Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Nov 8;91(23):10943–10946. doi: 10.1073/pnas.91.23.10943

The structure of the transition state for the association of two fragments of the barley chymotrypsin inhibitor 2 to generate native-like protein: implications for mechanisms of protein folding.

G de Prat Gay 1, J Ruiz-Sanz 1, B Davis 1, A R Fersht 1
PMCID: PMC45142  PMID: 7971988

Abstract

Possible early events in protein folding may be studied by dissecting proteins into complementary fragments. Two fragments of chymotrypsin inhibitor 2 [CI2-(20-59) and CI2-(60-83)] associate to form a native-like structure in a second-order reaction that combines collision and rearrangement. The transition state of the reaction, analyzed by the protein engineering method on 17 mutants, is remarkably similar to that for the folding of the intact protein--a structure that resembles an expanded version of the folded structure with most interactions significantly weakened. The exception is that the N-terminal region of the single alpha-helix (the N-capping box) is completely formed in the transition state for association of the fragments, whereas it is reasonably well formed for the intact protein. Preliminary evidence on the structures of the individual fragments indicates that both are mainly nonnative, lacking native secondary structure and having regions of nonnative buried hydrophobic clusters. The association reaction does not result from the collision of a subpopulation of two fully native-like fragments but involves a considerable rearrangement of structure.

Full text

PDF
10943

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arcus V. L., Vuilleumier S., Freund S. M., Bycroft M., Fersht A. R. Toward solving the folding pathway of barnase: the complete backbone 13C, 15N, and 1H NMR assignments of its pH-denatured state. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9412–9416. doi: 10.1073/pnas.91.20.9412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dyson H. J., Rance M., Houghten R. A., Wright P. E., Lerner R. A. Folding of immunogenic peptide fragments of proteins in water solution. II. The nascent helix. J Mol Biol. 1988 May 5;201(1):201–217. doi: 10.1016/0022-2836(88)90447-0. [DOI] [PubMed] [Google Scholar]
  3. Fersht A. R., Matouschek A., Serrano L. The folding of an enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding. J Mol Biol. 1992 Apr 5;224(3):771–782. doi: 10.1016/0022-2836(92)90561-w. [DOI] [PubMed] [Google Scholar]
  4. Fersht A. R. The sixth Datta Lecture. Protein folding and stability: the pathway of folding of barnase. FEBS Lett. 1993 Jun 28;325(1-2):5–16. doi: 10.1016/0014-5793(93)81405-o. [DOI] [PubMed] [Google Scholar]
  5. Harper E. T., Rose G. D. Helix stop signals in proteins and peptides: the capping box. Biochemistry. 1993 Aug 3;32(30):7605–7609. doi: 10.1021/bi00081a001. [DOI] [PubMed] [Google Scholar]
  6. Jackson S. E., Fersht A. R. Folding of chymotrypsin inhibitor 2. 1. Evidence for a two-state transition. Biochemistry. 1991 Oct 29;30(43):10428–10435. doi: 10.1021/bi00107a010. [DOI] [PubMed] [Google Scholar]
  7. Jackson S. E., Fersht A. R. Folding of chymotrypsin inhibitor 2. 2. Influence of proline isomerization on the folding kinetics and thermodynamic characterization of the transition state of folding. Biochemistry. 1991 Oct 29;30(43):10436–10443. doi: 10.1021/bi00107a011. [DOI] [PubMed] [Google Scholar]
  8. Jackson S. E., Moracci M., elMasry N., Johnson C. M., Fersht A. R. Effect of cavity-creating mutations in the hydrophobic core of chymotrypsin inhibitor 2. Biochemistry. 1993 Oct 26;32(42):11259–11269. doi: 10.1021/bi00093a001. [DOI] [PubMed] [Google Scholar]
  9. Jackson S. E., elMasry N., Fersht A. R. Structure of the hydrophobic core in the transition state for folding of chymotrypsin inhibitor 2: a critical test of the protein engineering method of analysis. Biochemistry. 1993 Oct 26;32(42):11270–11278. doi: 10.1021/bi00093a002. [DOI] [PubMed] [Google Scholar]
  10. Jasanoff A., Fersht A. R. Quantitative determination of helical propensities from trifluoroethanol titration curves. Biochemistry. 1994 Mar 1;33(8):2129–2135. doi: 10.1021/bi00174a020. [DOI] [PubMed] [Google Scholar]
  11. Kippen A. D., Sancho J., Fersht A. R. Folding of barnase in parts. Biochemistry. 1994 Mar 29;33(12):3778–3786. doi: 10.1021/bi00178a039. [DOI] [PubMed] [Google Scholar]
  12. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  13. Logan T. M., Thériault Y., Fesik S. W. Structural characterization of the FK506 binding protein unfolded in urea and guanidine hydrochloride. J Mol Biol. 1994 Feb 18;236(2):637–648. doi: 10.1006/jmbi.1994.1173. [DOI] [PubMed] [Google Scholar]
  14. Marion D., Driscoll P. C., Kay L. E., Wingfield P. T., Bax A., Gronenborn A. M., Clore G. M. Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta. Biochemistry. 1989 Jul 25;28(15):6150–6156. doi: 10.1021/bi00441a004. [DOI] [PubMed] [Google Scholar]
  15. Matouschek A., Fersht A. R. Application of physical organic chemistry to engineered mutants of proteins: Hammond postulate behavior in the transition state of protein folding. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7814–7818. doi: 10.1073/pnas.90.16.7814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Matouschek A., Kellis J. T., Jr, Serrano L., Fersht A. R. Mapping the transition state and pathway of protein folding by protein engineering. Nature. 1989 Jul 13;340(6229):122–126. doi: 10.1038/340122a0. [DOI] [PubMed] [Google Scholar]
  17. Neri D., Billeter M., Wider G., Wüthrich K. NMR determination of residual structure in a urea-denatured protein, the 434-repressor. Science. 1992 Sep 11;257(5076):1559–1563. doi: 10.1126/science.1523410. [DOI] [PubMed] [Google Scholar]
  18. Sancho J., Fersht A. R. Dissection of an enzyme by protein engineering. The N and C-terminal fragments of barnase form a native-like complex with restored enzymic activity. J Mol Biol. 1992 Apr 5;224(3):741–747. doi: 10.1016/0022-2836(92)90558-2. [DOI] [PubMed] [Google Scholar]
  19. Shin H. C., Merutka G., Waltho J. P., Tennant L. L., Dyson H. J., Wright P. E. Peptide models of protein folding initiation sites. 3. The G-H helical hairpin of myoglobin. Biochemistry. 1993 Jun 29;32(25):6356–6364. doi: 10.1021/bi00076a008. [DOI] [PubMed] [Google Scholar]
  20. Wright P. E., Dyson H. J., Lerner R. A. Conformation of peptide fragments of proteins in aqueous solution: implications for initiation of protein folding. Biochemistry. 1988 Sep 20;27(19):7167–7175. doi: 10.1021/bi00419a001. [DOI] [PubMed] [Google Scholar]
  21. de Prat Gay G., Fersht A. R. Generation of a family of protein fragments for structure-folding studies. 1. Folding complementation of two fragments of chymotrypsin inhibitor-2 formed by cleavage at its unique methionine residue. Biochemistry. 1994 Jun 28;33(25):7957–7963. doi: 10.1021/bi00191a024. [DOI] [PubMed] [Google Scholar]
  22. de Prat Gay G., Ruiz-Sanz J., Fersht A. R. Generation of a family of protein fragments for structure-folding studies. 2. Kinetics of association of the two chymotrypsin inhibitor-2 fragments. Biochemistry. 1994 Jun 28;33(25):7964–7970. doi: 10.1021/bi00191a025. [DOI] [PubMed] [Google Scholar]
  23. elMasry N. F., Fersht A. R. Mutational analysis of the N-capping box of the alpha-helix of chymotrypsin inhibitor 2. Protein Eng. 1994 Jun;7(6):777–782. doi: 10.1093/protein/7.6.777. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES