Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 13;71(Pt 7):o479–o480. doi: 10.1107/S2056989015010907

Crystal structure of 2-amino-4,6-di­meth­oxy­pyrimidinium thio­phene-2-carboxyl­ate

Ammaiyappan Rajam a, PT Muthiah a,*, Ray J Butcher b, Jerry P Jasinski c
PMCID: PMC4518905  PMID: 26279918

Abstract

In the title salt, C6H10N3O2 +·C5H3O2S, the 2-amino-4,6-di­meth­oxy­pyrimidinium cation inter­acts with the carboxyl­ate group of the thio­phene-2-carboxyl­ate anion through a pair of N—H⋯O hydrogen bonds, forming an R 2 2(8) ring motif. These motifs are centrosymmetrically paired via N—H⋯O hydrogen bonds, forming a complementary DDAA array. The separate DDAA arrays are linked by π–π stacking inter­actions between the pyrimidine rings, as well as by a number of weak C—H⋯O and N—H⋯O inter­actions. In the anion, the dihedral angle between the ring plane and the CO2 group is 11.60 (3)°. In the cation, the C atoms of methoxy groups deviate from the ring plane by 0.433 (10) Å.

Keywords: crystal structure, crystal salts, hydrogen-bonding patterns, π–π stacking inter­actions

Related literature  

For the role played by non-covalent inter­actions in mol­ecular recognition porcesses, see: Desiraju (1989). For amino­pryimidine–carboxylate interactions in protein–nucleic acid recognition and protein–drug binding inteactions, see: Hunt et al. (1980); Alkorta & Elguero (2003). For 1:1 salts between 2-amino­pyrimidine and mono- and di­carb­oxy­lic acids, see: Etter & Adsmond (1990). For self-assembly of 2-amino­pyrimidine compounds, see: Scheinbeim & Schempp (1976). For carb­oxy­lic acid and 2-amino heterocyclic ring system synthons, see: Lynch & Jones (2004). For crystal structures of related salts, see: Ebenezer et al. (2012); Jennifer & Mu­thiah (2014). DDAA arrays have been observed in trimeth­oprim hydrogen glutarate (Robert et al., 2001), trimetho­prim formate (Umadevi et al., 2002), trimethoprim-m-chloro­benzoate (Raj et al., 2003), pyrimethaminium 3,5-di­nitro­benzoate (Subashini et al., 2007) and 2-amino-4,6-di­meth­oxy­pyrimidinum-salicylate (Thanigaimani et al., 2007).graphic file with name e-71-0o479-scheme1.jpg

Experimental  

Crystal data  

  • C6H10N3O2 +·C5H3O2S

  • M r = 283.30

  • Monoclinic, Inline graphic

  • a = 6.7335 (3) Å

  • b = 7.6307 (4) Å

  • c = 25.0638 (10) Å

  • β = 93.928 (4)°

  • V = 1284.78 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 173 K

  • 0.32 × 0.28 × 0.14 mm

Data collection  

  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012) T min = 0.789, T max = 1.000

  • 8844 measured reflections

  • 4245 independent reflections

  • 3071 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.062

  • wR(F 2) = 0.186

  • S = 1.05

  • 4245 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015010907/hg5442sup1.cif

e-71-0o479-sup1.cif (22.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010907/hg5442Isup2.hkl

e-71-0o479-Isup2.hkl (232.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015010907/hg5442Isup3.cml

. DOI: 10.1107/S2056989015010907/hg5442fig1.tif

The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.

b . DOI: 10.1107/S2056989015010907/hg5442fig2.tif

A view of DDAA array along the b axis formed by independent N—H⋯O hydrogen bonds. Symmetry codes are given in Table 1. Dashed lines represent hydrogen bonds.

Cg Cg Cg . DOI: 10.1107/S2056989015010907/hg5442fig3.tif

A view of infinite number of DDAA arrays inter­connected by π–π stacking inter­actions indicated by dotted lines. Cg1⋯Cg1 = 3.4689 (12) Å, where Cg1 represents the centroid of the ring N1/C1/N2/C2/C3/C4.

CCDC reference: 1405154

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H1O2A i 0.88 1.76 2.637(2) 175
N3H3AO1A ii 0.88 2.04 2.826(2) 148
N3H3BO1A i 0.88 1.92 2.798(2) 173
C6H6BO1iii 0.98 2.52 3.434(3) 155
C1AH1AO1iv 0.95 2.60 3.365(3) 138
C1AH1AO2A v 0.95 2.60 3.383(3) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

PTM is thankful to the UGC, New Delhi, for a UGC–BSR one-time grant to Faculty. JPJ acknowledges the NSF–MRI program (grant No. 1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

S1. Structural commentary

The asymmetric unit of C6H10N3O2+ C5H3O2S-, (I), contains one 2-amino-4,6-di­meth­oxy­pyrimidinium cation and one thio­phene-2-carboxyl­ate anion (Fig 1). Protonation of the cation occurs at N1, providing a C1/N1/C2 angle of 119.39 (16)° compared to the C1/N2/C4 angle (115.99 (16)°) of the unprotonated N2 atom. The carboxyl­ate group of the thio­phene-2-carboxyl­ate anion inter­acts with the protonated atom N1 and the 2-amino group of the pyrimidine moiety through a pair of N—H···O hydrogen bonds, forming an eight membered R22(8) ring motif. These motifs are centrosymmetrically paired via N—H···O hydrogen bonds to produce a DDAA (D = donor in hydrogen bonds, A = acceptor in hydrogen bonds) array of quadruple hydrogen bonds represented by the graph-set notation R22(8), R42(8) and R22(8) (Fig. 2). This type of array has also been identified in trimethoprim hydrogen glutarate (Robert et al., 2001), trimethoprim formate (Umadevi et al., 2002), trimethoprim- m-chloro­benzoate (Raj et al., 2003), pyrimethaminium 3,5-di­nitro­benzoate (Subashini et al., 2007) and 2-amino-4,6-di­meth­oxy­pyrimidinum-salicylate (Thanigaimani et al., 2007). An infinite number of several such quadruple arrays are inter­connected and stabilized by π—π stacking inter­actions between the pyrimidine ring of one array with a neighbouring array, with an observed inter­planar distance of 3.356 Å, a centroid (Cg1)-to-centroid (Cg1) distance of 3.4689 (12) Å (where Cg1 equals the centroid of the ring N1/C1/N2/C2/C3/C4, Fig 3) and slip angle (the angle between the centroid vector and the normal to the plane) of 14.68°, which are typical aromatic stacking values (Hunter, 1994). In addition, a number of weak C—H···O and N—H···O inter­molecular inter­actions are also observed which contribute to crystal packing stability (Table 2).

S2. Synthesis and crystallization

A hot methano­lic solution of 2-amino-4,6-di­meth­oxy pyrimidine (38 mg, Aldrich) and thio­phene-2-carb­oxy­lic acid (32 mg, Aldrich) was warmed for half an hour over a water bath. The mixture was cooled slowly and kept at room temperature. After a few days colourless crystals were obtained.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All of the H atoms were placed in their calculated positions andthen refined using the riding model with atom—H lengths of 0.95Å (CH), 0.98Å (CH3)or 0.88Å (NH, NH2). Isotropic displacement parameters for these atoms were set to 1.2 (CH, NH, NH2) or 1.5 (CH3) times Ueq of the parent atom. Idealised Me refined as rotating groups.

Figures

Fig. 1.

Fig. 1.

: The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

: A view of DDAA array along the b axis formed by independent N—H···O hydrogen bonds. Symmetry codes are given in Table 1. Dashed lines represent hydrogen bonds.

Fig. 3.

Fig. 3.

: A view of infinite number of DDAA arrays interconnected by π–π stacking interactions indicated by dotted lines. Cg1···Cg1 = 3.4689 (12) Å, where Cg1 represents the centroid of the ring N1/C1/N2/C2/C3/C4.

Crystal data

C6H10N3O2+·C5H3O2S F(000) = 592
Mr = 283.30 Dx = 1.465 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 6.7335 (3) Å Cell parameters from 2092 reflections
b = 7.6307 (4) Å θ = 4.0–32.4°
c = 25.0638 (10) Å µ = 0.27 mm1
β = 93.928 (4)° T = 173 K
V = 1284.78 (10) Å3 Irregular, colourless
Z = 4 0.32 × 0.28 × 0.14 mm

Data collection

Agilent Eos Gemini diffractometer 4245 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3071 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1 Rint = 0.028
ω scans θmax = 32.7°, θmin = 3.3°
Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012) h = −7→9
Tmin = 0.789, Tmax = 1.000 k = −11→10
8844 measured reflections l = −36→33

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062 H-atom parameters constrained
wR(F2) = 0.186 w = 1/[σ2(Fo2) + (0.0861P)2 + 0.9218P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
4245 reflections Δρmax = 0.79 e Å3
174 parameters Δρmin = −0.55 e Å3
0 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.3208 (2) 0.1426 (2) 0.38775 (6) 0.0280 (3)
O2 0.2312 (2) 0.1346 (2) 0.57319 (6) 0.0324 (4)
N1 0.5394 (2) 0.2619 (2) 0.44749 (6) 0.0228 (3)
H1 0.6074 0.2925 0.4202 0.027*
N2 0.5086 (2) 0.2608 (2) 0.54146 (6) 0.0240 (3)
N3 0.7832 (3) 0.3787 (3) 0.50524 (7) 0.0329 (4)
H3A 0.8323 0.4043 0.5377 0.039*
H3B 0.8504 0.4053 0.4775 0.039*
C1 0.6093 (3) 0.3005 (3) 0.49820 (8) 0.0230 (4)
C2 0.3645 (3) 0.1761 (3) 0.43926 (8) 0.0223 (4)
C3 0.2549 (3) 0.1307 (3) 0.48120 (8) 0.0257 (4)
H3 0.1315 0.0706 0.4763 0.031*
C4 0.3372 (3) 0.1789 (3) 0.53174 (8) 0.0242 (4)
C5 0.1469 (3) 0.0367 (3) 0.37450 (9) 0.0333 (5)
H5A 0.1320 0.0186 0.3357 0.050*
H5B 0.0286 0.0966 0.3862 0.050*
H5C 0.1617 −0.0769 0.3926 0.050*
C6 0.3184 (4) 0.1689 (4) 0.62628 (9) 0.0352 (5)
H6A 0.3659 0.2903 0.6284 0.053*
H6B 0.4305 0.0890 0.6342 0.053*
H6C 0.2182 0.1507 0.6523 0.053*
S1 −0.15194 (10) 0.54563 (10) 0.26469 (2) 0.0427 (2)
O1A −0.0066 (2) 0.4332 (2) 0.41417 (6) 0.0326 (4)
O2A −0.2775 (2) 0.3607 (3) 0.36279 (6) 0.0361 (4)
C1A 0.0377 (5) 0.6516 (4) 0.23842 (10) 0.0434 (6)
H1A 0.0295 0.7014 0.2036 0.052*
C2A 0.2037 (4) 0.6582 (4) 0.27227 (11) 0.0431 (6)
H2A 0.3227 0.7142 0.2631 0.052*
C3A 0.1860 (3) 0.5737 (3) 0.32322 (8) 0.0268 (4)
H3AA 0.2874 0.5637 0.3513 0.032*
C4A −0.0153 (3) 0.5071 (3) 0.32345 (8) 0.0253 (4)
C5A −0.1048 (3) 0.4276 (3) 0.37009 (8) 0.0250 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0286 (7) 0.0348 (8) 0.0209 (7) −0.0082 (6) 0.0042 (5) −0.0050 (6)
O2 0.0321 (8) 0.0437 (10) 0.0228 (7) −0.0045 (7) 0.0110 (6) 0.0022 (6)
N1 0.0241 (7) 0.0250 (8) 0.0196 (7) −0.0027 (6) 0.0044 (6) 0.0006 (6)
N2 0.0269 (8) 0.0271 (8) 0.0185 (7) 0.0015 (6) 0.0054 (6) 0.0015 (6)
N3 0.0316 (9) 0.0479 (12) 0.0193 (8) −0.0135 (8) 0.0023 (7) −0.0005 (8)
C1 0.0267 (9) 0.0229 (9) 0.0198 (8) 0.0003 (7) 0.0039 (7) 0.0016 (7)
C2 0.0241 (9) 0.0214 (9) 0.0217 (8) −0.0009 (7) 0.0032 (7) −0.0006 (7)
C3 0.0241 (9) 0.0279 (10) 0.0256 (9) −0.0034 (7) 0.0062 (7) 0.0015 (8)
C4 0.0275 (9) 0.0243 (9) 0.0217 (9) 0.0032 (7) 0.0079 (7) 0.0029 (7)
C5 0.0321 (10) 0.0379 (12) 0.0296 (11) −0.0087 (9) 0.0009 (8) −0.0066 (9)
C6 0.0372 (11) 0.0494 (14) 0.0202 (9) 0.0037 (10) 0.0101 (8) −0.0003 (9)
S1 0.0476 (4) 0.0578 (5) 0.0226 (3) 0.0000 (3) 0.0015 (2) 0.0018 (3)
O1A 0.0325 (8) 0.0457 (10) 0.0194 (7) −0.0082 (7) −0.0006 (6) 0.0043 (6)
O2A 0.0340 (8) 0.0530 (11) 0.0213 (7) −0.0147 (7) 0.0015 (6) 0.0006 (7)
C1A 0.0661 (17) 0.0416 (14) 0.0241 (11) 0.0038 (12) 0.0141 (11) 0.0050 (10)
C2A 0.0517 (15) 0.0439 (15) 0.0354 (13) −0.0110 (11) 0.0155 (11) 0.0029 (11)
C3A 0.0409 (11) 0.0239 (9) 0.0170 (8) −0.0072 (8) 0.0112 (7) 0.0013 (7)
C4A 0.0311 (10) 0.0277 (10) 0.0171 (8) 0.0014 (8) 0.0026 (7) 0.0002 (7)
C5A 0.0291 (9) 0.0277 (10) 0.0186 (8) −0.0026 (7) 0.0034 (7) −0.0002 (7)

Geometric parameters (Å, º)

O1—C2 1.329 (2) C5—H5B 0.9800
O1—C5 1.443 (3) C5—H5C 0.9800
O2—C4 1.343 (2) C6—H6A 0.9800
O2—C6 1.441 (3) C6—H6B 0.9800
N1—H1 0.8800 C6—H6C 0.9800
N1—C1 1.357 (2) S1—C1A 1.683 (3)
N1—C2 1.351 (3) S1—C4A 1.708 (2)
N2—C1 1.352 (2) O1A—C5A 1.249 (2)
N2—C4 1.321 (3) O2A—C5A 1.272 (3)
N3—H3A 0.8800 C1A—H1A 0.9500
N3—H3B 0.8800 C1A—C2A 1.357 (4)
N3—C1 1.315 (3) C2A—H2A 0.9500
C2—C3 1.370 (3) C2A—C3A 1.443 (3)
C3—H3 0.9500 C3A—H3AA 0.9500
C3—C4 1.396 (3) C3A—C4A 1.448 (3)
C5—H5A 0.9800 C4A—C5A 1.481 (3)
C2—O1—C5 116.97 (16) H5A—C5—H5C 109.5
C4—O2—C6 117.66 (17) H5B—C5—H5C 109.5
C1—N1—H1 120.3 O2—C6—H6A 109.5
C2—N1—H1 120.3 O2—C6—H6B 109.5
C2—N1—C1 119.40 (16) O2—C6—H6C 109.5
C4—N2—C1 115.98 (17) H6A—C6—H6B 109.5
H3A—N3—H3B 120.0 H6A—C6—H6C 109.5
C1—N3—H3A 120.0 H6B—C6—H6C 109.5
C1—N3—H3B 120.0 C1A—S1—C4A 92.37 (12)
N2—C1—N1 122.80 (18) S1—C1A—H1A 123.6
N3—C1—N1 118.20 (17) C2A—C1A—S1 112.83 (19)
N3—C1—N2 119.00 (18) C2A—C1A—H1A 123.6
O1—C2—N1 111.98 (16) C1A—C2A—H2A 122.5
O1—C2—C3 126.99 (18) C1A—C2A—C3A 115.0 (2)
N1—C2—C3 121.02 (18) C3A—C2A—H2A 122.5
C2—C3—H3 122.3 C2A—C3A—H3AA 126.4
C2—C3—C4 115.38 (18) C2A—C3A—C4A 107.1 (2)
C4—C3—H3 122.3 C4A—C3A—H3AA 126.4
O2—C4—C3 115.91 (18) C3A—C4A—S1 112.68 (14)
N2—C4—O2 118.68 (18) C3A—C4A—C5A 125.34 (18)
N2—C4—C3 125.40 (17) C5A—C4A—S1 121.78 (16)
O1—C5—H5A 109.5 O1A—C5A—O2A 124.37 (18)
O1—C5—H5B 109.5 O1A—C5A—C4A 117.69 (18)
O1—C5—H5C 109.5 O2A—C5A—C4A 117.92 (18)
H5A—C5—H5B 109.5
O1—C2—C3—C4 178.67 (19) C6—O2—C4—N2 −4.2 (3)
N1—C2—C3—C4 −0.2 (3) C6—O2—C4—C3 174.98 (19)
C1—N1—C2—O1 −177.64 (17) S1—C1A—C2A—C3A 0.3 (3)
C1—N1—C2—C3 1.3 (3) S1—C4A—C5A—O1A −167.06 (17)
C1—N2—C4—O2 179.44 (18) S1—C4A—C5A—O2A 11.8 (3)
C1—N2—C4—C3 0.4 (3) C1A—S1—C4A—C3A −1.39 (18)
C2—N1—C1—N2 −1.8 (3) C1A—S1—C4A—C5A 173.67 (19)
C2—N1—C1—N3 177.7 (2) C1A—C2A—C3A—C4A −1.3 (3)
C2—C3—C4—O2 −179.84 (19) C2A—C3A—C4A—S1 1.7 (2)
C2—C3—C4—N2 −0.7 (3) C2A—C3A—C4A—C5A −173.1 (2)
C4—N2—C1—N1 0.9 (3) C3A—C4A—C5A—O1A 7.3 (3)
C4—N2—C1—N3 −178.5 (2) C3A—C4A—C5A—O2A −173.8 (2)
C5—O1—C2—N1 174.26 (18) C4A—S1—C1A—C2A 0.6 (2)
C5—O1—C2—C3 −4.7 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1Ai 0.88 2.83 3.479 (2) 132
N1—H1···O2Ai 0.88 1.76 2.637 (2) 175
N3—H3A···O1Aii 0.88 2.04 2.826 (2) 148
N3—H3B···O1Ai 0.88 1.92 2.798 (2) 173
C5—H5B···O1A 0.98 2.68 3.369 (3) 128
C6—H6B···O1iii 0.98 2.52 3.434 (3) 155
C1A—H1A···O1iv 0.95 2.60 3.365 (3) 138
C1A—H1A···O2Av 0.95 2.60 3.383 (3) 140

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+1; (iv) −x+1/2, y+1/2, −z+1/2; (v) −x−1/2, y+1/2, −z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5442).

References

  1. Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.
  2. Alkorta, I. & Elguero, J. (2003). J. Phys. Chem. 107, 5306–5310.
  3. Desiraju, G. R. (1989). In Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Ebenezer, S. & Muthiah, P. T. (2012). Cryst. Growth Des. 12, 3766–3785.
  6. Etter, M. C. & Adsmond, D. A. (1990). J. Chem. Soc. Chem. Commun. pp. 589–591.
  7. Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). Biochem. J. 187, 533–536. [DOI] [PMC free article] [PubMed]
  8. Jennifer, S. J. & Muthiah, P. T. (2014). Chem. Cent. J. 8, 20. [DOI] [PMC free article] [PubMed]
  9. Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748–754. [DOI] [PubMed]
  10. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  11. Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.
  12. Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984.
  13. Raj, S. B., Muthiah, P. T., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm., 5, 48–53.
  14. Robert, J. J., Raj, S. B. & Muthiah, P. T. (2001). Acta Cryst. E57, o1206–o1208.
  15. Scheinbeim, J. & Schempp, E. (1976). Acta Cryst. B32, 607–609.
  16. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  17. Subashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2007). Acta Cryst. E63, o3775. [DOI] [PMC free article] [PubMed]
  18. Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. E63, o4555–o4556. [DOI] [PubMed]
  19. Umadevi, B., Prabakaran, P. & Muthiah, P. T. (2002). Acta Cryst. C58, o510–o512. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015010907/hg5442sup1.cif

e-71-0o479-sup1.cif (22.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010907/hg5442Isup2.hkl

e-71-0o479-Isup2.hkl (232.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015010907/hg5442Isup3.cml

. DOI: 10.1107/S2056989015010907/hg5442fig1.tif

The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.

b . DOI: 10.1107/S2056989015010907/hg5442fig2.tif

A view of DDAA array along the b axis formed by independent N—H⋯O hydrogen bonds. Symmetry codes are given in Table 1. Dashed lines represent hydrogen bonds.

Cg Cg Cg . DOI: 10.1107/S2056989015010907/hg5442fig3.tif

A view of infinite number of DDAA arrays inter­connected by π–π stacking inter­actions indicated by dotted lines. Cg1⋯Cg1 = 3.4689 (12) Å, where Cg1 represents the centroid of the ring N1/C1/N2/C2/C3/C4.

CCDC reference: 1405154

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES