Abstract
Sulfation of proteoglycans, secretory and membrane proteins, and glycolipids occurs in the lumen of the Golgi apparatus. Adenosine 3'-phosphate 5'-phosphosulfate (PAPS), the sulfate donor in these reactions, must be transported from the cytosol, its site of synthesis, into the lumen of the Golgi apparatus. We have identified and purified to apparent homogeneity the rat liver Golgi membrane PAPS transporter by a combination of conventional and affinity chromatography as well as photoaffinity radiolabeling with adenosine 3',5'-bisphosphate, a competitive inhibitor of PAPS transport. The transporter, a 75-kDa protein, was purified 70,000-fold over homogenate (6% yield) and transported PAPS into phosphatidylcholine liposomes selectively and in a saturable manner (apparent Km of 1.7 microM). Radiation target-inactivation analyses of the transport activity in rat liver Golgi vesicles, together with the above described biochemical approaches, demonstrate that the PAPS transporter within the Golgi membrane is a homodimer.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abeijon C., Capasso J. M., Tal D., Vann W. F., Hirschberg C. B. 3'-O-(4-benzoyl)benzoylcytidine 5'-triphosphate. A substrate and photoaffinity label for CMP-N-acetylneuraminic acid synthetase. J Biol Chem. 1986 Aug 25;261(24):11374–11377. [PubMed] [Google Scholar]
- Abeijon C., Yanagisawa K., Mandon E. C., Häusler A., Moremen K., Hirschberg C. B., Robbins P. W. Guanosine diphosphatase is required for protein and sphingolipid glycosylation in the Golgi lumen of Saccharomyces cerevisiae. J Cell Biol. 1993 Jul;122(2):307–323. doi: 10.1083/jcb.122.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berninsone P., Miret J. J., Hirschberg C. B. The Golgi guanosine diphosphatase is required for transport of GDP-mannose into the lumen of Saccharomyces cerevisiae Golgi vesicles. J Biol Chem. 1994 Jan 7;269(1):207–211. [PubMed] [Google Scholar]
- Brandan E., Hirschberg C. B. Purification of rat liver N-heparan-sulfate sulfotransferase. J Biol Chem. 1988 Feb 15;263(5):2417–2422. [PubMed] [Google Scholar]
- Capasso J. M., Hirschberg C. B. Effect of atractylosides, palmitoyl coenzyme A, and anion transport inhibitors on translocation of nucleotide sugars and nucleotide sulfate into Golgi vesicles. J Biol Chem. 1984 Apr 10;259(7):4263–4266. [PubMed] [Google Scholar]
- Capasso J. M., Hirschberg C. B. Mechanisms of glycosylation and sulfation in the Golgi apparatus: evidence for nucleotide sugar/nucleoside monophosphate and nucleotide sulfate/nucleoside monophosphate antiports in the Golgi apparatus membrane. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7051–7055. doi: 10.1073/pnas.81.22.7051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carey D. J., Hirschberg C. B. Topography of sialoglycoproteins and sialyltransferases in mouse and rat liver Golgi. J Biol Chem. 1981 Jan 25;256(2):989–993. [PubMed] [Google Scholar]
- Fleischer B., McIntyre J. O., Kempner E. S. Target sizes of galactosyltransferase, sialyltransferase, and uridine diphosphatase in Golgi apparatus of rat liver. Biochemistry. 1993 Mar 2;32(8):2076–2081. doi: 10.1021/bi00059a027. [DOI] [PubMed] [Google Scholar]
- Huttner W. B. Tyrosine sulfation and the secretory pathway. Annu Rev Physiol. 1988;50:363–376. doi: 10.1146/annurev.ph.50.030188.002051. [DOI] [PubMed] [Google Scholar]
- Jeckel D., Karrenbauer A., Burger K. N., van Meer G., Wieland F. Glucosylceramide is synthesized at the cytosolic surface of various Golgi subfractions. J Cell Biol. 1992 Apr;117(2):259–267. doi: 10.1083/jcb.117.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kempner E. S. Molecular size determination of enzymes by radiation inactivation. Adv Enzymol Relat Areas Mol Biol. 1988;61:107–147. doi: 10.1002/9780470123072.ch3. [DOI] [PubMed] [Google Scholar]
- Kempner E. S. Novel predictions from radiation target analysis. Trends Biochem Sci. 1993 Jul;18(7):236–239. doi: 10.1016/0968-0004(93)90169-n. [DOI] [PubMed] [Google Scholar]
- Koepsell H. Methodological aspects of purification and reconstitution of transport proteins from mammalian plasma membranes. Rev Physiol Biochem Pharmacol. 1986;104:65–137. doi: 10.1007/BFb0031013. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Leitinger B., Brown J. L., Spiess M. Tagging secretory and membrane proteins with a tyrosine sulfation site. Tyrosine sulfation precedes galactosylation and sialylation in COS-7 cells. J Biol Chem. 1994 Mar 18;269(11):8115–8121. [PubMed] [Google Scholar]
- Mandon E., Kempner E. S., Ishihara M., Hirschberg C. B. A monomeric protein in the Golgi membrane catalyzes both N-deacetylation and N-sulfation of heparan sulfate. J Biol Chem. 1994 Apr 22;269(16):11729–11733. [PubMed] [Google Scholar]
- Mayinger P., Meyer D. I. An ATP transporter is required for protein translocation into the yeast endoplasmic reticulum. EMBO J. 1993 Feb;12(2):659–666. doi: 10.1002/j.1460-2075.1993.tb05699.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milla M. E., Hirschberg C. B. Reconstitution of Golgi vesicle CMP-sialic acid and adenosine 3'-phosphate 5'-phosphosulfate transport into proteoliposomes. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1786–1790. doi: 10.1073/pnas.86.6.1786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niehrs C., Huttner W. B. Purification and characterization of tyrosylprotein sulfotransferase. EMBO J. 1990 Jan;9(1):35–42. doi: 10.1002/j.1460-2075.1990.tb08077.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perez M., Hirschberg C. B. Transport of sugar nucleotides into the lumen of vesicles derived from rat liver rough endoplasmic reticulum and Golgi apparatus. Methods Enzymol. 1987;138:709–715. doi: 10.1016/0076-6879(87)38061-9. [DOI] [PubMed] [Google Scholar]
- ROBBINS P. W., LIPMANN F. Enzymatic synthesis of adenosine-5'-phosphosulfate. J Biol Chem. 1958 Sep;233(3):686–690. [PubMed] [Google Scholar]
- ROBBINS P. W., LIPMANN F. Isolation and identification of active sulfate. J Biol Chem. 1957 Dec;229(2):837–851. [PubMed] [Google Scholar]
- ROBBINS P. W., LIPMANN F. Separation of the two enzymatic phases in active sulfate synthesis. J Biol Chem. 1958 Sep;233(3):681–685. [PubMed] [Google Scholar]
- Schwarz J. K., Capasso J. M., Hirschberg C. B. Translocation of adenosine 3'-phosphate 5'-phosphosulfate into rat liver Golgi vesicles. J Biol Chem. 1984 Mar 25;259(6):3554–3559. [PubMed] [Google Scholar]
- Sommers L. W., Hirschberg C. B. Transport of sugar nucleotides into rat liver Golgi. A new Golgi marker activity. J Biol Chem. 1982 Sep 25;257(18):10811–10817. [PubMed] [Google Scholar]
- Waldman B. C., Rudnick G. UDP-GlcNAc transport across the Golgi membrane: electroneutral exchange for dianionic UMP. Biochemistry. 1990 Jan 9;29(1):44–52. doi: 10.1021/bi00453a006. [DOI] [PubMed] [Google Scholar]
- Weinstein J., de Souza-e-Silva U., Paulson J. C. Purification of a Gal beta 1 to 4GlcNAc alpha 2 to 6 sialyltransferase and a Gal beta 1 to 3(4)GlcNAc alpha 2 to 3 sialyltransferase to homogeneity from rat liver. J Biol Chem. 1982 Nov 25;257(22):13835–13844. [PubMed] [Google Scholar]
- Yanagisawa K., Resnick D., Abeijon C., Robbins P. W., Hirschberg C. B. A guanosine diphosphatase enriched in Golgi vesicles of Saccharomyces cerevisiae. Purification and characterization. J Biol Chem. 1990 Nov 5;265(31):19351–19355. [PubMed] [Google Scholar]