Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Nov 8;91(23):11109–11112. doi: 10.1073/pnas.91.23.11109

A Drosophila gene promoter is subject to glucose repression in yeast cells.

D A Hickey 1, K I Benkel 1, Y Fong 1, B F Benkel 1
PMCID: PMC45176  PMID: 7526389

Abstract

Previous work has shown that the alpha-amylase gene of Drosophila melanogaster is subject to repression by dietary glucose. Moreover, glucose repression of this gene is mediated by promoter elements that lie upstream of the transcriptional start site. In this study, we examined the activity of the glucose-repressible Drosophila promoter in transformed yeast cells. We show that the amylase promoter region can mediate glucose repression of a heterologous reporter gene in yeast. The implication of this result is that the yeast regulatory machinery can recognize the Drosophila promoter signals. This, in turn, implies an unexpectedly high degree of evolutionary conservation in the mechanism of glucose repression among eukaryotes. It also shows that genes that have acquired complex patterns of developmental regulation-e.g., the Drosophila amylase gene, can still retain, intact, more primitive forms of regulation, such as glucose repression.

Full text

PDF
11109

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benkel B. F., Abukashawa S., Boer P. H., Hickey D. A. Molecular cloning of DNA complementary to Drosophila melanogaster alpha-amylase mRNA. Genome. 1987 Jun;29(3):510–515. doi: 10.1139/g87-087. [DOI] [PubMed] [Google Scholar]
  2. Benkel B. F., Hickey D. A. A Drosophila gene is subject to glucose repression. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1337–1339. doi: 10.1073/pnas.84.5.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benkel B. F., Hickey D. A. Glucose Repression of Amylase Gene Expression in DROSOPHILA MELANOGASTER. Genetics. 1986 Sep;114(1):137–144. doi: 10.1093/genetics/114.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boer P. H., Hickey D. A. The alpha-amylase gene in Drosophila melanogaster: nucleotide sequence, gene structure and expression motifs. Nucleic Acids Res. 1986 Nov 11;14(21):8399–8411. doi: 10.1093/nar/14.21.8399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carlson M. Regulation of sugar utilization in Saccharomyces species. J Bacteriol. 1987 Nov;169(11):4873–4877. doi: 10.1128/jb.169.11.4873-4877.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen W., Struhl K. Saturation mutagenesis of a yeast his3 "TATA element": genetic evidence for a specific TATA-binding protein. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2691–2695. doi: 10.1073/pnas.85.8.2691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Erhart E., Hollenberg C. P. The presence of a defective LEU2 gene on 2 mu DNA recombinant plasmids of Saccharomyces cerevisiae is responsible for curing and high copy number. J Bacteriol. 1983 Nov;156(2):625–635. doi: 10.1128/jb.156.2.625-635.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Flick J. S., Johnston M. Analysis of URSG-mediated glucose repression of the GAL1 promoter of Saccharomyces cerevisiae. Genetics. 1992 Feb;130(2):295–304. doi: 10.1093/genetics/130.2.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Furter-Graves E. M., Furter R., Hall B. D. SHI, a new yeast gene affecting the spacing between TATA and transcription initiation sites. Mol Cell Biol. 1991 Aug;11(8):4121–4127. doi: 10.1128/mcb.11.8.4121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gallwitz D., Perrin F., Seidel R. The actin gene in yeast Saccharomyces cerevisiae: 5' and 3' end mapping, flanking and putative regulatory sequences. Nucleic Acids Res. 1981 Dec 11;9(23):6339–6350. doi: 10.1093/nar/9.23.6339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gancedo J. M. Carbon catabolite repression in yeast. Eur J Biochem. 1992 Jun 1;206(2):297–313. doi: 10.1111/j.1432-1033.1992.tb16928.x. [DOI] [PubMed] [Google Scholar]
  12. Guarente L., Bermingham-McDonogh O. Conservation and evolution of transcriptional mechanisms in eukaryotes. Trends Genet. 1992 Jan;8(1):27–32. doi: 10.1016/0168-9525(92)90021-u. [DOI] [PubMed] [Google Scholar]
  13. Guarente L. UASs and enhancers: common mechanism of transcriptional activation in yeast and mammals. Cell. 1988 Feb 12;52(3):303–305. doi: 10.1016/s0092-8674(88)80020-5. [DOI] [PubMed] [Google Scholar]
  14. Haj-Ahmad Y., Hickey D. A. A molecular explanation of frequency-dependent selection in Drosophila. Nature. 1982 Sep 23;299(5881):350–352. doi: 10.1038/299350a0. [DOI] [PubMed] [Google Scholar]
  15. Hawley S. A., Doane W. W., Norman R. A. Molecular analysis of cis-regulatory sequences at the alpha-amylase locus in Drosophila melanogaster. Biochem Genet. 1992 Jun;30(5-6):257–277. [PubMed] [Google Scholar]
  16. Healy A. M., Zitomer R. S. A sequence that directs transcriptional initiation in yeast. Curr Genet. 1990 Aug;18(2):105–109. doi: 10.1007/BF00312597. [DOI] [PubMed] [Google Scholar]
  17. Hickey D. A., Benkel B. Regulation of amylase activity in drosophila melanogaster: effects of dietary carbohydrate. Biochem Genet. 1982 Dec;20(11-12):1117–1129. doi: 10.1007/BF00498936. [DOI] [PubMed] [Google Scholar]
  18. Hickey D. A., Genest Y., Benkel B. F. Nucleotide sequence upstream of a glucose-repressible Drosophila gene. Nucleic Acids Res. 1987 Sep 11;15(17):7184–7184. doi: 10.1093/nar/15.17.7184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hinnen A., Hicks J. B., Fink G. R. Transformation of yeast. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1929–1933. doi: 10.1073/pnas.75.4.1929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Keleher C. A., Redd M. J., Schultz J., Carlson M., Johnson A. D. Ssn6-Tup1 is a general repressor of transcription in yeast. Cell. 1992 Feb 21;68(4):709–719. doi: 10.1016/0092-8674(92)90146-4. [DOI] [PubMed] [Google Scholar]
  22. Lundin M., Nehlin J. O., Ronne H. Importance of a flanking AT-rich region in target site recognition by the GC box-binding zinc finger protein MIG1. Mol Cell Biol. 1994 Mar;14(3):1979–1985. doi: 10.1128/mcb.14.3.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Magoulas C., Bally-Cuif L., Loverre-Chyurlia A., Benkel B., Hickey D. A short 5'-flanking region mediates glucose repression of amylase gene expression in Drosophila melanogaster. Genetics. 1993 Jun;134(2):507–515. doi: 10.1093/genetics/134.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nehlin J. O., Ronne H. Yeast MIG1 repressor is related to the mammalian early growth response and Wilms' tumour finger proteins. EMBO J. 1990 Sep;9(9):2891–2898. doi: 10.1002/j.1460-2075.1990.tb07479.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pinto I., Ware D. E., Hampsey M. The yeast SUA7 gene encodes a homolog of human transcription factor TFIIB and is required for normal start site selection in vivo. Cell. 1992 Mar 6;68(5):977–988. doi: 10.1016/0092-8674(92)90040-j. [DOI] [PubMed] [Google Scholar]
  26. Saier M. H., Jr A multiplicity of potential carbon catabolite repression mechanisms in prokaryotic and eukaryotic microorganisms. New Biol. 1991 Dec;3(12):1137–1147. [PubMed] [Google Scholar]
  27. Thompson D. B., Treat-Clemons L. G., Doane W. W. Tissue-specific and dietary control of alpha-amylase gene expression in the adult midgut of Drosophila melanogaster. J Exp Zool. 1992 May 1;262(2):122–134. doi: 10.1002/jez.1402620203. [DOI] [PubMed] [Google Scholar]
  28. Yoshinaga S. K., Peterson C. L., Herskowitz I., Yamamoto K. R. Roles of SWI1, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors. Science. 1992 Dec 4;258(5088):1598–1604. doi: 10.1126/science.1360703. [DOI] [PubMed] [Google Scholar]
  29. de Banzie J. S., Sinclair L., Lis J. T. Expression of the major heat shock gene of Drosophila melanogaster in Saccharomyces cerevisiae. Nucleic Acids Res. 1986 Apr 25;14(8):3587–3601. doi: 10.1093/nar/14.8.3587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. de Wet J. R., Wood K. V., DeLuca M., Helinski D. R., Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol. 1987 Feb;7(2):725–737. doi: 10.1128/mcb.7.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES