Abstract
The use of conformity indices to optimize Gamma Knife planning is common, but does not address important tradeoffs between dose to tumor and normal tissue. Pareto analysis has been used for this purpose in other applications, but not for Gamma Knife (GK) planning. The goal of this work is to use computer models to show that Pareto analysis may be feasible for GK planning to identify dosimetric tradeoffs. We define a GK plan A to be Pareto dominant to B if the prescription isodose volume of A covers more tumor but not more normal tissue than B, or if A covers less normal tissue but not less tumor than B. A plan is Pareto optimal if it is not dominated by any other plan. Two different Pareto optimal plans represent different tradeoffs between dose to tumor and normal tissue, because neither plan dominates the other. ‘GK simulator’ software calculated dose distributions for GK plans, and was called repetitively by a genetic algorithm to calculate Pareto dominant plans. Three irregular tumor shapes were tested in 17 trials using various combinations of shots. The mean number of Pareto dominant plans/trial was 59 ± 17 (sd). Different planning strategies were identified by large differences in shot positions, and 70 of the 153 coordinate plots (46%) showed differences of 5mm or more. The Pareto dominant plans dominated other nearby plans. Pareto dominant plans represent different dosimetric tradeoffs and can be systematically calculated using genetic algorithms. Automatic identification of non-intuitive planning strategies may be feasible with these methods.
Keywords: Gamma Knife, Radiosurgery, Pareto, Genetic algorithm.
References
- 1.Giller C. A., Fiedler J. A., Gagnon G. J., Paddick I. Radiosurgical Planning: Gamma Tricks and Cyber Picks. Wiley-Blackwell, Hoboken, New Jersey: (2009). [Google Scholar]
- 2.Lindquist C., Paddick I. The Leksell Gamma Knife Perfexion and comparisons with its predecessors. Neurosurgery 62 (Suppl. 2), 721–732 (2008). [DOI] [PubMed] [Google Scholar]
- 3.Paddick I. A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical Note. J Neurosurg 93 (Suppl. 3), 219–222 (2000). [DOI] [PubMed] [Google Scholar]
- 4.Feuvret L., Noel G., Mazeron J.-J., Bey P. Conformity index: A review. Int J Radiation Oncology Biol Phys 64, 333–342 (2006). [DOI] [PubMed] [Google Scholar]
- 5.Deb K. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley and Sons, Chichester: (2001). [Google Scholar]
- 6.Van Veldhuizen D. A., Lamont G. B. Multiobjective evolutionary algorithms: Analyzing the state-of-the-art. Evol Comput 8, 125–147 (2000). [DOI] [PubMed] [Google Scholar]
- 7.Haupt R. L., Haupt S. E. Practical Genetic Algorithms. John Wiley and Sons, Hoboken: (2004). [Google Scholar]
- 8.Tseng Y. J., Chang H. H., Shiau C. Y., Chung W. Y., Pan D. H., Chu W. C. PC-based gamma knife radiosurgery dose calculation. IEEE Eng Med Biol Mag 22, 92–107 (2003). [DOI] [PubMed] [Google Scholar]
- 9.Craft D., Halabi T., Shih H. A., Bortfeld T. An approach for practical multiobjective IMRT treatment planning. Int J Radiation Oncology Biol Phys 69, 1600–1607 (2007). [DOI] [PubMed] [Google Scholar]
- 10.Craft D., Monz M. Simultaneous navigation of multiple Pareto surfaces, with an application to multicriteria IMRT planning with multiple beam angle configurations. Med Phys 37, 736–741 (2010). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Hong T. S., Craft D. L., Carlsson F., Bortfeld T. Multicriteria optimization in intensity- modulated radiation therapy treatment planning for locally advanced cancer of the pancreatic head. Int J Radiation Oncology Biol Phys 72, 1208–1214 (2008). [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Lahanas M., Baltas D., Zamboglou N. A hybrid evolutionary algorithm for multi- objective anatomy-based optimization in high-dose-rate brachytherapy. Phys Med Biol 48, 399–415 (2003). [DOI] [PubMed] [Google Scholar]
- 13.Ottosson R. O., Engstrom P. E., Sjostrom D., Behrens C. F., Karlsson A., Knoos T., Ceberg C. The feasibility of using Pareto fronts for comparison of treatment planning systems and delivery techniques. Acta Oncologica 38, 233–237 (2009). [DOI] [PubMed] [Google Scholar]
- 14.Thieke C., Kufer K.-H., Monz M., Scherrer A., Alonso F., Oelfke U., Huber P. E., Debus J., Bortfeld T. A new concept for interactive radiotherapy planning with multicriteria optimization: First clinical evaluation. Radiotherapy and Oncology 85, 292–298 (2007). [DOI] [PubMed] [Google Scholar]
- 15.Yu Y., Zhang J. B., Cheng G., Schell M. C., Okunieff P. Multiobjective optimization in radiotherapy: Applications to stereotactic radiosurgery and prostate brachytherapy. Artificial Intelligence in Medicine 19, 39–51 (2000). [DOI] [PubMed] [Google Scholar]
- 16.Dean D., Zhang P., Metzger A. K., Sibata C., Maciunas R. J. Medial axis seeding of a guided evolutionary simulated annealing (GESA) algorithm for automated Gamma Knife radiosurgery treatment planning. In Niessen W. J., Viergever M. A. (eds.), Medical Image Computing and Computer-Assisted Intervention MICCAI 2011, Springer-Verlag, Berlin, 2001, 441–448. [Google Scholar]
- 17.Schlaefer A., Schweikard A. Stepwise multi-criteria optimization for robotic radiosurgery. Med Phys 35, 2094–2013 (2008). [DOI] [PubMed] [Google Scholar]
- 18.Ove R., Popple R. Sequential annealing-gradient Gamma-Knife radiosurgery optimization. Phys Med Biol 48, 2071–2080 (2003). [DOI] [PubMed] [Google Scholar]
- 19.Luo L., Shu H., Yu W., Yan Y., Bao X., Fu Y. Optimizing computerized treatment planning for the gamma knife by source culling. Int J Radiation Oncology Biol Phys 45, 1339–1346 (1999). [DOI] [PubMed] [Google Scholar]
- 20.Luan S., Swanson N., Chen Z., Ma L. Dynamic gamma knife radiosurgery. Physics in Medicine and Biology 54, 1579–1591 (2009). [DOI] [PubMed] [Google Scholar]
- 21.Hu X., Maciunas R. J., Dean D. A new Gamma Knife radiosurgery paradigm: Tomosurgery. Medical Physics 34, 1743–1758 (2007). [DOI] [PubMed] [Google Scholar]
- 22.Wu Q. J., Bourland J. D. Morphology-guided radiosurgery treatment planning and optimization for multiple isocenters. Med Phys 26, 2151–2160 (1999). [DOI] [PubMed] [Google Scholar]
- 23.Lee K. J., Barber D. C., Walton L. Automated gamma knife radiosurgery treatment planning with image registration, data-mining and Nelder-Mead simplex optimization. Medical Physics 33, 2532–2540 (2006). [DOI] [PubMed] [Google Scholar]
- 24.Shepard D. M., Chin L. S., DiBiase S. J., Naqvi S. A., Lim J., Ferris M. C. Clinical implementation of an automated planning system for gamma knife radiosurgery. Int J Radiation Oncology Biol Phys 56, 1488–1494 (2003). [DOI] [PubMed] [Google Scholar]
- 25.Schlesinger D. J., Sayer F. T., Yen C. P., Sheehan J. P. Leksell GammaPlan version 10.0 preview: Performance of the new inverse treatment planning algorithm applied to Gamma Knife surgery for pituitary adenoma. J Neurosurg 113 (Suppl), 144–148 (2010). [DOI] [PubMed] [Google Scholar]
- 26.MIRA. www.project-mira.net. Accessed June 9, 2010.
- 27.Giller C. A., Fiedler J. A. Virtual framing: The feasibility of frameless radiosurgical planning for the Gamma Knife. J Neurosurg 109 (Suppl), 25–33 (2008). [DOI] [PubMed] [Google Scholar]
