Skip to main content
Sage Choice logoLink to Sage Choice
. 2011 Dec;10(6):575–583. doi: 10.1177/153303461101000607

Improved Normal Tissue Sparing in Head and Neck Radiotherapy Using Biological Cost Function Based-IMRT

N Anderson 1,*, C Lawford 1, V Khoo 1,2,3, M Rolfo 1, D Lim Joon 1, M Wada 1
PMCID: PMC4509883  PMID: 22066597

Abstract

Intensity-modulated radiotherapy (IMRT) has reduced the impact of acute and late toxicities associated with head and neck radiotherapy. Treatment planning system (TPS) advances in biological cost function based optimization (BBO) and improved segmentation techniques have increased organ at risk (OAR) sparing compared to conventional dose-based optimization (DBO). A planning study was undertaken to compare OAR avoidance in DBO and BBO treatment planning. Simultaneous integrated boost treatment plans were produced for 10 head and neck patients using both planning systems. Plans were compared for tar get coverage and OAR avoidance. Comparisons were made using the BBO TPS Monte Carlo dose engine to eliminate differences due to inherent algorithms. Target coverage (V95%) was maintained for both solutions. BBO produced lower OAR doses, with statistically significant improvement to left (12.3%, p = 0.005) and right parotid mean dose (16.9%, p = 0.004), larynx V50 Gy (71.0%, p = 0.005), spinal cord (21.9%, p < 0.001) and brain stem dose maximums (31.5%, p = 0.002). This study observed improved OAR avoidance with BBO planning. Further investigations will be undertaken to review any clinical benefit of this improved planned dosimetry.

Keywords: Biological cost functions, Dose avoidance, Head and neck cancer, Intensity-modulated radiotherapy (IMRT), Monte Carlo algorithms.

Abbreviations:

TPS:

Treatment Planning System

IMRT:

Intensity Modulated Radiation Therapy

OAR:

Organ at Risk

EUD:

Equivalent Uniform Dose

SIB:

Simultaneous Integrated Boost

GTV:

Gross Tumor Volume

CTV:

Clinical Target Volume

PTV:

Planning Target Volume

References

  • 1.Daly M. E., Le Q. T., Maxim P. G., Loo B. W., Jr., Kaplan M. J., Fischbein N. J., Pinto H., Chang D. T. Intensity-modulated radiotherapy in the treatment of oropharyngeal cancer: Clinical outcomes and patterns of failure. Int J Radiat Oncol Biol Phys 76, 1339–1346 (2010). [DOI] [PubMed] [Google Scholar]
  • 2.Rusthoven K. E., Raben D., Chen C. Improved Survival in Patients With Stage III-IV Head and Neck Cancer Treated With Radiotherapy as Primary Local Treatment Modality. International Journal of Radiation Oncology Biology*Physics 72, 343–350 (2008). [DOI] [PubMed] [Google Scholar]
  • 3.Klem M. L., Mechalakos J. G., Wolden S. L., Zelefsky M. J., Singh B., Kraus D., Shaha A., Shah J., Pfister D. G., Lee N. Y. Intensity-Modulated Radiotherapy for Head and Neck Cancer of Unknown Primary: Toxicity and Preliminary Efficacy. International Journal of Radiation Oncology*Biology*Physics 70, 1100–1107 (2008). [DOI] [PubMed] [Google Scholar]
  • 4.Claus F., Duthoy W., Boterberg T., De Gersem W., Huys J., Vermeersch H., De Neve W. Intensity modulated radiation therapy for oropharyngeal and oral cavity tumors: Clinical use and experience. Oral Oncology 38, 597–604 (2002). [DOI] [PubMed] [Google Scholar]
  • 5.Wu Q., Manning M., Schmidt-Ullrich R., Mohan R. The potential for sparing of parotids and escalation of biologically effective dose with intensity-modulated radiation treatments of head and neck cancers: A treatment design study. International Journal of Radiation Oncology*Biology*Physics 46, 195–205 (2000). [DOI] [PubMed] [Google Scholar]
  • 6.Dogan N., King S., Emami B., Mohideen N., Mirkovic N., Leybovich L. B., Sethi A. Assessment of different IMRT boost delivery methods on target coverage and normal-tissue sparing. International Journal of Radiation Oncology*Biology*Physics 57, 1480–1491 (2003). [DOI] [PubMed] [Google Scholar]
  • 7.Feng F. Y., Kim H. M., Lyden T. H., Haxer M. J., Feng M., Worden F. P., Chepeha D. B., Eisbruch A. Intensity-Modulated Radiotherapy of Head and Neck Cancer Aiming to Reduce Dysphagia: Early Dose-Effect Relationships for the Swallowing Structures. International Journal of Radiation Oncology*Biology*Physics 68, 1289–1298 (2007). [DOI] [PubMed] [Google Scholar]
  • 8.Eisbruch A., Schwartz M., Rasch C., Vineberg K., Damen E., Van As C. J., Marsh R., Pameijer F. A., Balm A. J. M. Dysphagia and aspiration after chemoradiotherapy for head-and-neck cancer: Which anatomic structures are affected and can they be spared by IMRT? International Journal of Radiation Oncology*Biology*Physics 60, 1425–1439 (2004). [DOI] [PubMed] [Google Scholar]
  • 9.Lin A., Kim H. M., Terrell J. E., Dawson L. A., Ship J. A., Eisbruch A. Quality of life after parotid-sparing IMRT for head-and-neck cancer: A prospective longitudinal study. International Journal of Radiation Oncology*Biology*Physics 57, 61–70 (2003). [DOI] [PubMed] [Google Scholar]
  • 10.Feng M., Jabbari S., Lin A., Bradford C. R., Chepeha D. B., Teknos T. N., Worden F. P., Tsien C., Schipper M. J., Wolf G. T., Dawson L. A., Eisbruch A. Predictive factors of local-regional recurrences following parotid sparing intensity modulated or 3D conformal radiotherapy for head and neck cancer. Radiotherapy and Oncology 77, 32–38 (2005). [DOI] [PubMed] [Google Scholar]
  • 11.Caglar H. B., Tishler R. B., Othus M., Burke E., Li Y., Goguen L., Wirth L. J., Haddad R. I., Norris C. M., Court L. E., Aninno D. J., Posner M. R., Allen A. M. Dose to Larynx Predicts for Swallowing Complications After Intensity-Modulated Radiotherapy. International Journal of Radiation Oncology*Biology*Physics 72, 1110–1118 (2008). [DOI] [PubMed] [Google Scholar]
  • 12.Fippel M., Haryanto F., Dohm O., Nusslin F., Kriesen S. A virtual photon energy fluence model for Monte Carlo dose calculation. Med Phys 30, 301–311 (2003). [DOI] [PubMed] [Google Scholar]
  • 13.Ortholan C., Chamorey E., Benezery K., Thariat J., Dassonville O., Poissonnet G., Bozec A., Follana P., Peyrade F., Sudaka A., Gerard J. P., Bensadoun R. J. Modeling of Salivary Production Recovery After Radiotherapy Using Mixed Models: Determination of Optimal Dose Constraint for IMRT Planning and Construction of Convenient Tools to Predict Salivary Function. International Journal of Radiation Oncology*Biology*Physics 73, 178–186 (2009). [DOI] [PubMed] [Google Scholar]
  • 14.Amosson C. M., Teh B. S., Van T. J., Uy N., Huang E., Mai W.-Y., Frolov A., Woo S. Y., Chiu J. K., Carpenter L. S., Lu H. H., Grant W. H., Butler E. B. Dosimetric predictors of xerostomia for head-and-neck cancer patients treated with the smart (simultaneous modulated accelerated radiation therapy) boost technique. International Journal of Radiation Oncology*Biology*Physics 56, 136–144 (2003). [DOI] [PubMed] [Google Scholar]
  • 15.Semenenko V. A., Reitz B., Day E., Qi X. S., Miften M., Li X. A. Evaluation of a commercial biologically based IMRT treatment planning system. Med Phys 35, 5851–5860 (2008). [DOI] [PubMed] [Google Scholar]
  • 16.Mavroidis P., Ferreira B. C., Shi C., Lind B. K., Papanikolaou N. Treatment plan comparison between helical tomotherapy and MLC-based IMRT using radiobiological measures. Phys Med Biol 52, 3817–3836 (2007). [DOI] [PubMed] [Google Scholar]
  • 17.Miften M., Wiesmeyer M., Monthofer S., Krippner K. Implementation of FFT convolution and multigrid superposition models in the FOCUS RTP system. Phys Med Biol 45, 817–833 (2000). [DOI] [PubMed] [Google Scholar]
  • 18.Mackie T. R., Bielajew A. F., Rogers D. W., Battista J. J. Generation of photon energy deposition kernels using the EGS Monte Carlo code. Phys Med Biol 33, 1–20 (1988). [DOI] [PubMed] [Google Scholar]
  • 19.Fippel M., Laub W., Huber B., Nusslin F. Experimental investigation of a fast Monte Carlo photon beam dose calculation algorithm. Phys Med Biol 44, 3039–3054 (1999). [DOI] [PubMed] [Google Scholar]
  • 20.Fippel M. Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm. Med Phys 26, 1466–1475 (1999). [DOI] [PubMed] [Google Scholar]
  • 21.Rogers D. W., Faddegon B. A., Ding G. X., Ma C. M., We J., Mackie T. R. BEAM: A Monte Carlo code to simulate radiotherapy treatment units. Med Phys 22, 503–524 (1995). [DOI] [PubMed] [Google Scholar]
  • 22.Feuvret L., Noël G., Mazeron J.-J., Bey P. Conformity index: A review. International Journal of Radiation Oncology*Biology*Physics 64, 333–342 (2006). [DOI] [PubMed] [Google Scholar]
  • 23.Nutting C., A'Hern R., Rogers M. S., et al. First results of a phase III multicenter randomized controlled trial of intensity modulated (IMRT) versus conventional radiotherapy (RT) in head and neck cancer (PARSPORT: ISRCTN48243537; CRUK/03/005). Journal of Clinical Oncology 27, Supplement (2009). [Google Scholar]
  • 24.Niemierko A. Reporting and analyzing dose distributions: A concept of equivalent uniform dose. Med Phys 24, 103–110 (1997). [DOI] [PubMed] [Google Scholar]
  • 25.Wu Q., Mohan R., Niemierko A., Schmidt-Ullrich R. Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose. Int J Radiat Oncol Biol Phys 52, 224–235 (2002). [DOI] [PubMed] [Google Scholar]
  • 26.Li Y., Taylor J. M. G., Ten Haken R. K., Eisbruch A. The impact of dose on parotid salivary recovery in head and neck cancer patients treated with radiation therapy. International Journal of Radiation Oncology*Biology*Physics 67, 660–669 (2007). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Münter M. W., Hoffner S., Hof H., Herfarth K. K., Haberkorn U., Rudat V., Huber P., Debus J., Karger C. P. Changes in salivary gland function after radiotherapy of head and neck tumors measured by quantitative pertechnetate scintigraphy: Comparison of intensity-modulated radiotherapy and conventional radiation therapy with and without Amifostine. International Journal of Radiation Oncology*Biology*Physics 67, 651–659 (2007). [DOI] [PubMed] [Google Scholar]
  • 28.Blanco A. I., Chao K. S. C., El Naqa I., Franklin G. E., Zakarian K., Vicic M., Deasy J. O. Dose-volume modeling of salivary function in patients with head-and-neck cancer receiving radiotherapy. International Journal of Radiation Oncology*Biology*Physics 62, 1055–1069 (2005). [DOI] [PubMed] [Google Scholar]
  • 29.Lee C., Langen K. M., Lu W., Haimerl J., Schnarr E., Ruchala K. J., Olivera G. H., Meeks S. L., Kupelian P. A., Shellenberger T. D., Mañon R. R. Assessment of Parotid Gland Dose Changes During Head and Neck Cancer Radiotherapy Using Daily Megavoltage Computed Tomography and Deformable Image Registration. International Journal of Radiation Oncology*Biology*Physics 71, 1563–1571 (2008). [DOI] [PubMed] [Google Scholar]
  • 30.O'Daniel J. C., Garden A. S., Schwartz D. L., Wang H., Ang K. K., Ahamad A., Rosenthal D. I., Morrison W. H., Asper J. A., Zhang L., Tung S.-M., Mohan R., Dong L. Parotid Gland Dose in Intensity-Modulated Radiotherapy for Head and Neck Cancer: Is What You Plan What You Get? International Journal of Radiation Oncology*Biology*Physics 69, 1290–1296 (2007). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Wu Q., Chi Y., Chen P. Y., Krauss D. J., Yan D., Martinez A. Adaptive replanning strategies accounting for shrinkage in head and neck IMRT. Int J Radiat Oncol Biol Phys 75, 924–932 (2009). [DOI] [PubMed] [Google Scholar]
  • 32.Jensen A. D., Nill S., Huber P. E., Bendl R., Debus J., Munter M. W. A Clinical Concept for Interfractional Adaptive Radiation Therapy in the Treatment of Head and Neck Cancer. Int J Radiat Oncol Biol Phys (In Press). [DOI] [PubMed]
  • 33.Teguh D. N., Levendag P. C., Noever I., van Rooij P., Voet P., van der Est H., Sipkema D., Sewnaik A., de Jong R. J. Baatenburg, de la Bije D., Schmitz P. I. M. Treatment Techniques and Site Considerations Regarding Dysphagia-Related Quality of Life in Cancer of the Oropharynx and Nasopharynx. International Journal of Radiation Oncology*Biology*Physics 72, 1119–1127 (2008). [DOI] [PubMed] [Google Scholar]
  • 34.Jensen K., Lambertsen K., Grau C. Late swallowing dysfunction and dysphagia after radiotherapy for pharynx cancer: Frequency, intensity and correlation with dose and volume parameters. Radiotherapy and Oncology 85, 74–82 (2007). [DOI] [PubMed] [Google Scholar]
  • 35.Dirix P., Abbeel S., Vanstraelen B., Hermans R., Nuyts S. Dysphagia After Chemoradiotherapy for Head-and-Neck Squamous Cell Carcinoma: Dose-Effect Relationships for the Swallowing Structures. International Journal of Radiation Oncology*Biology*Physics 75, 385–392 (2009). [DOI] [PubMed] [Google Scholar]
  • 36.Sakthi N., Keall P., Mihaylov I., Wu Q., Wu Y., Williamson J. F., Schmidt-Ullrich R., Siebers J. V. Monte Carlo-based dosimetry of head-and-neck patients treated with SIB-IMRT. International Journal of Radiation Oncology*Biology*Physics 64, 968–977 (2006). [DOI] [PubMed] [Google Scholar]
  • 37.Paelinck L., Smedt B. D., Reynaert N., Coghe M., Gersem W. D., Wagter C. D., Vanderstraeten B., Thierens H., Neve W. D. Comparison of dose-volume histograms of IMRT treatment plans for ethmoid sinus cancer computed by advanced treatment planning systems including Monte Carlo. Radiother Oncol 81, 250–256 (2006). [DOI] [PubMed] [Google Scholar]
  • 38.De Smedt B., Vanderstraeten B., Reynaert N., De Neve W., Thierens H. Investigation of geometrical and scoring grid resolution for Monte Carlo dose calculations for IMRT. Phys Med Biol 50, 4005–4019 (2005). [DOI] [PubMed] [Google Scholar]
  • 39.Purdy J. A. Dose to normal tissues outside the radiation therapy patient's treated volume: A review of different radiation therapy techniques. Health Physics 95, 666–676 (2008). [DOI] [PubMed] [Google Scholar]
  • 40.Reddy N. M. S., Mazur A. K., Sampath S., Osian A., Sood B. M., Ravi A., Nori D. The Potential for Dose Dumping in Normal Tissues with IMRT for Pelvic and H&N Cancers. Medical Dosimetry 33, 55–61 (2008). [DOI] [PubMed] [Google Scholar]
  • 41.Anonymous. Prescribing, recording and reporting photon beam therapy (supplement to ICRU Report 50) (International Commission on Radiation Units and Measurements, Washington, DC, 1999). [Google Scholar]

Articles from Technology in Cancer Research & Treatment are provided here courtesy of SAGE Publications

RESOURCES