Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Oct 25;91(22):10581–10585. doi: 10.1073/pnas.91.22.10581

Cloning of a cDNA for the FAD-linked glycerol-3-phosphate dehydrogenase from rat liver and its regulation by thyroid hormones.

S Müller 1, H J Seitz 1
PMCID: PMC45065  PMID: 7937996

Abstract

A full-length 2.4-kb cDNA for the FAD-linked glycerol-3-phosphate dehydrogenase (EC 1.1.99.5) was cloned from rat liver using PCR techniques. The cloned gene encodes a protein of 727 amino acids. The calculated molecular mass of 80,898 Da is higher than the apparent molecular mass observed by SDS/PAGE (74,000 Da) of the purified enzyme. This result indicates that the enzyme is synthesized as a precursor with a putative mitochondrial signal sequence. mRNA for this gene was detected in liver, heart, muscle, brain, testes, and pancreas. With the exception of testes, basal expression levels were very low in all tissues examined. However, application of thyroid hormones led to a 10- to 15-fold increase in liver glycerol-3-phosphate dehydrogenase mRNA, whereas hypothyroidism further decreased the mRNA level.

Full text

PDF
10581

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aebersold R. H., Leavitt J., Saavedra R. A., Hood L. E., Kent S. B. Internal amino acid sequence analysis of proteins separated by one- or two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. Proc Natl Acad Sci U S A. 1987 Oct;84(20):6970–6974. doi: 10.1073/pnas.84.20.6970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beleznai Z., Jancsik V. Purification of L-3-glycerophosphate dehydrogenase from rat liver mitochondria. Biochem Int. 1987 Jul;15(1):55–63. [PubMed] [Google Scholar]
  3. Brown L. J., MacDonald M. J., Lehn D. A., Moran S. M. Sequence of rat mitochondrial glycerol-3-phosphate dehydrogenase cDNA. Evidence for EF-hand calcium-binding domains. J Biol Chem. 1994 May 20;269(20):14363–14366. [PubMed] [Google Scholar]
  4. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  5. Clay V. J., Ragan C. I. Biosynthesis and import into the mitochondrion of L-3-glycerophosphate dehydrogenase, and the effect of thyroid hormone deficiency on gene expression. Biochim Biophys Acta. 1989 Jun 23;975(1):112–118. doi: 10.1016/s0005-2728(89)80208-7. [DOI] [PubMed] [Google Scholar]
  6. Courtright J. B. Intracellular localization and properties of glycerokinase and glycerophosphate dehydrogenase in Neurospora crassa. Arch Biochem Biophys. 1975 Mar;167(1):21–33. doi: 10.1016/0003-9861(75)90437-3. [DOI] [PubMed] [Google Scholar]
  7. Dobson D. E., Groves D. L., Spiegelman B. M. Nucleotide sequence and hormonal regulation of mouse glycerophosphate dehydrogenase mRNA during adipocyte and muscle cell differentiation. J Biol Chem. 1987 Feb 5;262(4):1804–1809. [PubMed] [Google Scholar]
  8. Doonan S., Barra D., Bossa F. Structural and genetic relationships between cytosolic and mitochondrial isoenzymes. Int J Biochem. 1984;16(12):1193–1199. doi: 10.1016/0020-711x(84)90216-7. [DOI] [PubMed] [Google Scholar]
  9. ESTABROOK R. W., SACKTOR B. alpha-Glycerophosphate oxidase of flight muscle mitochondria. J Biol Chem. 1958 Oct;233(4):1014–1019. [PubMed] [Google Scholar]
  10. Frohman M. A., Dush M. K., Martin G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998–9002. doi: 10.1073/pnas.85.23.8998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Garrib A., McMurray W. C. A sensitive, continuous spectrophotometric method for assaying alpha-glycerophosphate dehydrogenase: activation by menadione. Anal Biochem. 1984 Jun;139(2):319–321. doi: 10.1016/0003-2697(84)90011-3. [DOI] [PubMed] [Google Scholar]
  12. Garrib A., McMurray W. C. Cell-free synthesis of a putative precursor to the rat liver mitochondrial glycerol-3-phosphate dehydrogenase. J Biol Chem. 1988 Dec 25;263(36):19821–19826. [PubMed] [Google Scholar]
  13. Garrib A., McMurray W. C. Purification and characterization of glycerol-3-phosphate dehydrogenase (flavin-linked) from rat liver mitochondria. J Biol Chem. 1986 Jun 15;261(17):8042–8048. [PubMed] [Google Scholar]
  14. HESS R., PEARSE A. G. Histochemical and homogenization studies of mitochondrial alpha-glycerophosphate dehydrogenase in the nervous system. Nature. 1961 Aug 12;191:718–719. doi: 10.1038/191718a0. [DOI] [PubMed] [Google Scholar]
  15. Holmberg C., Beijer L., Rutberg B., Rutberg L. Glycerol catabolism in Bacillus subtilis: nucleotide sequence of the genes encoding glycerol kinase (glpK) and glycerol-3-phosphate dehydrogenase (glpD). J Gen Microbiol. 1990 Dec;136(12):2367–2375. doi: 10.1099/00221287-136-12-2367. [DOI] [PubMed] [Google Scholar]
  16. Kandel J., Bossy-Wetzel E., Radvanyi F., Klagsbrun M., Folkman J., Hanahan D. Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell. 1991 Sep 20;66(6):1095–1104. doi: 10.1016/0092-8674(91)90033-u. [DOI] [PubMed] [Google Scholar]
  17. Kistler W. S., Hirsch C. A., Cozzarelli N. R., Lin E. C. Second pyridine nucleotide-independent 1-alpha-glycerophosphate dehydrogenase in Escherichia coli K-12. J Bacteriol. 1969 Nov;100(2):1133–1135. doi: 10.1128/jb.100.2.1133-1135.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Klingenberg M. Localization of the glycerol-phosphate dehydrogenase in the outer phase of the mitochondrial inner membrane. Eur J Biochem. 1970 Apr;13(2):247–252. doi: 10.1111/j.1432-1033.1970.tb00924.x. [DOI] [PubMed] [Google Scholar]
  19. Kozak M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem. 1991 Oct 25;266(30):19867–19870. [PubMed] [Google Scholar]
  20. LEE Y. P., LARDY H. A. INFLUENCE OF THYROID HORMONES ON L-ALPHA-GLYCEROPHOSPHATE DEHYDROGENASES AND OTHER DEHYDROGENASES IN VARIOUS ORGANS OF THE RAT. J Biol Chem. 1965 Mar;240:1427–1436. [PubMed] [Google Scholar]
  21. Lardy H. A., Ghosh D., Plaut G. W. A Metabolic Regulator in Mammalian Spermatozoa. Science. 1949 Apr 8;109(2832):365–367. doi: 10.1126/science.109.2832.365. [DOI] [PubMed] [Google Scholar]
  22. Lathe R. Synthetic oligonucleotide probes deduced from amino acid sequence data. Theoretical and practical considerations. J Mol Biol. 1985 May 5;183(1):1–12. doi: 10.1016/0022-2836(85)90276-1. [DOI] [PubMed] [Google Scholar]
  23. Luciakova K., Nelson B. D. Transcript levels for nuclear-encoded mammalian mitochondrial respiratory-chain components are regulated by thyroid hormone in an uncoordinated fashion. Eur J Biochem. 1992 Jul 1;207(1):247–251. doi: 10.1111/j.1432-1033.1992.tb17044.x. [DOI] [PubMed] [Google Scholar]
  24. Rønnow B., Kielland-Brandt M. C. GUT2, a gene for mitochondrial glycerol 3-phosphate dehydrogenase of Saccharomyces cerevisiae. Yeast. 1993 Oct;9(10):1121–1130. doi: 10.1002/yea.320091013. [DOI] [PubMed] [Google Scholar]
  25. SCHENKMAN J. B., RICHERT D. A., WESTERFELD W. W. ALPHA-GLYCEROPHOSPHATE DEHYDROGENASE ACTIVITY IN RAT SPERMATOZOA. Endocrinology. 1965 Jun;76:1055–1061. doi: 10.1210/endo-76-6-1055. [DOI] [PubMed] [Google Scholar]
  26. Salganicoff L., Fukami M. H. Energy metabolism of blood platelets. I. Isolation and properties of platelet mitochondria. Arch Biochem Biophys. 1972 Dec;153(2):726–735. doi: 10.1016/0003-9861(72)90391-8. [DOI] [PubMed] [Google Scholar]
  27. Scarpulla R. C., Kilar M. C., Scarpulla K. M. Coordinate induction of multiple cytochrome c mRNAs in response to thyroid hormone. J Biol Chem. 1986 Apr 5;261(10):4660–4662. [PubMed] [Google Scholar]
  28. Sekine N., Cirulli V., Regazzi R., Brown L. J., Gine E., Tamarit-Rodriguez J., Girotti M., Marie S., MacDonald M. J., Wollheim C. B. Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic beta-cells. Potential role in nutrient sensing. J Biol Chem. 1994 Feb 18;269(7):4895–4902. [PubMed] [Google Scholar]
  29. Sener A., Herberg L., Malaisse W. J. FAD-linked glycerophosphate dehydrogenase deficiency in pancreatic islets of mice with hereditary diabetes. FEBS Lett. 1993 Feb 1;316(3):224–227. doi: 10.1016/0014-5793(93)81297-d. [DOI] [PubMed] [Google Scholar]
  30. Swierczyński J., Scislowski P., Aleksandrowicz Z. High activity of alpha-glycerophosphate oxidation by human placental mitochondria. Biochim Biophys Acta. 1976 Mar 11;429(1):46–54. doi: 10.1016/0005-2744(76)90028-0. [DOI] [PubMed] [Google Scholar]
  31. Troutt A. B., McHeyzer-Williams M. G., Pulendran B., Nossal G. J. Ligation-anchored PCR: a simple amplification technique with single-sided specificity. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9823–9825. doi: 10.1073/pnas.89.20.9823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wang A. M., Doyle M. V., Mark D. F. Quantitation of mRNA by the polymerase chain reaction. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9717–9721. doi: 10.1073/pnas.86.24.9717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Werner H. V., Berry M. N. Stimulatory effects of thyroxine administration on reducing-equivalent transfer from substrate to oxygen during hepatic metabolism of sorbitol and glycerol. Eur J Biochem. 1974 Mar 1;42(2):315–324. doi: 10.1111/j.1432-1033.1974.tb03342.x. [DOI] [PubMed] [Google Scholar]
  34. Wernette M. E., Ochs R. S., Lardy H. A. Ca2+ stimulation of rat liver mitochondrial glycerophosphate dehydrogenase. J Biol Chem. 1981 Dec 25;256(24):12767–12771. [PubMed] [Google Scholar]
  35. Wiesner R. J., Kurowski T. T., Zak R. Regulation by thyroid hormone of nuclear and mitochondrial genes encoding subunits of cytochrome-c oxidase in rat liver and skeletal muscle. Mol Endocrinol. 1992 Sep;6(9):1458–1467. doi: 10.1210/mend.6.9.1331777. [DOI] [PubMed] [Google Scholar]
  36. von Heijne G. Mitochondrial targeting sequences may form amphiphilic helices. EMBO J. 1986 Jun;5(6):1335–1342. doi: 10.1002/j.1460-2075.1986.tb04364.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. von Jagow G., Klingenberg M. Pathways of hydrogen in mitochondria of Saccharomyces carlsbergensis. Eur J Biochem. 1970 Feb;12(3):583–592. doi: 10.1111/j.1432-1033.1970.tb00890.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES