Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 3;71(Pt 7):o440–o441. doi: 10.1107/S2056989015010038

Crystal structure of (4Z)-4-[(di­methyl­amino)­methyl­idene]-3,5-dioxo-2-phenyl­pyrazolidine-1-carbaldehyde

Joel T Mague a, Shaaban K Mohamed b,c, Mehmet Akkurt d, Eman A Ahmed e,*, Ahmed Khodairy e
PMCID: PMC4518909  PMID: 26279896

Abstract

In the title compound, C13H13N3O3, the pyrazolidine ring adopts a shallow envelope conformation, with the carbonyl C atom closest to the benzene ring as the flap [deviation of 0.126 (1) Å from the plane through the remaining atoms (r.m.s. deviation = 0.011 Å)]. The dihedral angle between the pyrazolidine ring (all atoms) and the benzene ring is 51.09 (4)°. An extremely short (2.08 Å) intra­molecular C—H⋯O contact is seen. In the crystal, mol­ecules are linked by C—H⋯O bonds, generating [010] chains. Extremely weak C—H⋯π inter­actions are also observed.

Keywords: crystal structure, pyrazolo­nes, short intra­molecular C—H⋯O contact, C—H⋯O hydrogen bonds, C—H⋯π inter­actions

Related literature  

For biological studies of azole compounds, see: Patel et al. (2012); Vijesh et al. (2011). For various medicinal and industrial applications of pyrrazole-containing compounds, see: Jin et al. (2011); Zhang et al. (2010); El-Sabbagh et al. (2009); Dekhane et al. (2011); Rostom et al. (2003); Zhou et al. (2010); Finkelstein & Strock (1997).graphic file with name e-71-0o440-scheme1.jpg

Experimental  

Crystal data  

  • C13H13N3O3

  • M r = 259.26

  • Monoclinic, Inline graphic

  • a = 26.4235 (9) Å

  • b = 6.1033 (2) Å

  • c = 16.8611 (6) Å

  • β = 113.272 (1)°

  • V = 2497.96 (15) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.84 mm−1

  • T = 150 K

  • 0.24 × 0.15 × 0.05 mm

Data collection  

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2009) T min = 0.82, T max = 0.96

  • 26486 measured reflections

  • 4565 independent reflections

  • 3979 reflections with I > 2σ(I)

  • R int = 0.021

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.104

  • S = 1.04

  • 4565 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a ); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b ); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015010038/hb7425sup1.cif

e-71-0o440-sup1.cif (211.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010038/hb7425Isup2.hkl

e-71-0o440-Isup2.hkl (250.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015010038/hb7425Isup3.cml

. DOI: 10.1107/S2056989015010038/hb7425fig1.tif

The title mol­ecule with 50% probability ellipsoids.

b . DOI: 10.1107/S2056989015010038/hb7425fig2.tif

Packing viewed down the b axis. C—H⋯π inter­actions are shown by dotted lines.

CCDC reference: 1402532

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

Cg1 is the centroid of the C1/C2/C3/N1/N2 ring.

DHA DH HA D A DHA
C6H6AO2 0.98 2.08 3.016(2) 160
C5H5CO3i 0.98 2.52 3.1803(19) 124
C7H7O2ii 0.95 2.29 3.0663(16) 139
C5H5B Cg1iii 0.98 2.98 3.8823(18) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

supplementary crystallographic information

S1. Comment

Azole compounds are extensively studied and widely used as anti-microbial agents (Patel et al., 2012; Vijesh et al., 2011). Recently, urea derivatives of pyrazole have been reported as potent inhibitors of p38 kinase (Jin et al., 2011). Many of other pyrazole scaffold compounds are reported to have broad spectra of biological activities, such as anti-fungal (Zhang et al., 2010), anti-viral (El-Sabbagh et al., 2009), anti-inflammatory (Dekhane et al., 2011), anti-tumor, anti-HCV (Rostom et al., 2003), herbicidal (Zhou et al., 2010) and insecticidal activities (Finkelstein & Strock, 1997). In view of such findings and as a continuation of our study on the synthesis of potential bio-active heterocyclic molecules, we report here the synthesis and crystal structure of the title compound.

In the title compound, the pyrazolidine ring is slightly twisted with an r.m.s. deviation from the mean plane of the 5 atoms forming the ring of 0.036 Å. The dihedral angle between this plane and that of the phenyl ring is 51.09 (4)° (Fig. 1).

S2. Experimental

To phosphorous oxychloride (0.1 mol, 10 ml), in a conical flask with a magnetic stirrer, dry dimethylformamide (35 ml) was added drop-wise with stirring at 303–308 K for 30 min. Then a solution of 1-phenylpyrazolidine-3,5-dione (0.05 mol, 8.8 g) in dimethylformamide (15 ml), was added drop-wise with continuous stirring while ensuring that the temperature did not exceed 318 K. The reaction mixture was stirred overnight and poured onto crushed ice. The solid product was collected by filtration and recrystallized from ethanol to give colourless crystals in 75% yield (m. p. 453–455 K).

S3. Refinement

H-atoms were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms. The model was refined as a 2-component twin.

Figures

Fig. 1.

Fig. 1.

The title molecule with 50% probability ellipsoids.

Fig. 2.

Fig. 2.

Packing viewed down the b axis. C—H···π interactions are shown by dotted lines.

Crystal data

C13H13N3O3 F(000) = 1088
Mr = 259.26 Dx = 1.379 Mg m3
Monoclinic, C2/c Cu Kα radiation, λ = 1.54178 Å
a = 26.4235 (9) Å Cell parameters from 9978 reflections
b = 6.1033 (2) Å θ = 3.6–72.3°
c = 16.8611 (6) Å µ = 0.84 mm1
β = 113.272 (1)° T = 150 K
V = 2497.96 (15) Å3 Rod, colourless
Z = 8 0.24 × 0.15 × 0.05 mm

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer 4565 independent reflections
Radiation source: INCOATEC IµS micro–focus source 3979 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.021
Detector resolution: 10.4167 pixels mm-1 θmax = 72.3°, θmin = 3.6°
ω scans h = −32→30
Absorption correction: multi-scan (TWINABS; Sheldrick, 2009) k = −7→7
Tmin = 0.82, Tmax = 0.96 l = −20→20
26486 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.7347P] where P = (Fo2 + 2Fc2)/3
4565 reflections (Δ/σ)max < 0.001
175 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Experimental. Analysis of 3764 reflections having I/σ(I) > 12 and chosen fromthe full data set with CELL_NOW (Sheldrick, 2008) showedthe crystal to belong to the monoclinic system and to be twinnedby a 180° rotation about the c* axis. The raw data wereprocessed using the multi-component version of SAINT undercontrol of the two-component orientation file generated byCELL_NOW.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. H-atoms were placed incalculated positions (C—H = 0.95 - 0.98 Å) and included as ridingcontributions with isotropic displacement parameters 1.2 - 1.5 times thoseof the attached carbon atoms. The model was refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.43175 (4) 0.79022 (16) 0.28697 (7) 0.0296 (2)
O2 0.52891 (4) 0.15926 (16) 0.42906 (7) 0.0324 (3)
O3 0.37052 (4) 0.10698 (18) 0.39957 (6) 0.0316 (3)
N1 0.40831 (4) 0.46179 (18) 0.33205 (7) 0.0236 (3)
N2 0.43832 (4) 0.26978 (18) 0.36829 (7) 0.0239 (3)
N3 0.59876 (5) 0.64368 (19) 0.42207 (8) 0.0265 (3)
C1 0.44610 (5) 0.6170 (2) 0.32599 (8) 0.0233 (3)
C2 0.50109 (5) 0.5284 (2) 0.37179 (8) 0.0235 (3)
C3 0.49589 (5) 0.3060 (2) 0.39467 (8) 0.0242 (3)
C4 0.54556 (5) 0.6654 (2) 0.38045 (9) 0.0249 (3)
H4 0.5349 0.8001 0.3502 0.030*
C5 0.63539 (6) 0.8195 (3) 0.41755 (10) 0.0344 (3)
H5A 0.6133 0.9445 0.3861 0.052*
H5B 0.6580 0.7661 0.3874 0.052*
H5C 0.6594 0.8652 0.4761 0.052*
C6 0.62712 (6) 0.4598 (3) 0.47712 (10) 0.0344 (3)
H6A 0.6002 0.3471 0.4750 0.052*
H6B 0.6462 0.5109 0.5367 0.052*
H6C 0.6540 0.3978 0.4566 0.052*
C7 0.41757 (5) 0.1104 (2) 0.40511 (8) 0.0255 (3)
H7 0.4416 −0.0034 0.4367 0.031*
C8 0.35475 (5) 0.4373 (2) 0.26388 (8) 0.0235 (3)
C9 0.34078 (5) 0.2502 (2) 0.21315 (9) 0.0275 (3)
H9 0.3667 0.1349 0.2227 0.033*
C10 0.28831 (6) 0.2336 (3) 0.14813 (9) 0.0311 (3)
H10 0.2783 0.1062 0.1129 0.037*
C11 0.25040 (6) 0.4019 (3) 0.13433 (9) 0.0311 (3)
H11 0.2146 0.3899 0.0897 0.037*
C12 0.26490 (6) 0.5880 (2) 0.18593 (10) 0.0308 (3)
H12 0.2390 0.7031 0.1765 0.037*
C13 0.31717 (5) 0.6066 (2) 0.25127 (9) 0.0271 (3)
H13 0.3271 0.7333 0.2868 0.033*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0274 (5) 0.0239 (5) 0.0339 (5) 0.0033 (4) 0.0083 (4) 0.0053 (4)
O2 0.0221 (5) 0.0284 (5) 0.0409 (6) 0.0034 (4) 0.0063 (4) 0.0100 (4)
O3 0.0259 (5) 0.0404 (6) 0.0290 (5) −0.0054 (4) 0.0115 (4) 0.0019 (4)
N1 0.0201 (5) 0.0227 (6) 0.0262 (6) 0.0027 (4) 0.0072 (4) 0.0031 (4)
N2 0.0190 (5) 0.0234 (6) 0.0267 (6) 0.0013 (4) 0.0062 (4) 0.0053 (4)
N3 0.0232 (5) 0.0306 (6) 0.0260 (6) −0.0047 (4) 0.0099 (4) −0.0026 (5)
C1 0.0241 (6) 0.0232 (6) 0.0227 (6) 0.0005 (5) 0.0093 (5) −0.0009 (5)
C2 0.0211 (6) 0.0252 (7) 0.0233 (6) 0.0009 (5) 0.0077 (5) 0.0017 (5)
C3 0.0206 (6) 0.0268 (6) 0.0231 (6) −0.0003 (5) 0.0063 (5) 0.0013 (5)
C4 0.0266 (6) 0.0250 (6) 0.0233 (6) −0.0015 (5) 0.0102 (5) −0.0005 (5)
C5 0.0296 (7) 0.0432 (8) 0.0314 (7) −0.0132 (6) 0.0132 (6) −0.0043 (7)
C6 0.0237 (6) 0.0348 (8) 0.0386 (8) 0.0007 (6) 0.0059 (6) −0.0005 (6)
C7 0.0254 (6) 0.0271 (7) 0.0216 (6) −0.0029 (5) 0.0066 (5) 0.0022 (5)
C8 0.0195 (6) 0.0289 (7) 0.0227 (6) 0.0010 (5) 0.0090 (5) 0.0033 (5)
C9 0.0247 (6) 0.0310 (7) 0.0258 (7) 0.0054 (5) 0.0089 (5) 0.0001 (5)
C10 0.0289 (7) 0.0344 (8) 0.0273 (7) −0.0001 (6) 0.0082 (6) −0.0029 (6)
C11 0.0212 (6) 0.0397 (8) 0.0281 (7) 0.0010 (6) 0.0053 (5) 0.0056 (6)
C12 0.0222 (6) 0.0319 (7) 0.0383 (8) 0.0060 (5) 0.0121 (6) 0.0072 (6)
C13 0.0240 (6) 0.0263 (7) 0.0326 (7) 0.0018 (5) 0.0128 (6) 0.0007 (5)

Geometric parameters (Å, º)

O1—C1 1.2234 (17) C5—H5C 0.9800
O2—C3 1.2247 (17) C6—H6A 0.9800
O3—C7 1.2096 (17) C6—H6B 0.9800
N1—C1 1.4094 (17) C6—H6C 0.9800
N1—N2 1.4116 (15) C7—H7 0.9500
N1—C8 1.4356 (16) C8—C9 1.387 (2)
N2—C7 1.3789 (17) C8—C13 1.3898 (18)
N2—C3 1.4236 (16) C9—C10 1.3903 (19)
N3—C4 1.3064 (17) C9—H9 0.9500
N3—C6 1.4607 (19) C10—C11 1.389 (2)
N3—C5 1.4669 (18) C10—H10 0.9500
C1—C2 1.4538 (17) C11—C12 1.389 (2)
C2—C4 1.4019 (18) C11—H11 0.9500
C2—C3 1.4324 (19) C12—C13 1.390 (2)
C4—H4 0.9500 C12—H12 0.9500
C5—H5A 0.9800 C13—H13 0.9500
C5—H5B 0.9800
C1—N1—N2 107.25 (10) N3—C6—H6A 109.5
C1—N1—C8 120.96 (11) N3—C6—H6B 109.5
N2—N1—C8 117.89 (10) H6A—C6—H6B 109.5
C7—N2—N1 121.70 (11) N3—C6—H6C 109.5
C7—N2—C3 122.33 (11) H6A—C6—H6C 109.5
N1—N2—C3 110.76 (10) H6B—C6—H6C 109.5
C4—N3—C6 126.32 (12) O3—C7—N2 123.82 (13)
C4—N3—C5 119.34 (12) O3—C7—H7 118.1
C6—N3—C5 114.31 (12) N2—C7—H7 118.1
O1—C1—N1 122.81 (12) C9—C8—C13 121.19 (12)
O1—C1—C2 129.76 (12) C9—C8—N1 121.16 (11)
N1—C1—C2 107.42 (11) C13—C8—N1 117.64 (12)
C4—C2—C3 134.64 (12) C8—C9—C10 119.07 (13)
C4—C2—C1 117.00 (12) C8—C9—H9 120.5
C3—C2—C1 108.28 (11) C10—C9—H9 120.5
O2—C3—N2 120.52 (12) C11—C10—C9 120.43 (14)
O2—C3—C2 133.97 (12) C11—C10—H10 119.8
N2—C3—C2 105.51 (11) C9—C10—H10 119.8
N3—C4—C2 132.47 (13) C10—C11—C12 119.85 (13)
N3—C4—H4 113.8 C10—C11—H11 120.1
C2—C4—H4 113.8 C12—C11—H11 120.1
N3—C5—H5A 109.5 C11—C12—C13 120.33 (13)
N3—C5—H5B 109.5 C11—C12—H12 119.8
H5A—C5—H5B 109.5 C13—C12—H12 119.8
N3—C5—H5C 109.5 C8—C13—C12 119.12 (13)
H5A—C5—H5C 109.5 C8—C13—H13 120.4
H5B—C5—H5C 109.5 C12—C13—H13 120.4
C1—N1—N2—C7 161.44 (12) C1—C2—C3—N2 −4.26 (14)
C8—N1—N2—C7 −57.85 (16) C6—N3—C4—C2 −2.8 (2)
C1—N1—N2—C3 6.44 (14) C5—N3—C4—C2 179.28 (14)
C8—N1—N2—C3 147.14 (11) C3—C2—C4—N3 −9.4 (3)
N2—N1—C1—O1 170.26 (12) C1—C2—C4—N3 174.34 (14)
C8—N1—C1—O1 31.01 (19) N1—N2—C7—O3 10.0 (2)
N2—N1—C1—C2 −8.87 (14) C3—N2—C7—O3 162.12 (13)
C8—N1—C1—C2 −148.12 (11) C1—N1—C8—C9 111.30 (15)
O1—C1—C2—C4 6.4 (2) N2—N1—C8—C9 −23.84 (17)
N1—C1—C2—C4 −174.52 (11) C1—N1—C8—C13 −69.53 (16)
O1—C1—C2—C3 −170.80 (13) N2—N1—C8—C13 155.33 (12)
N1—C1—C2—C3 8.25 (14) C13—C8—C9—C10 0.6 (2)
C7—N2—C3—O2 24.0 (2) N1—C8—C9—C10 179.72 (13)
N1—N2—C3—O2 178.78 (12) C8—C9—C10—C11 −0.2 (2)
C7—N2—C3—C2 −156.09 (12) C9—C10—C11—C12 −0.2 (2)
N1—N2—C3—C2 −1.27 (14) C10—C11—C12—C13 0.0 (2)
C4—C2—C3—O2 −0.8 (3) C9—C8—C13—C12 −0.7 (2)
C1—C2—C3—O2 175.68 (15) N1—C8—C13—C12 −179.87 (12)
C4—C2—C3—N2 179.21 (14) C11—C12—C13—C8 0.4 (2)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1/C2/C3/N1/N2 ring.

D—H···A D—H H···A D···A D—H···A
C6—H6A···O2 0.98 2.08 3.016 (2) 160
C5—H5C···O3i 0.98 2.52 3.1803 (19) 124
C7—H7···O2ii 0.95 2.29 3.0663 (16) 139
C5—H5B···Cg1iii 0.98 2.98 3.8823 (18) 153

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+1; (iii) −x+1, y, −z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7425).

References

  1. Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dekhane, D. V., Pawar, S. S., Gupta, S., Shingare, M. S., Patil, C. R. & Thore, S. N. (2011). Bioorg. Med. Chem. Lett. 21, 6527–6532. [DOI] [PubMed]
  4. El-Sabbagh, O. I., Baraka, M. M., Ibrahim, S. M., Pannecouque, C., Andrei, G., Snoeck, R., Balzarini, J. & Rashad, A. A. (2009). Eur. J. Med. Chem. 44, 3746–3753. [DOI] [PubMed]
  5. Finkelstein, B. L. & Strock, C. J. (1997). Pestic. Sci. 50, 324–328.
  6. Jin, C. H., Krishnaiah, M., Sreenu, D., Rao, K. S., Subrahmanyam, V. B., Park, C.-Y., Son, J.-Y., Sheen, Y. Y. & Kim, D.-K. (2011). Bioorg. Med. Chem. 19, 2633–2640. [DOI] [PubMed]
  7. Patel, P., Gor, D. & Patel, P. S. (2012). Journal of Chemical and Pharmaceutical Research, 4, 2906-2910.
  8. Rostom, S. A. F., Shalaby, M. A. & El-Demellawy, M. A. (2003). Eur. J. Med. Chem. 38, 959–974. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Germany.
  11. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  12. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  13. Vijesh, A. M., Isloor, A. M., Telkar, S., Peethambar, S. K., Rai, S. & Isloor, N. (2011). Eur. J. Med. Chem. 46, 3531–3536. [DOI] [PubMed]
  14. Zhang, C.-Y., Liu, X.-H., Wang, B.-L., Wang, S.-H. & Li, Z.-M. (2010). Chem. Biol. Drug Des. 75, 489–493. [DOI] [PubMed]
  15. Zhou, Y., Xue, N., Wang, G. & Qu, J. (2010). J. Chem. Res. (S), 34, 684–688.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015010038/hb7425sup1.cif

e-71-0o440-sup1.cif (211.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010038/hb7425Isup2.hkl

e-71-0o440-Isup2.hkl (250.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015010038/hb7425Isup3.cml

. DOI: 10.1107/S2056989015010038/hb7425fig1.tif

The title mol­ecule with 50% probability ellipsoids.

b . DOI: 10.1107/S2056989015010038/hb7425fig2.tif

Packing viewed down the b axis. C—H⋯π inter­actions are shown by dotted lines.

CCDC reference: 1402532

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES