Skip to main content
New Microbes and New Infections logoLink to New Microbes and New Infections
editorial
. 2015 Jun 9;7:48–49. doi: 10.1016/j.nmni.2015.06.001

New Microbes New Infections promotes modern prokaryotic taxonomy: a new section “TaxonoGenomics: new genomes of microorganisms in humans”

Pierre-Edouard Fournier 1,, Michel Drancourt 1
PMCID: PMC4506979  PMID: 26199732

“New Microbes and New Infections” being devoted to new facts in infections and clinical microbiology comprises a “New Genomes of Microorganisms and Viruses in Humans” section featuring its own format. This section will evolve towards a “TaxonoGenomics: new genomes of microorganisms in humans” section to better take into consideration recent developments in prokaryote genome sequencing and incorporate the recent proposal that genome sequence and proteome must be part of the description of microbes of medical interest. Indeed, there is an impressive rise in bacterial genome sequencing, with 35,000 genomes currently available from virtually all major bacterial phyla. These sequences are an unprecedented source of information to develop molecular assays for detection or genotyping, to detect antibiotic resistance and virulence markers, to develop new culture media or to identify candidate antigens for vaccines [1]. A second breakthrough was the use of MALDI-TOF-mass spectrometry (MALDI-TOF-MS) for the routine identification of clinical isolates of bacteria and fungi [2,3]. Finally, the renewal of culture, through the culturomics strategy based on a diversification of culture conditions, enabled identifying more than 120 new human-associated bacterial species in a limited time [4]. These three tools have in common the advantage of producing data that can easily be shared and compared, either in international databases or culture collections.

Surprisingly, although it has undergone many changes over time according to the introduction of new diagnostic methods, microbial systematics has not been adapted to incorporate genomic sequence and MALDI-TOF-MS, despite the fact that these methods are now widely used worldwide. Currently, although there is no universal agreement on the rules and criteria used for microorganism identification, several taxonomic criteria, based on phenotypic and genotypic characteristics [5–7], are used to determine whether a new bacterium fulfils the requirements to be classified as a new taxon. These include: i) routinely obtainable phenotypic properties (morphology, staining and antigenic properties, growth preferences, enzyme production, sugar metabolism, susceptibility to antibiotics, pathogenesis and habitat) [8]; ii) chemotaxonomic parameters such as the characterization of polar lipids, whole cell fatty acid content, respiratory quinones and peptidoglycan structure [9–11]; and iii) the determination of DNA-DNA hybridization (DDH) [12]. However, the latter two taxonomic criteria lack inter- and intra-laboratory reproducibility, require the use of methods restricted to few laboratories, are of no practical value for the routine identification of bacterial isolates.

Recently, several genomic tools have been proposed as alternatives of DDH for the taxonomic classification of prokaryotes, including average genomic identity of orthologous gene sequence (AGIOS), average nucleotide identity (ANI), digital DDH, maximum unique matches index (MUMi), multilocus sequence analysis, multilocus sequence typing, and tetranucleotide regression [13], the former three of which have permitted the valid publication of several new species names [14–24]. In addition, a new polyphasic taxonomic strategy named taxono-genomics including both MALDI-TOF-MS instead of chemotaxonomic analysis and genome sequence analysis, in addition to common phenotypic criteria, was proposed to describe eight new bacterial species [17–24].

Therefore, there is now clear evidence that genomic and MALDI-TOF-MS data may be integrated as alternatives to chemotaxonomy and DDH, respectively, for the taxonomic description of bacteria, provided that the new isolates are compared to the phylogenetically closest species with standing in nomenclature.

Accordingly, “New Microbes and New Infections” will now accommodate two formats in the new “TaxonoGenomics” section, including a short 500-words format and one item to report on new genome of already described organism and a 1,500-word format and three items to report on new genome as part as the description of a novel organisms. This new section will accommodate only microbes of medical interest and not environmental ones without known connection with populations and patients.

References

  • 1.Fournier P.E., Raoult D. Prospects for the future using genomics and proteomics in clinical microbiology. Annu Rev Microbiol. 2011 Oct 13;65:169–188. doi: 10.1146/annurev-micro-090110-102922. [DOI] [PubMed] [Google Scholar]
  • 2.Seng P., Drancourt M., Gouriet F., La Scola B., Fournier P.E., Rolain J.M. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis. 2009 Aug 15;49(4):543–551. doi: 10.1086/600885. [DOI] [PubMed] [Google Scholar]
  • 3.Seng P., Abat C., Rolain J.M., Colson P., Lagier J.C., Gouriet F. Identification of rare pathogenic bacteria in a clinical microbiology laboratory: impact of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2013 Jul;51(7):2182–2194. doi: 10.1128/JCM.00492-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Lagier J.C., Hugon P., Khelaifia S., Fournier P.E., La S.B., Raoult D. The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin Microbiol Rev. 2015 Jan;28(1):237–264. doi: 10.1128/CMR.00014-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Vandamme P., Pot B., Gillis M., De Vos P., Kersters K., Swings J. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev. 1996;60(2):407–438. doi: 10.1128/mr.60.2.407-438.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Stackebrandt E., Frederiksen W., Garrity G.M., Grimont P.A.D., Kampfer P., Maiden M.C.J. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol. 2002;52:1043–1047. doi: 10.1099/00207713-52-3-1043. [DOI] [PubMed] [Google Scholar]
  • 7.Tindall B.J., Rossello-Mora R., Busse H.J., Ludwig W., Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol. 2010;60:249–266. doi: 10.1099/ijs.0.016949-0. [DOI] [PubMed] [Google Scholar]
  • 8.Oren A., Garrity G. Then and now: a systematic review of the systematics of prokaryotes in the last 80 years. Antonie Van Leeuwenhoek. 2014;106:43–56. doi: 10.1007/s10482-013-0084-1. [DOI] [PubMed] [Google Scholar]
  • 9.Sneath P.H.A., Sokal R.R. Freeman; San Francisco: 1973. Numerical taxonomy. [Google Scholar]
  • 10.Schleifer K.H., Stackebrandt E. Molecular systematics of prokaryotes. Annu Rev Microbiol. 1983;37:143–187. doi: 10.1146/annurev.mi.37.100183.001043. [DOI] [PubMed] [Google Scholar]
  • 11.Palleroni N.J. The Pseudomonas story. Environ Microbiol. 2010 Jun;12(6):1377–1383. doi: 10.1111/j.1462-2920.2009.02041.x. [DOI] [PubMed] [Google Scholar]
  • 12.Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol. 1987;37:463–464. [Google Scholar]
  • 13.Ramasamy D., Mishra A.K., Lagier J.C., Padhmanabhan R., Rossi M., Sentausa E. A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. Int J Syst Evol Microbiol. 2014 Feb;64(Pt 2):384–391. doi: 10.1099/ijs.0.057091-0. [DOI] [PubMed] [Google Scholar]
  • 14.Ritalahti K.M., Justicia-Leon S.D., Cusick K.D., Ramos-Hernandez N., Rubin M., Dornbush J. Sphaerochaeta globosa gen. nov., sp. nov. and Sphaerochaeta pleomorpha sp. nov., free-living, spherical spirochaetes. Int J Syst Evol Microbiol. 2012 Jan;62(Pt 1):210–216. doi: 10.1099/ijs.0.023986-0. [DOI] [PubMed] [Google Scholar]
  • 15.Hoffmann M., Monday S.R., Allard M.W., Strain E.A., Whittaker P., Naum M. Vibrio caribbeanicus sp. nov., isolated from the marine sponge Scleritoderma cyanea. Int J Syst Evol Microbiol. 2012 Aug;62(Pt 8):1736–1743. doi: 10.1099/ijs.0.032375-0. [DOI] [PubMed] [Google Scholar]
  • 16.Loffler F.E., Yan J., Ritalahti K.M., Adrian L., Edwards E.A., Konstantinidis K.T. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int J Syst Evol Microbiol. 2013 Feb;63(Pt 2):625–635. doi: 10.1099/ijs.0.034926-0. [DOI] [PubMed] [Google Scholar]
  • 17.Ramasamy D., Kokcha S., Lagier J.C., Nguyen T.T., Raoult D., Fournier P.E. Genome sequence and description of Aeromicrobium massiliense sp. nov. Stand Genomic Sci. 2012 Dec 19;7(2):246–257. doi: 10.4056/sigs.3306717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Lagier J.C., Armougom F., Mishra A.K., Nguyen T.T., Raoult D., Fournier P.E. Non-contiguous finished genome sequence and description of Alistipes timonensis sp. nov. Stand Genomic Sci. 2012 Jul 30;6(3):315–324. doi: 10.4056/sigs.2685971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Lagier J.C., El K.K., Nguyen T.T., Armougom F., Raoult D., Fournier P.E. Non-contiguous finished genome sequence and description of Anaerococcus senegalensis sp. nov. Stand Genomic Sci. 2012 Mar 19;6(1):116–125. doi: 10.4056/sigs.2415480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Hugon P., Mishra A.K., Lagier J.C., Nguyen T.T., Couderc C., Raoult D. Non-contiguous finished genome sequence and description of Brevibacillus massiliensis sp. nov. Stand Genomic Sci. 2013 Apr 15;8(1):1–14. doi: 10.4056/sigs.3466975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Kokcha S., Ramasamy D., Lagier J.C., Robert C., Raoult D., Fournier P.E. Non-contiguous finished genome sequence and description of Brevibacterium senegalense sp. nov. Stand Genomic Sci. 2012 Dec 19;7(2):233–245. doi: 10.4056/sigs.3256677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Lagier J.C., El K.K., Mishra A.K., Robert C., Raoult D., Fournier P.E. Non contiguous-finished genome sequence and description of Enterobacter massiliensis sp. nov. Stand Genomic Sci. 2013;7(3):399–412. doi: 10.4056/sigs.3396830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Lagier J.C., Gimenez G., Robert C., Raoult D., Fournier P.E. Non-contiguous finished genome sequence and description of Herbaspirillum massiliense sp. nov. Stand Genomic Sci. 2012 Dec 19;7(2):200–209. doi: 10.4056/sigs.3086474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Lagier J.C., Elkarkouri K., Rivet R., Couderc C., Raoult D., Fournier P.E. Non contiguous-finished genome sequence and description of Senegalemassilia anaerobia gen. nov., sp. nov. Stand Genomic Sci. 2013;7(3):343–356. doi: 10.4056/sigs.3246665. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from New Microbes and New Infections are provided here courtesy of Elsevier

RESOURCES