Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1996 Jun 17;15(12):3077–3084.

Drosophila goosecoid participates in neural development but not in body axis formation.

M Hahn 1, H Jäckle 1
PMCID: PMC450248  PMID: 8670808

Abstract

In vertebrate embryos, the homeobox gene goosecoid (gsc) is expressed in the gastrula organizer region and in later arising embryonic tissues including the foregut anlage. Ectopic expression and loss-of-function studies have demonstrated that Xenopus gsc elicits a dorsalizing activity that contributes to body axis formation. Here we report that the gsc gene is conserved in invertebrates. In Drosophila, D-gsc is expressed most strongly in the foregut anlage, which gives rise to the foregut proper and the stomatogastric nervous system (SNS). D-gsc expression overlaps with one of the three SNS precursor groups invaginating from the foregut anlage. Embryos mutant for D-gsc gastrulate normally but show disrupted invagination in the SNS primordium and lack one specific SNS ganglion. In addition, D-gsc mutant embryos show a less well defined defect in foregut arrangement. Our results indicate that this invertebrate homolog of gsc is not required for gastrulation but plays a role in neurogenesis in post-gastrula Drosophila embryos.

Full text

PDF
3077

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berleth T., Burri M., Thoma G., Bopp D., Richstein S., Frigerio G., Noll M., Nüsslein-Volhard C. The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J. 1988 Jun;7(6):1749–1756. doi: 10.1002/j.1460-2075.1988.tb03004.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blum M., De Robertis E. M., Kojis T., Heinzmann C., Klisak I., Geissert D., Sparkes R. S. Molecular cloning of the human homeobox gene goosecoid (GSC) and mapping of the gene to human chromosome 14q32.1. Genomics. 1994 May 15;21(2):388–393. doi: 10.1006/geno.1994.1281. [DOI] [PubMed] [Google Scholar]
  3. Blum M., Gaunt S. J., Cho K. W., Steinbeisser H., Blumberg B., Bittner D., De Robertis E. M. Gastrulation in the mouse: the role of the homeobox gene goosecoid. Cell. 1992 Jun 26;69(7):1097–1106. doi: 10.1016/0092-8674(92)90632-m. [DOI] [PubMed] [Google Scholar]
  4. Blumberg B., Wright C. V., De Robertis E. M., Cho K. W. Organizer-specific homeobox genes in Xenopus laevis embryos. Science. 1991 Jul 12;253(5016):194–196. doi: 10.1126/science.1677215. [DOI] [PubMed] [Google Scholar]
  5. Cheyette B. N., Green P. J., Martin K., Garren H., Hartenstein V., Zipursky S. L. The Drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron. 1994 May;12(5):977–996. doi: 10.1016/0896-6273(94)90308-5. [DOI] [PubMed] [Google Scholar]
  6. Cho K. W., Blumberg B., Steinbeisser H., De Robertis E. M. Molecular nature of Spemann's organizer: the role of the Xenopus homeobox gene goosecoid. Cell. 1991 Dec 20;67(6):1111–1120. doi: 10.1016/0092-8674(91)90288-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cohen B., McGuffin M. E., Pfeifle C., Segal D., Cohen S. M. apterous, a gene required for imaginal disc development in Drosophila encodes a member of the LIM family of developmental regulatory proteins. Genes Dev. 1992 May;6(5):715–729. doi: 10.1101/gad.6.5.715. [DOI] [PubMed] [Google Scholar]
  8. Cooley L., Kelley R., Spradling A. Insertional mutagenesis of the Drosophila genome with single P elements. Science. 1988 Mar 4;239(4844):1121–1128. doi: 10.1126/science.2830671. [DOI] [PubMed] [Google Scholar]
  9. Finkelstein R., Smouse D., Capaci T. M., Spradling A. C., Perrimon N. The orthodenticle gene encodes a novel homeo domain protein involved in the development of the Drosophila nervous system and ocellar visual structures. Genes Dev. 1990 Sep;4(9):1516–1527. doi: 10.1101/gad.4.9.1516. [DOI] [PubMed] [Google Scholar]
  10. Gaunt S. J., Blum M., De Robertis E. M. Expression of the mouse goosecoid gene during mid-embryogenesis may mark mesenchymal cell lineages in the developing head, limbs and body wall. Development. 1993 Feb;117(2):769–778. doi: 10.1242/dev.117.2.769. [DOI] [PubMed] [Google Scholar]
  11. González-Gaitán M., Jäckle H. Invagination centers within the Drosophila stomatogastric nervous system anlage are positioned by Notch-mediated signaling which is spatially controlled through wingless. Development. 1995 Aug;121(8):2313–2325. doi: 10.1242/dev.121.8.2313. [DOI] [PubMed] [Google Scholar]
  12. González-Gaitán M., Rothe M., Wimmer E. A., Taubert H., Jäckle H. Redundant functions of the genes knirps and knirps-related for the establishment of anterior Drosophila head structures. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8567–8571. doi: 10.1073/pnas.91.18.8567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hartenstein V., Tepass U., Gruszynski-Defeo E. Embryonic development of the stomatogastric nervous system in Drosophila. J Comp Neurol. 1994 Dec 15;350(3):367–381. doi: 10.1002/cne.903500304. [DOI] [PubMed] [Google Scholar]
  14. Izpisúa-Belmonte J. C., De Robertis E. M., Storey K. G., Stern C. D. The homeobox gene goosecoid and the origin of organizer cells in the early chick blastoderm. Cell. 1993 Aug 27;74(4):645–659. doi: 10.1016/0092-8674(93)90512-o. [DOI] [PubMed] [Google Scholar]
  15. Karpen G. H., Spradling A. C. Analysis of subtelomeric heterochromatin in the Drosophila minichromosome Dp1187 by single P element insertional mutagenesis. Genetics. 1992 Nov;132(3):737–753. doi: 10.1093/genetics/132.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Poulson D. F. Chromosomal Deficiencies and the Embryonic Development of Drosophila Melanogaster. Proc Natl Acad Sci U S A. 1937 Mar;23(3):133–137. doi: 10.1073/pnas.23.3.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rivera-Pérez J. A., Mallo M., Gendron-Maguire M., Gridley T., Behringer R. R. Goosecoid is not an essential component of the mouse gastrula organizer but is required for craniofacial and rib development. Development. 1995 Sep;121(9):3005–3012. doi: 10.1242/dev.121.9.3005. [DOI] [PubMed] [Google Scholar]
  18. Simeone A., Acampora D., Mallamaci A., Stornaiuolo A., D'Apice M. R., Nigro V., Boncinelli E. A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J. 1993 Jul;12(7):2735–2747. doi: 10.1002/j.1460-2075.1993.tb05935.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stachel S. E., Grunwald D. J., Myers P. Z. Lithium perturbation and goosecoid expression identify a dorsal specification pathway in the pregastrula zebrafish. Development. 1993 Apr;117(4):1261–1274. doi: 10.1242/dev.117.4.1261. [DOI] [PubMed] [Google Scholar]
  20. Steinbeisser H., De Robertis E. M., Ku M., Kessler D. S., Melton D. A. Xenopus axis formation: induction of goosecoid by injected Xwnt-8 and activin mRNAs. Development. 1993 Jun;118(2):499–507. doi: 10.1242/dev.118.2.499. [DOI] [PubMed] [Google Scholar]
  21. Steinbeisser H., De Robertis E. M. Xenopus goosecoid: a gene expressed in the prechordal plate that has dorsalizing activity. C R Acad Sci III. 1993 Sep;316(9):959–971. [PubMed] [Google Scholar]
  22. Steinbeisser H., Fainsod A., Niehrs C., Sasai Y., De Robertis E. M. The role of gsc and BMP-4 in dorsal-ventral patterning of the marginal zone in Xenopus: a loss-of-function study using antisense RNA. EMBO J. 1995 Nov 1;14(21):5230–5243. doi: 10.1002/j.1460-2075.1995.tb00208.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tepass U., Theres C., Knust E. crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell. 1990 Jun 1;61(5):787–799. doi: 10.1016/0092-8674(90)90189-l. [DOI] [PubMed] [Google Scholar]
  24. Thisse C., Thisse B., Halpern M. E., Postlethwait J. H. Goosecoid expression in neurectoderm and mesendoderm is disrupted in zebrafish cyclops gastrulas. Dev Biol. 1994 Aug;164(2):420–429. doi: 10.1006/dbio.1994.1212. [DOI] [PubMed] [Google Scholar]
  25. Treisman J., Gönczy P., Vashishtha M., Harris E., Desplan C. A single amino acid can determine the DNA binding specificity of homeodomain proteins. Cell. 1989 Nov 3;59(3):553–562. doi: 10.1016/0092-8674(89)90038-x. [DOI] [PubMed] [Google Scholar]
  26. Treisman J., Harris E., Wilson D., Desplan C. The homeodomain: a new face for the helix-turn-helix? Bioessays. 1992 Mar;14(3):145–150. doi: 10.1002/bies.950140302. [DOI] [PubMed] [Google Scholar]
  27. Weigel D., Jürgens G., Küttner F., Seifert E., Jäckle H. The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell. 1989 May 19;57(4):645–658. doi: 10.1016/0092-8674(89)90133-5. [DOI] [PubMed] [Google Scholar]
  28. Yamada G., Mansouri A., Torres M., Stuart E. T., Blum M., Schultz M., De Robertis E. M., Gruss P. Targeted mutation of the murine goosecoid gene results in craniofacial defects and neonatal death. Development. 1995 Sep;121(9):2917–2922. doi: 10.1242/dev.121.9.2917. [DOI] [PubMed] [Google Scholar]
  29. Zipursky S. L., Venkatesh T. R., Teplow D. B., Benzer S. Neuronal development in the Drosophila retina: monoclonal antibodies as molecular probes. Cell. 1984 Jan;36(1):15–26. doi: 10.1016/0092-8674(84)90069-2. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES