DOI] [PubMed] [Google Scholar]
  37. Trewavas A., Knight M. Mechanical signalling, calcium and plant form. Plant Mol Biol. 1994 Dec;26(5):1329–1341. doi: 10.1007/BF00016478. [DOI] [PubMed] [Google Scholar]
  38. Von Wettstein D., Gough S., Kannangara C. G. Chlorophyll Biosynthesis. Plant Cell. 1995 Jul;7(7):1039–1057. doi: 10.1105/tpc.7.7.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wallace W., Secor J., Schrader L. E. Rapid Accumulation of gamma-Aminobutyric Acid and Alanine in Soybean Leaves in Response to an Abrupt Transfer to Lower Temperature, Darkness, or Mechanical Manipulation. Plant Physiol. 1984 May;75(1):170–175. doi: 10.1104/pp.75.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES