Abstract
Cytochrome c peroxidase reacts with peroxide to form compound I, which contains an oxyferryl heme and an indolyl radical at Trp-191. The indolyl free radical has a half-life of several hours at room temperature, and this remarkable stability is essential for the catalytic function of cytochrome c peroxidase. To probe the protein environment that stabilizes the compound I radical, we used site-directed mutagenesis to replace Trp-191 with Gly or Gln. Crystal structures of these mutants revealed a monovalent cation binding site in the cavity formerly occupied by the side chain of Trp-191. Comparison of this site with those found in other known cation binding enzymes shows that the Trp-191 side chain resides in a consensus K+ binding site. Electrostatic potential calculations indicate that the cation binding site is created by partial negative charges at the backbone carbonyl oxygen atoms of residues 175 and 177, the carboxyl end of a long alpha-helix (residues 165-175), the heme propionates, and the carboxylate side chain of Asp-235. These features create a negative potential that envelops the side chain of Trp-191; the calculated free energy change for cation binding in this site is -27 kcal/mol (1 cal = 4.184J). This is more than sufficient to account for the stability of the Trp-191 radical, which our estimates suggest is stabilized by 7.8 kcal/mol relative to a Trp radical in solution.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aqvist J., Luecke H., Quiocho F. A., Warshel A. Dipoles localized at helix termini of proteins stabilize charges. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):2026–2030. doi: 10.1073/pnas.88.5.2026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Asakura T., Yonetani T. Studies on cytochrome c peroxidase. XIV. Recombination of apoenzyme with protoheme dialkyl esters and etioheme. J Biol Chem. 1969 Sep 10;244(17):4573–4579. [PubMed] [Google Scholar]
- Chou P. Y., Fasman G. D. Beta-turns in proteins. J Mol Biol. 1977 Sep 15;115(2):135–175. doi: 10.1016/0022-2836(77)90094-8. [DOI] [PubMed] [Google Scholar]
- DeFelippis M. R., Murthy C. P., Faraggi M., Klapper M. H. Pulse radiolytic measurement of redox potentials: the tyrosine and tryptophan radicals. Biochemistry. 1989 May 30;28(11):4847–4853. doi: 10.1021/bi00437a049. [DOI] [PubMed] [Google Scholar]
- Dowe R. J., Erman J. E. The reaction of hydrogen peroxide with the dimethyl ester heme derivative of cytochrome c peroxidase. J Biol Chem. 1982 Mar 10;257(5):2403–2405. [PubMed] [Google Scholar]
- Eriksson A. E., Baase W. A., Zhang X. J., Heinz D. W., Blaber M., Baldwin E. P., Matthews B. W. Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science. 1992 Jan 10;255(5041):178–183. doi: 10.1126/science.1553543. [DOI] [PubMed] [Google Scholar]
- Erman J. E., Vitello L. B., Mauro J. M., Kraut J. Detection of an oxyferryl porphyrin pi-cation-radical intermediate in the reaction between hydrogen peroxide and a mutant yeast cytochrome c peroxidase. Evidence for tryptophan-191 involvement in the radical site of compound I. Biochemistry. 1989 Oct 3;28(20):7992–7995. doi: 10.1021/bi00446a004. [DOI] [PubMed] [Google Scholar]
- Erman J. E., Yonetani T. A kinetic study of the endogenous reduction of the oxidized sites in the primary cytochrome c peroxidase-hydrogen peroxide compound. Biochim Biophys Acta. 1975 Jun 26;393(2):350–357. doi: 10.1016/0005-2795(75)90061-6. [DOI] [PubMed] [Google Scholar]
- Finzel B. C., Poulos T. L., Kraut J. Crystal structure of yeast cytochrome c peroxidase refined at 1.7-A resolution. J Biol Chem. 1984 Nov 10;259(21):13027–13036. [PubMed] [Google Scholar]
- Fishel L. A., Farnum M. F., Mauro J. M., Miller M. A., Kraut J., Liu Y. J., Tan X. L., Scholes C. P. Compound I radical in site-directed mutants of cytochrome c peroxidase as probed by electron paramagnetic resonance and electron-nuclear double resonance. Biochemistry. 1991 Feb 19;30(7):1986–1996. doi: 10.1021/bi00221a036. [DOI] [PubMed] [Google Scholar]
- Fishel L. A., Villafranca J. E., Mauro J. M., Kraut J. Yeast cytochrome c peroxidase: mutagenesis and expression in Escherichia coli show tryptophan-51 is not the radical site in compound I. Biochemistry. 1987 Jan 27;26(2):351–360. doi: 10.1021/bi00376a004. [DOI] [PubMed] [Google Scholar]
- Fitzgerald M. M., Churchill M. J., McRee D. E., Goodin D. B. Small molecule binding to an artificially created cavity at the active site of cytochrome c peroxidase. Biochemistry. 1994 Apr 5;33(13):3807–3818. [PubMed] [Google Scholar]
- Hahm S., Miller M. A., Geren L., Kraut J., Durham B., Millett F. Reaction of horse cytochrome c with the radical and the oxyferryl heme in cytochrome c peroxidase compound I. Biochemistry. 1994 Feb 15;33(6):1473–1480. doi: 10.1021/bi00172a025. [DOI] [PubMed] [Google Scholar]
- Hoffman B. M., Roberts J. E., Brown T. G., Kang C. H., Margoliash E. Electron-nuclear double resonance of the hydrogen peroxide compound of cytochrome c peroxidase: identification of the free radical site with a methionyl cluster. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6132–6136. doi: 10.1073/pnas.76.12.6132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffman B. M., Roberts J. E., Kang C. H., Margoliash E. Electron paramagnetic and electron nuclear double resonance of the hydrogen peroxide compound of cytochrome c peroxidase. J Biol Chem. 1981 Jul 10;256(13):6556–6564. [PubMed] [Google Scholar]
- Hol W. G. The role of the alpha-helix dipole in protein function and structure. Prog Biophys Mol Biol. 1985;45(3):149–195. doi: 10.1016/0079-6107(85)90001-x. [DOI] [PubMed] [Google Scholar]
- Houseman A. L., Doan P. E., Goodin D. B., Hoffman B. M. Comprehensive explanation of the anomalous EPR spectra of wild-type and mutant cytochrome c peroxidase compound ES. Biochemistry. 1993 Apr 27;32(16):4430–4443. doi: 10.1021/bi00067a036. [DOI] [PubMed] [Google Scholar]
- Kadish K. M., Morrison M. M., Constant L. A., Dickens L., Davis D. G. A study of solvent and substituent effects on the redox potentials and electron-transfer rate constants of substituted iron meso-tetraphenylporphyrins. J Am Chem Soc. 1976 Dec 22;98(26):8387–8390. doi: 10.1021/ja00442a013. [DOI] [PubMed] [Google Scholar]
- Mauro J. M., Fishel L. A., Hazzard J. T., Meyer T. E., Tollin G., Cusanovich M. A., Kraut J. Tryptophan-191----phenylalanine, a proximal-side mutation in yeast cytochrome c peroxidase that strongly affects the kinetics of ferrocytochrome c oxidation. Biochemistry. 1988 Aug 23;27(17):6243–6256. doi: 10.1021/bi00417a008. [DOI] [PubMed] [Google Scholar]
- McPhalen C. A., James M. N. Structural comparison of two serine proteinase-protein inhibitor complexes: eglin-c-subtilisin Carlsberg and CI-2-subtilisin Novo. Biochemistry. 1988 Aug 23;27(17):6582–6598. [PubMed] [Google Scholar]
- Miller M. A., Bandyopadhyay D., Mauro J. M., Traylor T. G., Kraut J. Reaction of ferrous cytochrome c peroxidase with dioxygen: site-directed mutagenesis provides evidence for rapid reduction of dioxygen by intramolecular electron transfer from the compound I radical site. Biochemistry. 1992 Mar 17;31(10):2789–2797. doi: 10.1021/bi00125a020. [DOI] [PubMed] [Google Scholar]
- Neupert-Laves K., Dobler M. The crystal structure of a K+ complex of valinomycin. Helv Chim Acta. 1975 Mar 12;58(2):432–442. doi: 10.1002/hlca.19750580212. [DOI] [PubMed] [Google Scholar]
- Pelletier H., Kraut J. Crystal structure of a complex between electron transfer partners, cytochrome c peroxidase and cytochrome c. Science. 1992 Dec 11;258(5089):1748–1755. doi: 10.1126/science.1334573. [DOI] [PubMed] [Google Scholar]
- Sivaraja M., Goodin D. B., Smith M., Hoffman B. M. Identification by ENDOR of Trp191 as the free-radical site in cytochrome c peroxidase compound ES. Science. 1989 Aug 18;245(4919):738–740. doi: 10.1126/science.2549632. [DOI] [PubMed] [Google Scholar]
- Toney M. D., Hohenester E., Cowan S. W., Jansonius J. N. Dialkylglycine decarboxylase structure: bifunctional active site and alkali metal sites. Science. 1993 Aug 6;261(5122):756–759. doi: 10.1126/science.8342040. [DOI] [PubMed] [Google Scholar]
- Wang J. M., Mauro M., Edwards S. L., Oatley S. J., Fishel L. A., Ashford V. A., Xuong N. H., Kraut J. X-ray structures of recombinant yeast cytochrome c peroxidase and three heme-cleft mutants prepared by site-directed mutagenesis. Biochemistry. 1990 Aug 7;29(31):7160–7173. doi: 10.1021/bi00483a003. [DOI] [PubMed] [Google Scholar]