Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 30;71(Pt 7):o528–o529. doi: 10.1107/S2056989015011937

Crystal structure of (E)-dodec-2-enoic acid

Marcel Sonneck a, Tim Peppel a,*, Anke Spannenberg a, Sebastian Wohlrab a
PMCID: PMC4518913  PMID: 26279945

Abstract

The crystal structure of (E)-dodec-2-enoic acid, C12H22O2, an α,β-unsaturated carb­oxy­lic acid with a melting point (295 K) near room temperature, is characterized by carb­oxy­lic acid inversion dimers linked by pairs of O—H⋯O hydrogen bonds. The carb­oxy­lic acid group and the following three carbon atoms of the chain of the (E)-dodec-2-enoic acid mol­ecule lie almost in one plane (r.m.s. deviation for the four C atoms and two O atoms = 0.012 Å), whereas the remaining carbon atoms of the hydro­carbon chain adopt a nearly fully staggered conformation [moduli of torsion angles vary from 174.01 (13) to 179.97 (13)°].

Keywords: crystal structure, hydrogen bonding, dimer, unsaturated carb­oxy­lic acid, fatty acid

Related literature  

For the synthesis of unsaturated α,β-carb­oxy­lic acids including the title compound by adapted routes established by Knoevenagel (1898) and Doebner (1902), see: Shabtai et al. (1981). For crystal structure determinations of related α,β-unsaturated carb­oxy­lic acids, see, for acrylic acid: Higgs et al. (1963), Chatani et al. (1963), Boese et al. (1999), or Oswald et al. (2011); see, for crotonic acid: Shimizu et al. (1974); see, for (E)-pent-2-enoic acid: Peppel et al. (2015a ); see, for (E)-hex-2-enoic acid: Peppel et al. (2015b ); see, for (E)-undecen-2-enoic acid: Sonneck et al. (2015). For structures of co-crystals containing (E)-hex-2-enoic acid, see: Aakeröy et al. (2003), or Stanton & Bak (2008).graphic file with name e-71-0o528-scheme1.jpg

Experimental  

Crystal data  

  • C12H22O2

  • M r = 198.29

  • Triclinic, Inline graphic

  • a = 4.6475 (2) Å

  • b = 5.4169 (2) Å

  • c = 24.7041 (10) Å

  • α = 91.547 (2)°

  • β = 91.788 (2)°

  • γ = 102.3158 (19)°

  • V = 606.96 (4) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.56 mm−1

  • T = 150 K

  • 0.44 × 0.30 × 0.12 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014) T min = 0.80, T max = 0.94

  • 12048 measured reflections

  • 2117 independent reflections

  • 1964 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.131

  • S = 1.13

  • 2117 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: SHELXL2014/7; software used to prepare material for publication: SHELXL2014/7.

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015011937/hb7452sup1.cif

e-71-0o528-sup1.cif (365.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015011937/hb7452Isup2.hkl

e-71-0o528-Isup2.hkl (169.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015011937/hb7452Isup3.cml

. DOI: 10.1107/S2056989015011937/hb7452fig1.tif

Mol­ecular structure of the title compound with atom labelling and displacement ellipsoids drawn at 50% probability level.

. DOI: 10.1107/S2056989015011937/hb7452fig2.tif

Packing diagram showing inter­molecular hydrogen bonding.

CCDC reference: 1407997

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O1H1O2i 0.84 1.80 2.6319(15) 170

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank P. Thiele (University of Rostock) for the DSC measurements and Professor Dr. J. G. de Vries (LIKAT) for helpful support.

supplementary crystallographic information

S1. Synthesis and crystallization

Malonic acid (25.0 g, 240.2 mmol, 1.0 eq) is dissolved in dry pyridine (38.0 g, 480.5 mmol, 2.0 eq) at room temperature in a three-necked flask equipped with a magnetic stir bar and a reflux condenser under a mild flow of argon. Decanal (37.5 g, 240.2 mmol, 1.0 eq) is then added in one portion and the resulting clear solution is further stirred for 72 h at room temperature under argon. Afterwards, the resulting light yellow to orange solution is brought to an acidic pH value by adding phospho­ric acid at 0 °C (42.5wt. %, 138.5 g, 600.6 mmol, 2.5 eq). The resulting two layers are extracted three times with 150 mL portions of ethyl acetate and reduced to a volume of ca. 150 mL in vacuo. To remove impurities from aldol condensation the raw acid is converted into the corresponding sodium salt by addition of an aqueous solution of sodium carbonate (20.4 g, 192.2 mmol, 0.8 eq in 200 mL). After stirring for 30 minutes the water phase is separated and extracted three times with 150 mL portions of ethyl acetate. The water phase is then acidified with concentrated hydro­chloric acid (37.0wt. %, 35.5 g, 360.4 mmol, 1.5 eq), the organic phase is separated and the water phase is again extracted three times with 150 mL portions of ethyl acetate. The combined organic phases are dried over Na2SO4 and evaporated to dryness under diminished pressure. The resulting raw product is further purified by distillation in vacuo yielding the product in purity >99% (GC). M. p. 22 °C. 1H NMR (400 MHz, CDCl3): δ = 12.15 (br s, 1H, OH); 7.09 (dt, 3J = 15.6 Hz, 3J = 7.0 Hz, 1H, -CH-); 5.82 (dt, 3J = 15.6 Hz, 4J = 1.6 Hz, 1H, -CH-); 2.26-2.19 (m, 2H, -CH2-); 1.50-1.42 (m, 2H, -CH2-); 1.32-1.24 (m, 12H, 6x -CH2-); 0.90-0.86 (m, 3H, -CH3-). 13C NMR (100 MHz, CDCl3): δ = 172.53 (CO); 152.68 (CH); 120.76 (CH); 32.47 (CH2); 32.02 (CH2); 29.61 (CH2), 29.52 (CH2), 29.43 (CH2); 29.29 (CH2); 28.02 (CH2); 22.81 (CH2); 14.23 (CH3). MS (EI, 70eV): m/z = 198 (M+, 0), 99 (16), 98 (12), 97 (17), 96 (14), 95 (11), 86 (17), 84 (18), 83 (16), 82 (12), 81 (20), 73 (34), 71 (13), 70 (15), 69 (21), 68 (18), 67 (20), 57 (29), 56 (22), 55 (47), 54 (11), 53 (20), 45 (14), 43 (70), 42 (19), 41 (100), 40 (14), 39 (52), 29 (58). HRMS (ESI-TOF/MS): calculated for C12H22O2 ([M—H]-) 197.1547, found 197.15481. Elemental analysis for C12H22O2 % (calc.): C 72.53 (72.68); H 11.24 (11.18). Suitable single crystals were grown by slow evaporation of an ethano­lic solution at -30 °C over one week.

S2. Refinement

H atoms were placed in idealized positions with d(C—H) = 0.95 Å (CH), 0.99 Å (CH2), 0.98 Å (CH3) and refined using a riding model with Uiso(H) fixed at 1.2 Ueq(C) for CH and CH2 and 1.5 Ueq(C) for CH3. The carb­oxy­lic acid group was assigned by examining the C—O distances and H1 was placed using the AFIX 147 instruction (d(O—H) = 0.84 Å, Uiso(H) fixed at 1.5 Ueq(O)).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with atom labelling and displacement ellipsoids drawn at 50% probability level.

Fig. 2.

Fig. 2.

Packing diagram showing intermolecular hydrogen bonding.

Crystal data

C12H22O2 Z = 2
Mr = 198.29 F(000) = 220
Triclinic, P1 Dx = 1.085 Mg m3
a = 4.6475 (2) Å Cu Kα radiation, λ = 1.54178 Å
b = 5.4169 (2) Å Cell parameters from 6666 reflections
c = 24.7041 (10) Å θ = 3.6–66.9°
α = 91.547 (2)° µ = 0.56 mm1
β = 91.788 (2)° T = 150 K
γ = 102.3158 (19)° Plate, colourless
V = 606.96 (4) Å3 0.44 × 0.30 × 0.12 mm

Data collection

Bruker APEXII CCD diffractometer 2117 independent reflections
Radiation source: microfocus 1964 reflections with I > 2σ(I)
Multilayer monochromator Rint = 0.026
Detector resolution: 8.3333 pixels mm-1 θmax = 66.0°, θmin = 3.6°
φ and ω scans h = −5→5
Absorption correction: multi-scan (SADABS; Bruker, 2014) k = −6→6
Tmin = 0.80, Tmax = 0.94 l = −29→29
12048 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.282P] where P = (Fo2 + 2Fc2)/3
S = 1.13 (Δ/σ)max < 0.001
2117 reflections Δρmax = 0.29 e Å3
129 parameters Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7187 (3) 1.2963 (3) 0.03952 (6) 0.0277 (4)
C2 0.8819 (3) 1.1356 (3) 0.06965 (6) 0.0314 (4)
H2 0.9763 1.0250 0.0497 0.038*
C3 0.9029 (3) 1.1384 (3) 0.12290 (6) 0.0306 (4)
H3 0.8092 1.2517 0.1421 0.037*
C4 1.0622 (4) 0.9777 (3) 0.15566 (7) 0.0332 (4)
H4A 1.2230 1.0881 0.1778 0.040*
H4B 1.1523 0.8714 0.1309 0.040*
C5 0.8573 (3) 0.8076 (3) 0.19299 (6) 0.0303 (4)
H5A 0.7510 0.9129 0.2148 0.036*
H5B 0.7090 0.6858 0.1706 0.036*
C6 1.0184 (3) 0.6615 (3) 0.23115 (6) 0.0304 (4)
H6A 1.1303 0.5606 0.2094 0.036*
H6B 1.1618 0.7832 0.2545 0.036*
C7 0.8121 (4) 0.4855 (3) 0.26692 (6) 0.0311 (4)
H7A 0.6701 0.3631 0.2435 0.037*
H7B 0.6985 0.5865 0.2882 0.037*
C8 0.9696 (4) 0.3400 (3) 0.30579 (6) 0.0313 (4)
H8A 1.0830 0.2386 0.2846 0.038*
H8B 1.1115 0.4622 0.3293 0.038*
C9 0.7607 (4) 0.1648 (3) 0.34138 (7) 0.0333 (4)
H9A 0.6186 0.0429 0.3178 0.040*
H9B 0.6474 0.2664 0.3626 0.040*
C10 0.9160 (4) 0.0181 (3) 0.38039 (7) 0.0341 (4)
H10A 1.0257 −0.0866 0.3592 0.041*
H10B 1.0612 0.1398 0.4035 0.041*
C11 0.7074 (4) −0.1519 (4) 0.41657 (8) 0.0432 (4)
H11A 0.5556 −0.2675 0.3936 0.052*
H11B 0.6057 −0.0462 0.4393 0.052*
C12 0.8622 (5) −0.3083 (4) 0.45332 (8) 0.0495 (5)
H12A 0.9605 −0.4159 0.4311 0.074*
H12B 0.7169 −0.4145 0.4755 0.074*
H12C 1.0089 −0.1952 0.4770 0.074*
O1 0.5999 (3) 1.4499 (2) 0.06736 (5) 0.0374 (3)
H1 0.5041 1.5251 0.0464 0.056*
O2 0.7029 (3) 1.2789 (2) −0.01126 (4) 0.0363 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0262 (7) 0.0246 (8) 0.0319 (8) 0.0035 (6) 0.0022 (6) 0.0044 (6)
C2 0.0306 (8) 0.0301 (8) 0.0352 (9) 0.0100 (7) 0.0022 (6) 0.0046 (6)
C3 0.0274 (8) 0.0291 (8) 0.0358 (9) 0.0071 (6) 0.0010 (6) 0.0042 (6)
C4 0.0309 (8) 0.0359 (9) 0.0347 (9) 0.0110 (7) −0.0009 (6) 0.0067 (7)
C5 0.0300 (8) 0.0306 (8) 0.0318 (8) 0.0104 (7) −0.0016 (6) 0.0032 (6)
C6 0.0294 (8) 0.0295 (8) 0.0334 (8) 0.0095 (7) −0.0032 (6) 0.0030 (6)
C7 0.0311 (8) 0.0301 (8) 0.0335 (8) 0.0102 (7) −0.0021 (6) 0.0033 (6)
C8 0.0311 (8) 0.0301 (8) 0.0342 (8) 0.0098 (7) −0.0023 (6) 0.0040 (7)
C9 0.0327 (8) 0.0335 (9) 0.0347 (9) 0.0096 (7) −0.0019 (7) 0.0051 (7)
C10 0.0351 (9) 0.0342 (9) 0.0347 (9) 0.0109 (7) −0.0010 (7) 0.0061 (7)
C11 0.0415 (10) 0.0459 (11) 0.0433 (10) 0.0103 (8) 0.0025 (8) 0.0147 (8)
C12 0.0554 (12) 0.0499 (11) 0.0450 (11) 0.0127 (9) 0.0035 (9) 0.0192 (9)
O1 0.0442 (7) 0.0364 (7) 0.0367 (6) 0.0193 (5) 0.0013 (5) 0.0060 (5)
O2 0.0453 (7) 0.0357 (7) 0.0307 (6) 0.0143 (5) −0.0012 (5) 0.0053 (5)

Geometric parameters (Å, º)

C1—O2 1.2543 (19) C7—H7B 0.9900
C1—O1 1.2881 (19) C8—C9 1.524 (2)
C1—C2 1.473 (2) C8—H8A 0.9900
C2—C3 1.316 (2) C8—H8B 0.9900
C2—H2 0.9500 C9—C10 1.524 (2)
C3—C4 1.496 (2) C9—H9A 0.9900
C3—H3 0.9500 C9—H9B 0.9900
C4—C5 1.527 (2) C10—C11 1.518 (2)
C4—H4A 0.9900 C10—H10A 0.9900
C4—H4B 0.9900 C10—H10B 0.9900
C5—C6 1.525 (2) C11—C12 1.523 (2)
C5—H5A 0.9900 C11—H11A 0.9900
C5—H5B 0.9900 C11—H11B 0.9900
C6—C7 1.522 (2) C12—H12A 0.9800
C6—H6A 0.9900 C12—H12B 0.9800
C6—H6B 0.9900 C12—H12C 0.9800
C7—C8 1.524 (2) O1—H1 0.8400
C7—H7A 0.9900
O2—C1—O1 123.37 (14) H7A—C7—H7B 107.7
O2—C1—C2 119.24 (14) C9—C8—C7 113.34 (13)
O1—C1—C2 117.38 (13) C9—C8—H8A 108.9
C3—C2—C1 122.91 (15) C7—C8—H8A 108.9
C3—C2—H2 118.5 C9—C8—H8B 108.9
C1—C2—H2 118.5 C7—C8—H8B 108.9
C2—C3—C4 125.30 (15) H8A—C8—H8B 107.7
C2—C3—H3 117.4 C8—C9—C10 113.76 (13)
C4—C3—H3 117.4 C8—C9—H9A 108.8
C3—C4—C5 112.03 (13) C10—C9—H9A 108.8
C3—C4—H4A 109.2 C8—C9—H9B 108.8
C5—C4—H4A 109.2 C10—C9—H9B 108.8
C3—C4—H4B 109.2 H9A—C9—H9B 107.7
C5—C4—H4B 109.2 C11—C10—C9 113.50 (14)
H4A—C4—H4B 107.9 C11—C10—H10A 108.9
C6—C5—C4 113.32 (13) C9—C10—H10A 108.9
C6—C5—H5A 108.9 C11—C10—H10B 108.9
C4—C5—H5A 108.9 C9—C10—H10B 108.9
C6—C5—H5B 108.9 H10A—C10—H10B 107.7
C4—C5—H5B 108.9 C10—C11—C12 113.18 (15)
H5A—C5—H5B 107.7 C10—C11—H11A 108.9
C7—C6—C5 113.10 (13) C12—C11—H11A 108.9
C7—C6—H6A 109.0 C10—C11—H11B 108.9
C5—C6—H6A 109.0 C12—C11—H11B 108.9
C7—C6—H6B 109.0 H11A—C11—H11B 107.8
C5—C6—H6B 109.0 C11—C12—H12A 109.5
H6A—C6—H6B 107.8 C11—C12—H12B 109.5
C6—C7—C8 113.85 (13) H12A—C12—H12B 109.5
C6—C7—H7A 108.8 C11—C12—H12C 109.5
C8—C7—H7A 108.8 H12A—C12—H12C 109.5
C6—C7—H7B 108.8 H12B—C12—H12C 109.5
C8—C7—H7B 108.8 C1—O1—H1 109.5
O2—C1—C2—C3 −178.37 (15) C5—C6—C7—C8 −179.36 (13)
O1—C1—C2—C3 1.9 (2) C6—C7—C8—C9 179.97 (13)
C1—C2—C3—C4 179.24 (14) C7—C8—C9—C10 179.96 (13)
C2—C3—C4—C5 −120.08 (17) C8—C9—C10—C11 178.76 (14)
C3—C4—C5—C6 −174.01 (13) C9—C10—C11—C12 176.92 (15)
C4—C5—C6—C7 −178.05 (13)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.84 1.80 2.6319 (15) 170

Symmetry code: (i) −x+1, −y+3, −z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7452).

References

  1. Aakeröy, C. B., Beatty, A. M., Helfrich, B. A. & Nieuwenhuyzen, M. (2003). Cryst. Growth Des. 3, 159–165.
  2. Boese, R., Bläser, D., Steller, I., Latz, R. & Bäumen, A. (1999). Acta Cryst. C55 IUC9900006.
  3. Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chatani, Y., Sakata, Y. & Nitta, I. (1963). J. Polym. Sci. B Polym. Lett. 1, 419–421.
  6. Doebner, O. (1902). Ber. Dtsch. Chem. Ges. 35, 1136–1147.
  7. Higgs, M. A. & Sass, R. L. (1963). Acta Cryst. 16, 657–661.
  8. Knoevenagel, E. (1898). Ber. Dtsch. Chem. Ges. 31, 2596–2619.
  9. Oswald, I. D. H. & Urquhart, A. J. (2011). CrystEngComm, 13, 4503–4507.
  10. Peppel, T., Sonneck, M., Spannenberg, A. & Wohlrab, S. (2015a). Acta Cryst. E71, o316. [DOI] [PMC free article] [PubMed]
  11. Peppel, T., Sonneck, M., Spannenberg, A. & Wohlrab, S. (2015b). Acta Cryst. E71, o323. [DOI] [PMC free article] [PubMed]
  12. Shabtai, J., Ney-Igner, E. & Pines, H. (1981). J. Org. Chem. 46, 3795–3802.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  15. Shimizu, S., Kekka, S., Kashino, S. & Haisa, M. (1974). Bull. Chem. Soc. Jpn, 47, 1627–1631.
  16. Sonneck, M., Peppel, T., Spannenberg, A. & Wohlrab, S. (2015). Acta Cryst. E71, o426–o427. [DOI] [PMC free article] [PubMed]
  17. Stanton, M. K. & Bak, A. (2008). Cryst. Growth Des. 8, 3856–3862.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015011937/hb7452sup1.cif

e-71-0o528-sup1.cif (365.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015011937/hb7452Isup2.hkl

e-71-0o528-Isup2.hkl (169.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015011937/hb7452Isup3.cml

. DOI: 10.1107/S2056989015011937/hb7452fig1.tif

Mol­ecular structure of the title compound with atom labelling and displacement ellipsoids drawn at 50% probability level.

. DOI: 10.1107/S2056989015011937/hb7452fig2.tif

Packing diagram showing inter­molecular hydrogen bonding.

CCDC reference: 1407997

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES