Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Oct 25;91(22):10620–10624. doi: 10.1073/pnas.91.22.10620

Molecular cloning of a putative vesicular transporter for acetylcholine.

A Roghani 1, J Feldman 1, S A Kohan 1, A Shirzadi 1, C B Gundersen 1, N Brecha 1, R H Edwards 1
PMCID: PMC45073  PMID: 7938002

Abstract

Classical neurotransmitters such as acetylcholine (ACh) require transport into synaptic vesicles for regulated exocytotic release. The Caenorhabditis elegans gene unc-17 encodes a protein with homology to mammalian transporters that concentrate monoamine neurotransmitters into synaptic vesicles. Mutations in unc-17 protect against organophosphorus toxicity, indicating a role in cholinergic neurotransmission. Using the relationship of unc-17 to the vesicular amine transporters, we first isolated a related sequence from the electric ray Torpedo californica [Torpedo vesicular ACh transporter (TorVAChT)] that is expressed by the electric lobe but not by peripheral tissues. Using the relationship of the Torpedo sequence to unc-17, we then isolated the cDNA for a rat homologue (rVAChT). Northern blot analysis shows expression of these sequences in the basal forebrain, basal ganglia, and spinal cord but not cerebellum or peripheral tissues. In situ hybridization shows expression of rVAChT mRNA in all cholinergic cell groups, including those in the basal forebrain, brainstem, and spinal cord that previously have been shown to express choline acetyltransferase mRNA. The human VAChT gene also localizes to chromosome 10 near the gene for choline acetyltransferase. Taken together, these observations support a role for rVAChT in vesicular ACh transport and indicate its potential as a novel marker for cholinergic neurons.

Full text

PDF
10620

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alfonso A., Grundahl K., Duerr J. S., Han H. P., Rand J. B. The Caenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine transporter. Science. 1993 Jul 30;261(5121):617–619. doi: 10.1126/science.8342028. [DOI] [PubMed] [Google Scholar]
  2. Bahr B. A., Parsons S. M. Purification of the vesamicol receptor. Biochemistry. 1992 Jun 30;31(25):5763–5769. doi: 10.1021/bi00140a011. [DOI] [PubMed] [Google Scholar]
  3. Bajjalieh S. M., Peterson K., Shinghal R., Scheller R. H. SV2, a brain synaptic vesicle protein homologous to bacterial transporters. Science. 1992 Aug 28;257(5074):1271–1273. doi: 10.1126/science.1519064. [DOI] [PubMed] [Google Scholar]
  4. Bauerfeind R., Régnier-Vigouroux A., Flatmark T., Huttner W. B. Selective storage of acetylcholine, but not catecholamines, in neuroendocrine synaptic-like microvesicles of early endosomal origin. Neuron. 1993 Jul;11(1):105–121. doi: 10.1016/0896-6273(93)90275-v. [DOI] [PubMed] [Google Scholar]
  5. Boulton T. G., Nye S. H., Robbins D. J., Ip N. Y., Radziejewska E., Morgenbesser S. D., DePinho R. A., Panayotatos N., Cobb M. H., Yancopoulos G. D. ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell. 1991 May 17;65(4):663–675. doi: 10.1016/0092-8674(91)90098-j. [DOI] [PubMed] [Google Scholar]
  6. Brice A., Berrard S., Raynaud B., Ansieau S., Coppola T., Weber M. J., Mallet J. Complete sequence of a cDNA encoding an active rat choline acetyltransferase: a tool to investigate the plasticity of cholinergic phenotype expression. J Neurosci Res. 1989 Jul;23(3):266–273. doi: 10.1002/jnr.490230304. [DOI] [PubMed] [Google Scholar]
  7. Coyle J. T., Price D. L., DeLong M. R. Alzheimer's disease: a disorder of cortical cholinergic innervation. Science. 1983 Mar 11;219(4589):1184–1190. doi: 10.1126/science.6338589. [DOI] [PubMed] [Google Scholar]
  8. Diebler M. F., Morot-Gaudry Y. Acetylcholine incorporation by cholinergic synaptic vesicles from Torpedo marmorata. J Neurochem. 1981 Aug;37(2):467–475. doi: 10.1111/j.1471-4159.1981.tb00479.x. [DOI] [PubMed] [Google Scholar]
  9. Edwards R. H. The transport of neurotransmitters into synaptic vesicles. Curr Opin Neurobiol. 1992 Oct;2(5):586–594. doi: 10.1016/0959-4388(92)90023-e. [DOI] [PubMed] [Google Scholar]
  10. Erickson J. D., Eiden L. E., Hoffman B. J. Expression cloning of a reserpine-sensitive vesicular monoamine transporter. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10993–10997. doi: 10.1073/pnas.89.22.10993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Feany M. B., Lee S., Edwards R. H., Buckley K. M. The synaptic vesicle protein SV2 is a novel type of transmembrane transporter. Cell. 1992 Sep 4;70(5):861–867. doi: 10.1016/0092-8674(92)90319-8. [DOI] [PubMed] [Google Scholar]
  12. Fisher L. J., Schinstine M., Salvaterra P., Dekker A. J., Thal L., Gage F. H. In vivo production and release of acetylcholine from primary fibroblasts genetically modified to express choline acetyltransferase. J Neurochem. 1993 Oct;61(4):1323–1332. doi: 10.1111/j.1471-4159.1993.tb13625.x. [DOI] [PubMed] [Google Scholar]
  13. Gingrich J. A., Andersen P. H., Tiberi M., el Mestikawy S., Jorgensen P. N., Fremeau R. T., Jr, Caron M. G. Identification, characterization, and molecular cloning of a novel transporter-like protein localized to the central nervous system. FEBS Lett. 1992 Nov 9;312(2-3):115–122. doi: 10.1016/0014-5793(92)80917-6. [DOI] [PubMed] [Google Scholar]
  14. Greene L. A., Rein G. Synthesis, storage and release of acetylcholine by a noradrenergic pheochromocytoma cell line. Nature. 1977 Jul 28;268(5618):349–351. doi: 10.1038/268349a0. [DOI] [PubMed] [Google Scholar]
  15. Holtzman D. M., Li Y., Parada L. F., Kinsman S., Chen C. K., Valletta J. S., Zhou J., Long J. B., Mobley W. C. p140trk mRNA marks NGF-responsive forebrain neurons: evidence that trk gene expression is induced by NGF. Neuron. 1992 Sep;9(3):465–478. doi: 10.1016/0896-6273(92)90184-f. [DOI] [PubMed] [Google Scholar]
  16. Kitayama S., Shimada S., Xu H., Markham L., Donovan D. M., Uhl G. R. Dopamine transporter site-directed mutations differentially alter substrate transport and cocaine binding. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7782–7785. doi: 10.1073/pnas.89.16.7782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Koenigsberger R., Parsons S. M. Bicarbonate and magnesium ion-ATP dependent stimulation of acetylcholine uptake by Torpedo electric organ synaptic vesicles. Biochem Biophys Res Commun. 1980 May 14;94(1):305–312. doi: 10.1016/s0006-291x(80)80221-x. [DOI] [PubMed] [Google Scholar]
  18. Langston J. W., Ballard P., Tetrud J. W., Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 1983 Feb 25;219(4587):979–980. doi: 10.1126/science.6823561. [DOI] [PubMed] [Google Scholar]
  19. Liu Y., Peter D., Roghani A., Schuldiner S., Privé G. G., Eisenberg D., Brecha N., Edwards R. H. A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter. Cell. 1992 Aug 21;70(4):539–551. doi: 10.1016/0092-8674(92)90425-c. [DOI] [PubMed] [Google Scholar]
  20. Liu Y., Roghani A., Edwards R. H. Gene transfer of a reserpine-sensitive mechanism of resistance to N-methyl-4-phenylpyridinium. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9074–9078. doi: 10.1073/pnas.89.19.9074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McGurk S. R., Levin E. D., Butcher L. L. Impairment of radial-arm maze performance in rats following lesions involving the cholinergic medial pathway: reversal by arecoline and differential effects of muscarinic and nicotinic antagonists. Neuroscience. 1991;44(1):137–147. doi: 10.1016/0306-4522(91)90256-n. [DOI] [PubMed] [Google Scholar]
  22. Melega W. P., Howard B. D. Biochemical evidence that vesicles are the source of the acetylcholine released from stimulated PC12 cells. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6535–6538. doi: 10.1073/pnas.81.20.6535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Michaelson D. M., Angel I. Saturable acetylcholine transport into purified cholinergic synaptic vesicles. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2048–2052. doi: 10.1073/pnas.78.4.2048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Oh J. D., Woolf N. J., Roghani A., Edwards R. H., Butcher L. L. Cholinergic neurons in the rat central nervous system demonstrated by in situ hybridization of choline acetyltransferase mRNA. Neuroscience. 1992;47(4):807–822. doi: 10.1016/0306-4522(92)90031-v. [DOI] [PubMed] [Google Scholar]
  25. Peter D., Finn J. P., Klisak I., Liu Y., Kojis T., Heinzmann C., Roghani A., Sparkes R. S., Edwards R. H. Chromosomal localization of the human vesicular amine transporter genes. Genomics. 1993 Dec;18(3):720–723. doi: 10.1016/s0888-7543(05)80383-0. [DOI] [PubMed] [Google Scholar]
  26. Peter D., Jimenez J., Liu Y., Kim J., Edwards R. H. The chromaffin granule and synaptic vesicle amine transporters differ in substrate recognition and sensitivity to inhibitors. J Biol Chem. 1994 Mar 11;269(10):7231–7237. [PubMed] [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Saper C. B., German D. C., White C. L., 3rd Neuronal pathology in the nucleus basalis and associated cell groups in senile dementia of the Alzheimer's type: possible role in cell loss. Neurology. 1985 Aug;35(8):1089–1095. doi: 10.1212/wnl.35.8.1089. [DOI] [PubMed] [Google Scholar]
  29. Schubert D., Klier F. G. Storage and release of acetylcholine by a clonal cell line. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5184–5188. doi: 10.1073/pnas.74.11.5184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sternini C., Anderson K., Frantz G., Krause J. E., Brecha N. Expression of substance P/neurokinin A-encoding preprotachykinin messenger ribonucleic acids in the rat enteric nervous system. Gastroenterology. 1989 Aug;97(2):348–356. doi: 10.1016/0016-5085(89)90070-x. [DOI] [PubMed] [Google Scholar]
  31. Südhof T. C., Jahn R. Proteins of synaptic vesicles involved in exocytosis and membrane recycling. Neuron. 1991 May;6(5):665–677. doi: 10.1016/0896-6273(91)90165-v. [DOI] [PubMed] [Google Scholar]
  32. Varoqui H., Diebler M. F., Meunier F. M., Rand J. B., Usdin T. B., Bonner T. I., Eiden L. E., Erickson J. D. Cloning and expression of the vesamicol binding protein from the marine ray Torpedo. Homology with the putative vesicular acetylcholine transporter UNC-17 from Caenorhabditis elegans. FEBS Lett. 1994 Mar 28;342(1):97–102. doi: 10.1016/0014-5793(94)80592-x. [DOI] [PubMed] [Google Scholar]
  33. Viegas-Péquignot E., Berrard S., Brice A., Apiou F., Mallet J. Localization of a 900-bp-long fragment of the human choline acetyltransferase gene to 10q11.2 by nonradioactive in situ hybridization. Genomics. 1991 Jan;9(1):210–212. doi: 10.1016/0888-7543(91)90242-7. [DOI] [PubMed] [Google Scholar]
  34. Voytko M. L., Olton D. S., Richardson R. T., Gorman L. K., Tobin J. R., Price D. L. Basal forebrain lesions in monkeys disrupt attention but not learning and memory. J Neurosci. 1994 Jan;14(1):167–186. doi: 10.1523/JNEUROSCI.14-01-00167.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES