Skip to main content
Neurotherapeutics logoLink to Neurotherapeutics
. 2008 Oct 1;5(4):607–612. doi: 10.1016/j.nurt.2008.09.001

Treatment of neuromuscular channelopathies: Current concepts and future prospects

James C Cleland 1,2,, Robert C Griggs 2
PMCID: PMC4514704  PMID: 19019313

Summary

Our understanding of the molecular pathogenesis of the neuromuscular ion channelopathies has increased rapidly over the past two decades due to the identification of many of the genes whose mutation causes these diseases. These molecular discoveries have facilitated identification and classification of the hereditary periodic paralyses and the myotonias, and are likely to shed light on acquired ion channelopathies as well. Despite our better understanding of the pathogenesis of these disorders, current treatments are largely empirical and the evidence in favor of specific therapy largely anecdotal. For periodic paralysis, dichlorphenamide—a carbonic anhydrase inhibitor — has been shown in a controlled trial to prevent attacks for many patients with both hypokalemic and hypokalemic periodic paralysis. A second trial, comparing dichlorphenamide with acetazolamide versus placebo, is currently in progress. For myotonia, there is only anecdotal evidence for treatment, but a controlled trial of mexiletine versus placebo is currently being funded by a Food and Drug Administration—orphan products grant and is scheduled to begin in late 2008. In the future, mechanism-based approaches are likely to be developed. For example, exciting advances have already been made in one disorder, myotonic dystrophy-1 (DM-1). In a mouse model of DM-1, a morpholino antisense oligonucleuotide targeting the 3′ splice site of CLCN1 exon 7a repaired the RNA splicing defect by promoting the production of full-length chloride channel transcripts. Abnormal chloride conductance was restored, and myotonia was abolished. Similar strategies hold potential for DM-2. The era of molecularly-based treatments is about to begin.

Key Words: Therapy, channelopathy, ion-channel, electrophysiology

References

  • 1.Colding-Jørgensen E. Phenotypic variability in myotonia congenita. Muscle Nerve. 2005;32:19–34. doi: 10.1002/mus.20295. [DOI] [PubMed] [Google Scholar]
  • 2.Jurkatt-Rott K, Lehmann-Horn F. Muscle channelopathies and critical points in functional and genetic studies. J Clin Invest. 2005;115:2000–9. doi: 10.1172/JCI25525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Struyk AF, Cannon SC. Paradoxical depolarization of BA2+-treated muscle exposed to low extracellular K+: Insights into resting potential abnormalities in hypokalemic paralysis. Muscle Nerve. 2008;37:326–37. doi: 10.1002/mus.20928. [DOI] [PubMed] [Google Scholar]
  • 4.Cleland JC, Griggs RCG. Channelopathies of the nervous system. In: Gilman S, editor. Neurobiology of Disease. Burlington, MA: Elsevier Academic Press; 2007. pp. 319–32. [Google Scholar]
  • 5.Venance SL, Herr BE, Griggs RC. Challenges in the design and conduct of therapeutic trials in channel disorders. Neurotherapeutics. 2007;4:199–204. doi: 10.1016/j.nurt.2007.01.004. [DOI] [PubMed] [Google Scholar]
  • 6.Tawil R, McDermott MP, Brown R, et al. Randomized trials of dichlorphenamide in the periodic paralyses. Working group on periodic paralysis. Ann Neurol. 2000;47:46–53. doi: 10.1002/1531-8249(200001)47:1<46::AID-ANA9>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  • 7.Tricarico D, Barbieri M, Mele A, Carbonara G, Conte Camerino D. Carbonic anhydrase inhibitors are specific openers of skeletal muscle BK channel of K+-deficient rats. FASEB J. 2004;18:760–1. doi: 10.1096/fj.03-0722fje. [DOI] [PubMed] [Google Scholar]
  • 8.Riggs JE, Griggs RC, Moxley RT. Dissociation of glucose and potassium arterial-venous differences across the forearm by acetazol-amide: a possible relationship to acetazolamide’s beneficial effect in hypokalemia periodic paralysis. Arch Neurol. 1984;41:35–8. doi: 10.1001/archneur.1984.04050130041019. [DOI] [PubMed] [Google Scholar]
  • 9.Riggs JE, Griggs RC, Moxley RT, Lewis ED. Acute effects of acetazolamide in hyperkalemic periodic paralysis and in normals. Neurology. 1981;31:725–9. doi: 10.1212/WNL.31.6.725. [DOI] [PubMed] [Google Scholar]
  • 10.Grafe P, Quasthoff S, Strupp M, Lehmann-Horn F. Enhancement of K+ conductance improves the in vitro contraction force of skeletal muscle in hypokalemic periodic paralysis. Muscle Nerve. 1990;13:451–7. doi: 10.1002/mus.880130513. [DOI] [PubMed] [Google Scholar]
  • 11.Lin S-H, Chiu J-S, Hsu C-W, Chau T. A simple and rapid approach to hypokalemic paralysis. Am J Emerg Med. 2003;21:487–91. doi: 10.1016/S0735-6757(03)00159-1. [DOI] [PubMed] [Google Scholar]
  • 12.Gallant EM. Barium-treated mammalian skeletal muscle: similarities to hypokalemic periodic paralysis. J Physiol. 1983;335:577–90. doi: 10.1113/jphysiol.1983.sp014552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Ruff RL. Insulin acts in hypokalemic periodic paralysis by reducing inward rectifier K+ current. Neurology. 1999;53:1556–63. doi: 10.1212/WNL.53.7.1556. [DOI] [PubMed] [Google Scholar]
  • 14.Abbot GW, Butler MH, Goldstein SAN. Phosphorylation and protonation of neighboring MiRP2 sites: function and pathophysiology of MiRP2-Kv3.4 potassium channels in periodic paralysis. FASEB J. 2006;20:293–301. doi: 10.1096/fj.05-5070com. [DOI] [PubMed] [Google Scholar]
  • 15.Tricarico D, Servidei S, Tonali P, Jurkat-Rott K, Conte Camerino D. Impairment of skeletal muscle adenosine triphosphate-sensitive K+ channels in patients with hypokalemic periodic paralysis. J Clin Invest. 1999;103:675–82. doi: 10.1172/JCI4552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Osborne RJ, Thornton CA. RNA-dominant diseases. Human Mol Genet. 2006;15:162–9. doi: 10.1093/hmg/ddl181. [DOI] [PubMed] [Google Scholar]
  • 17.Takahashi MP, Cannon SC. Mexilitene block of disease-associated muations in S6 segments of the human skeletal muscle Na+ channel. J Physiol. 2001;537:701–14. doi: 10.1113/jphysiol.2001.012541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Alfonsi E, Merlo IM, Tonini M, Ravaglia S, Brugnoni R, Gozzini A, Moglia A. Efficacy of propafenone in paramytonia congenita. Neurology. 2007;68:1080–1. doi: 10.1212/01.wnl.0000257825.29703.e8. [DOI] [PubMed] [Google Scholar]
  • 19.Willoughby JO, Pope KJ, Eaton V. Nicotine as an anti-epileptic agent in ADNFLE: an n-of-one study. Epilepsia. 2003;44:1238–40. doi: 10.1046/j.1528-1157.2003.58102.x-i1. [DOI] [PubMed] [Google Scholar]
  • 20.Zucker DR, Schmid CH, McIntosh MW, D’Agostino RB, Selker HP, Lau J. Combining single patient (n-of-1) trials to estimate population treatment effects and to evaluate individual patient responses to treatment. J Clin Epidemiol. 1997;50:401–10. doi: 10.1016/S0895-4356(96)00429-5. [DOI] [PubMed] [Google Scholar]
  • 21.Wheeler TM, Lueck JD, Swanson MS, Dirksen RT, Thornton CA. Correction of ClC-1 splicing eliminates chloride channelopathy and myotonia in mouse models of myotonic dystrophy. J Clin Invest. 2007;117:3952–7. doi: 10.1172/JCI33355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Rogers CS, Vanoye CG, Sullenger BA, George AL. Functional repair of a mutant chloride channel using a trans-splicing ribozyme. J Clin Invest. 2002;110:1783–9. doi: 10.1172/JCI200216481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Argov Z, McKee D, Agus S, et al. Treatment of human myasthenia gravis with oral antisense suppression of acetylcholinesterase. Neurology. 2007;69:699–700. doi: 10.1212/01.wnl.0000267884.39468.7a. [DOI] [PubMed] [Google Scholar]
  • 24.Arimura K, Arimura Y, Ng AR, Sakoda S-I, Higuchi I. Muscle membrane excitability after exercise in thyrotoxic periodic paralysis and thyrotoxicosis without periodic paralysis. Muscle Nerve. 2007;36:784–8. doi: 10.1002/mus.20865. [DOI] [PubMed] [Google Scholar]
  • 25.Zhang J, Bendahhou S, Sanguinetti J, Ptacek LJ. Functional consequence of chloride channel gene (CLCN1) mutations causing myotonia congenita. Neurology. 2000;54:937–42. doi: 10.1212/WNL.54.4.937. [DOI] [PubMed] [Google Scholar]
  • 26.Papponen H, Nissinen M, Kaisto T, Myllylä VV, Myllylä R, Metsikkö K. F413C and A531V but not R894X myotonia congenita mutations cause defective endoplasmic reticulum export of the muscle-specific chloride channel CLC-1. Muscle Nerve. 2008;37:317–25. doi: 10.1002/mus.20922. [DOI] [PubMed] [Google Scholar]
  • 27.Wang Y, Bartlett C, Loo TW, Clarke DM. Specific rescue of cystic fibrosis transmembrane conductance regulator processing mutants using pharmacological chaperones. Mol Pharmacol. 2006;70:297–302. doi: 10.1124/mol.106.023986. [DOI] [PubMed] [Google Scholar]
  • 28.Kinali M, Jungbluth H, Eunson LH, et al. Expanding the phenotype of potassium channelopathy: severe neuromyotonia and skeletal deformities without prominent Episodic Ataxia. Neuromuscul Disord. 2004;14:689–93. doi: 10.1016/j.nmd.2004.06.007. [DOI] [PubMed] [Google Scholar]
  • 29.Allen DC, Arunachalam R, Mills KR. Critical illness myopathy: further evidence from muscle-fiber excitability studies of an acquired channelopathy. Muscle Nerve. 2008;37:14–22. doi: 10.1002/mus.20884. [DOI] [PubMed] [Google Scholar]
  • 30.Wuttke TV, Jurkat-Rott K, Paulus W, Garncarek M, Lehmann-Horn F, Lerche H. Peripheral nerve hyperexcitability due to dominant negative KCNQ2 mutations. Neurology. 2007;69:2045–53. doi: 10.1212/01.wnl.0000275523.95103.36. [DOI] [PubMed] [Google Scholar]
  • 31.Sansone V, Tawil R. Management and treatment of Andersen-Tawil syndrome. Neurotherapeutics. 2007;4:233–7. doi: 10.1016/j.nurt.2007.01.005. [DOI] [PubMed] [Google Scholar]
  • 32.Vicart S, Sternberg D, Fontaine B, Meola G. Human skeletal muscle sodium channelopathies. Neurol Sci. 2005;26:194–202. doi: 10.1007/s10072-005-0461-x. [DOI] [PubMed] [Google Scholar]
  • 33.Waxman SG, Dib-Hajj SD. Erythromelalgia: a hereditary pain syndrome enters the molecular era. Ann Neurol. 2005;57:785–8. doi: 10.1002/ana.20511. [DOI] [PubMed] [Google Scholar]
  • 34.Tsujino A, Maertens C, Ohno K, et al. Myasthenic syndrome caused by mutation of the SCN4A channel. Proc Natl Acad Sci. 2003;100:7377–82. doi: 10.1073/pnas.1230273100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Engel AG, Ohno K, Sine SM. Congenital myasthenic syndromes. In: Engel AG, editor. Myasthenia gravis and myasthenic disorders. New York, NY: Oxford University Press; 1999. pp. 251–97. [Google Scholar]
  • 36.Lyfenko AD, Goonasekera SA, Dirksen RT. Dynamic alterations in myoplasmic Ca2+ in malignant hyperthermia and central core disease. Biochem Biophys Res Commun. 2004;322:1256–66. doi: 10.1016/j.bbrc.2004.08.031. [DOI] [PubMed] [Google Scholar]
  • 37.Vernino S, Lennon VA. Ion channel and striational antibodies define a continuum of autoimmune neuromuscular excitability. Muscle Nerve. 2002;26:702–7. doi: 10.1002/mus.10266. [DOI] [PubMed] [Google Scholar]
  • 38.Newsom-Davis J, Lang B. The Lambert-Eaton myasthenic syndrome. In: Engel AG, editor. Myasthenia Gravis and Related Disorders. New York, NY: Oxford University Press; 1999. pp. 205–28. [Google Scholar]
  • 39.Teener JW, Rich MM. Dysregulation of sodium channel gating in critical illness myopathy. J Muscle Res Cell Motil. 2006;27:291–6. doi: 10.1007/s10974-006-9074-5. [DOI] [PubMed] [Google Scholar]

Articles from Neurotherapeutics are provided here courtesy of Elsevier

RESOURCES