Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 13;71(Pt 7):o474. doi: 10.1107/S2056989015010865

Crystal structure of 3-acet­oxy-2-methyl­benzoic acid

Matheswaran Saranya a, Annamalai Subashini a,*, Chidambaram Arunagiri b, Packianathan Thomas Muthiah c
PMCID: PMC4518910  PMID: 26279915

Abstract

In the title mol­ecule, C10H10O4, the carb­oxy­lic acid group is twisted by 11.37 (15)° from the plane of the benzene ring and the acet­oxy group is twisted from this plane by 86.60 (17)°. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers with the expected R 2 2(8) graph-set motif.

Keywords: crystal structure, ester, acet­oxy, benzoic acid, hydrogen bonding, graph-set motifs

Related literature  

For related structures, see: Chiari et al. (1981); Fronczek et al. (1982); Montis & Hursthouse (2012); Shoaib et al. (2014); Wheatley (1964).graphic file with name e-71-0o474-scheme1.jpg

Experimental  

Crystal data  

  • C10H10O4

  • M r = 194.18

  • Orthorhombic, Inline graphic

  • a = 7.754 (2) Å

  • b = 11.346 (3) Å

  • c = 21.187 (6) Å

  • V = 1864.0 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.38 × 0.22 × 0.06 mm

Data collection  

  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.960, T max = 0.994

  • 14775 measured reflections

  • 2131 independent reflections

  • 1017 reflections with I > 2σ(I)

  • R int = 0.095

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.063

  • wR(F 2) = 0.184

  • S = 1.03

  • 2131 reflections

  • 133 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015010865/lh5765sup1.cif

e-71-0o474-sup1.cif (17.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010865/lh5765Isup2.hkl

e-71-0o474-Isup2.hkl (102.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015010865/lh5765Isup3.cml

. DOI: 10.1107/S2056989015010865/lh5765fig1.tif

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

x y z . DOI: 10.1107/S2056989015010865/lh5765fig2.tif

Part of the crystal structure with hydrogen bonds shown as dashed lines [symmetry code: (i) −x, −y + 2, −z + 1].

CCDC reference: 1405114

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O1H1O2i 0.93(5) 1.70(5) 2.622(3) 176(3)

Symmetry code: (i) Inline graphic.

Acknowledgments

MS thanks Collegiate Education Chennai, Tamil Nadu, for financial support (College Research Student Fellowship Ref· No. 28696/K2/12).

supplementary crystallographic information

S1. Comment

Crystal structures of 2-acetoxy-3-methylbenzoic acid (3-methyl aspirin) (Chiari et al., 1981) and 2-acetoxy-6-methylbenzoic acid (6-methyl aspirin) have already been reported in the literature (Fronczek et al. 1982). Aspirin is a unique drug as it is effective against pain, it has anti-pyretic and anti-inflammatory properties, and it is widely used during heart attacks or strokes. The crystal and molecular structure of aspirin has been reported by Wheatley in 1964. We report herein on the crystal structure of the title molecule.

The molecular structure of the title compound is shown in Fig. 1. There are some very definite angular distortions within the molecule, both in the benzene ring and the carboxyl group, but more particularly, in the acetyl group. The internal angle at C3 (123.6 (3)°) is greater than 120° (the expected value in terms of hybridization principles), and that at C2 is less (116.2 (2)°). The carboxyl group is bent away from the methyl and acetyl group, possibly by repulsion between O1 and O2, so that there is a substantial increase in the angle C2—C1—C7, and a decrease in C6—C1—C7. The angle O1—C7—O2 is greater than 120°, again suggesting repulsion between oxygen atoms. The carboxyl group is twisted by 11.37 (15)° out of the plane of the benzene ring, and the acetoxy group is twisted out of plane by 86.60 (17)°.

Certain torsion angles reveal conformational changes in the carboxyl and acetoxy groups caused by methyl substitution at C2. Atoms C7 and C8 lie in the plane of the benzene ring and O3 is slightly out of plane. The deviations of atoms C7, C8 and O3 from the least-squares plane of the benzene ring are -0.015 (3), 0.010 (3) and 0.111 (2) Å, respectively.

A similar situation is exists in 2-acetoxy-6-methyl benzoic acid (Fronczek et al. 1982). Comparison of the C2—C3—O3—C9 angle (94.8 (3)°) reveals that the acetoxy group is skewed slightly away from the methyl group in this structure. There is also a slight but significant twist in the ester backbone, C3—O3—C9—C10 = -178.3 (3)°, present in the title compound, a result quite similar to that in 6-methyl aspirin (Fronczek et al. 1982). In the crystal, pairs of O—H···O hydrogen bonds form inversion dimers with the expected R22(8) graph-set motif (Fig. 2). The carboxyl oxygen atom O1 acts as a donor in an intermolecular hydrogen bond to atom O2, producing an R22(8) ring, thus creating a hydrogen-bonded dimer. This type of motif is commonly observed (Shoaib et al., 2014; Montis & Hursthouse et al., 2012).

S2. Experimental

A hot methanol solution (20 ml) of 3-acetoxy-2-methyl benzoic acid [3 A2MBA] (1 mm 0.194 g, Alfa aesar) was stirred at room temperature for 20 minutes. The resulting solution was kept as such for crystallization. After a few days colourless block-shaped crystals were appeared from the mother liquor.

S3. Refinement

H atoms bonded to C atoms were positioned geometrically and treated as riding with C—H = 0.93–0.96Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). The hydroxyl H atom was refined independently with an isotropic displacement parameter.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Part of the crystal structure with hydrogen bonds shown as dashed lines [symmetry code: (i) -x, -y + 2, -z + 1].

Crystal data

C10H10O4 F(000) = 816
Mr = 194.18 Dx = 1.384 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab θ = 1.9–27.5°
a = 7.754 (2) Å µ = 0.11 mm1
b = 11.346 (3) Å T = 293 K
c = 21.187 (6) Å Block, colourless
V = 1864.0 (9) Å3 0.38 × 0.22 × 0.06 mm
Z = 8

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 2131 independent reflections
Radiation source: fine-focus sealed tube 1017 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.095
φ and ω scans θmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −10→10
Tmin = 0.960, Tmax = 0.994 k = −13→14
14775 measured reflections l = −27→27

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0778P)2 + 0.1948P] where P = (Fo2 + 2Fc2)/3
2131 reflections (Δ/σ)max < 0.001
133 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.2256 (3) 0.9740 (2) 0.49706 (10) 0.0671 (8)
O2 0.0048 (2) 0.88776 (19) 0.45072 (9) 0.0665 (8)
O3 0.3342 (3) 0.54490 (19) 0.34035 (9) 0.0677 (8)
O4 0.3190 (4) 0.6303 (3) 0.24740 (11) 0.1057 (13)
C1 0.2878 (3) 0.8175 (3) 0.42969 (12) 0.0500 (9)
C2 0.2399 (3) 0.7163 (3) 0.39650 (12) 0.0523 (10)
C3 0.3732 (4) 0.6518 (3) 0.36983 (12) 0.0547 (10)
C4 0.5439 (4) 0.6833 (3) 0.37411 (13) 0.0659 (13)
C5 0.5868 (4) 0.7823 (3) 0.40696 (14) 0.0658 (11)
C6 0.4601 (3) 0.8482 (3) 0.43437 (13) 0.0565 (10)
C7 0.1608 (4) 0.8942 (3) 0.45996 (12) 0.0534 (10)
C8 0.0586 (4) 0.6754 (3) 0.38841 (14) 0.0688 (11)
C9 0.3081 (4) 0.5436 (4) 0.27810 (16) 0.0690 (14)
C10 0.2636 (5) 0.4254 (3) 0.25496 (17) 0.0927 (17)
H1 0.141 (6) 1.022 (4) 0.514 (2) 0.139 (18)*
H4 0.62880 0.63780 0.35490 0.0790*
H5 0.70160 0.80480 0.41070 0.0790*
H6 0.49030 0.91550 0.45680 0.0680*
H8A 0.00260 0.72250 0.35680 0.1030*
H8B −0.00190 0.68300 0.42770 0.1030*
H8C 0.05830 0.59430 0.37540 0.1030*
H10A 0.23420 0.42970 0.21100 0.1390*
H10B 0.16700 0.39560 0.27840 0.1390*
H10C 0.36050 0.37380 0.26040 0.1390*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0434 (12) 0.0748 (16) 0.0830 (14) 0.0033 (11) −0.0008 (10) −0.0255 (12)
O2 0.0386 (12) 0.0773 (15) 0.0836 (14) 0.0004 (10) 0.0012 (9) −0.0192 (12)
O3 0.0830 (15) 0.0599 (15) 0.0602 (13) 0.0060 (12) 0.0015 (10) −0.0054 (10)
O4 0.151 (3) 0.102 (2) 0.0642 (15) −0.014 (2) −0.0150 (15) 0.0037 (16)
C1 0.0414 (15) 0.0559 (18) 0.0527 (15) 0.0009 (13) 0.0003 (11) −0.0004 (13)
C2 0.0460 (16) 0.0602 (19) 0.0507 (15) 0.0017 (14) 0.0011 (12) 0.0033 (14)
C3 0.0574 (19) 0.0575 (19) 0.0492 (15) 0.0071 (15) 0.0023 (12) −0.0001 (14)
C4 0.0500 (19) 0.082 (3) 0.0658 (19) 0.0084 (17) 0.0086 (13) −0.0084 (17)
C5 0.0405 (16) 0.079 (2) 0.078 (2) 0.0027 (16) 0.0030 (14) −0.0089 (18)
C6 0.0455 (16) 0.0625 (19) 0.0615 (17) 0.0021 (14) 0.0026 (13) −0.0065 (15)
C7 0.0439 (17) 0.0598 (19) 0.0565 (16) 0.0001 (15) 0.0012 (13) −0.0051 (14)
C8 0.0564 (19) 0.070 (2) 0.080 (2) −0.0075 (16) 0.0007 (14) −0.0101 (17)
C9 0.069 (2) 0.079 (3) 0.059 (2) 0.0072 (19) 0.0002 (15) −0.0072 (19)
C10 0.095 (3) 0.090 (3) 0.093 (3) −0.001 (2) −0.010 (2) −0.030 (2)

Geometric parameters (Å, º)

O1—C7 1.300 (4) C4—C5 1.363 (5)
O2—C7 1.228 (3) C5—C6 1.364 (4)
O3—C3 1.397 (4) C9—C10 1.469 (6)
O3—C9 1.334 (4) C4—H4 0.9300
O4—C9 1.182 (5) C5—H5 0.9300
O1—H1 0.93 (5) C6—H6 0.9300
C1—C2 1.397 (4) C8—H8A 0.9600
C1—C6 1.384 (3) C8—H8B 0.9600
C1—C7 1.462 (4) C8—H8C 0.9600
C2—C8 1.490 (4) C10—H10A 0.9600
C2—C3 1.387 (4) C10—H10B 0.9600
C3—C4 1.374 (4) C10—H10C 0.9600
O1···O2i 2.622 (3) C7···C5ix 3.506 (4)
O2···C7i 3.369 (4) C7···O3ii 3.057 (4)
O2···C8 2.779 (4) C8···C9 3.383 (5)
O2···O1i 2.622 (3) C8···O2 2.779 (4)
O2···O3ii 3.195 (3) C9···C8 3.383 (5)
O3···C7iii 3.057 (4) C10···O4iii 3.413 (5)
O3···O2iii 3.195 (3) C6···H8Cii 3.0600
O3···C1iii 3.337 (4) C6···H8Bviii 2.9600
O4···C4iv 3.397 (4) C7···H8B 2.7900
O4···C4 3.257 (4) C7···H1i 2.59 (5)
O4···C10ii 3.413 (5) C9···H8C 2.8900
O4···C2 3.363 (4) H1···O1i 2.85 (5)
O1···H6 2.3200 H1···O2i 1.70 (5)
O1···H6v 2.7200 H1···C7i 2.59 (5)
O1···H1i 2.85 (5) H1···H1i 2.32 (7)
O2···H5vi 2.6700 H4···O4vii 2.6200
O2···H8B 2.3700 H5···O2x 2.6700
O2···H1i 1.70 (5) H6···O1 2.3200
O2···H8A 2.7300 H6···O1v 2.7200
O3···H8C 2.3300 H8A···O2 2.7300
O4···H4iv 2.6200 H8A···O4iv 2.8300
O4···H8Avii 2.8300 H8B···O2 2.3700
C1···O3ii 3.337 (4) H8B···C7 2.7900
C2···O4 3.363 (4) H8B···C6ix 2.9600
C3···C7iii 3.501 (5) H8C···O3 2.3300
C4···O4 3.257 (4) H8C···C9 2.8900
C4···O4vii 3.397 (4) H8C···C6iii 3.0600
C5···C7viii 3.506 (4) H10B···H10Civ 2.5300
C7···C3ii 3.501 (5) H10C···H10Bvii 2.5300
C7···O2i 3.369 (4)
C3—O3—C9 119.0 (3) O3—C9—O4 121.6 (4)
C7—O1—H1 112 (3) C3—C4—H4 121.00
C2—C1—C7 122.1 (2) C5—C4—H4 121.00
C6—C1—C7 118.0 (3) C4—C5—H5 120.00
C2—C1—C6 120.0 (3) C6—C5—H5 120.00
C1—C2—C8 124.4 (2) C1—C6—H6 119.00
C3—C2—C8 119.5 (3) C5—C6—H6 119.00
C1—C2—C3 116.2 (2) C2—C8—H8A 109.00
O3—C3—C2 118.6 (3) C2—C8—H8B 109.00
O3—C3—C4 117.6 (3) C2—C8—H8C 109.00
C2—C3—C4 123.6 (3) H8A—C8—H8B 110.00
C3—C4—C5 118.9 (3) H8A—C8—H8C 109.00
C4—C5—C6 119.6 (3) H8B—C8—H8C 110.00
C1—C6—C5 121.8 (3) C9—C10—H10A 109.00
O1—C7—C1 114.8 (3) C9—C10—H10B 109.00
O2—C7—C1 123.9 (3) C9—C10—H10C 109.00
O1—C7—O2 121.3 (3) H10A—C10—H10B 110.00
O3—C9—C10 112.1 (3) H10A—C10—H10C 109.00
O4—C9—C10 126.4 (3) H10B—C10—H10C 110.00
C9—O3—C3—C2 94.8 (3) C2—C1—C7—O2 −12.0 (5)
C9—O3—C3—C4 −89.2 (3) C6—C1—C7—O1 −10.6 (4)
C3—O3—C9—O4 0.8 (5) C6—C1—C7—O2 167.6 (3)
C3—O3—C9—C10 −178.3 (3) C1—C2—C3—O3 175.0 (2)
C6—C1—C2—C3 0.1 (4) C1—C2—C3—C4 −0.7 (4)
C6—C1—C2—C8 −179.8 (3) C8—C2—C3—O3 −5.1 (4)
C7—C1—C2—C3 179.7 (3) C8—C2—C3—C4 179.2 (3)
C7—C1—C2—C8 −0.2 (4) O3—C3—C4—C5 −174.9 (3)
C2—C1—C6—C5 0.4 (4) C2—C3—C4—C5 0.9 (5)
C7—C1—C6—C5 −179.3 (3) C3—C4—C5—C6 −0.5 (5)
C2—C1—C7—O1 169.8 (3) C4—C5—C6—C1 −0.2 (5)

Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x+1/2, y+1/2, z; (iii) −x+1/2, y−1/2, z; (iv) x−1/2, y, −z+1/2; (v) −x+1, −y+2, −z+1; (vi) x−1, y, z; (vii) x+1/2, y, −z+1/2; (viii) x+1/2, −y+3/2, −z+1; (ix) x−1/2, −y+3/2, −z+1; (x) x+1, y, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.93 (5) 1.70 (5) 2.622 (3) 176 (3)

Symmetry code: (i) −x, −y+2, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5765).

References

  1. Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chiari, G., Fronczek, F. R., Davis, S. T. & Gandour, R. D. (1981). Acta Cryst. B37, 1623–1625.
  3. Fronczek, F. R., Merrill, M. L. & Gandour, R. D. (1982). Acta Cryst. B38, 1337–1339.
  4. Montis, R. & Hursthouse, M. B. (2012). CrystEngComm, 14, 5242–5254.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Shoaib, M., Shah, I., Shah, S. W. A., Tahir, M. N., Ullah, S. & Ayaz, M. (2014). Acta Cryst. E70, o1153. [DOI] [PMC free article] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Wheatley, P. J. (1964). J. Chem. Soc. pp. 6036–6048.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015010865/lh5765sup1.cif

e-71-0o474-sup1.cif (17.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010865/lh5765Isup2.hkl

e-71-0o474-Isup2.hkl (102.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015010865/lh5765Isup3.cml

. DOI: 10.1107/S2056989015010865/lh5765fig1.tif

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

x y z . DOI: 10.1107/S2056989015010865/lh5765fig2.tif

Part of the crystal structure with hydrogen bonds shown as dashed lines [symmetry code: (i) −x, −y + 2, −z + 1].

CCDC reference: 1405114

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES