Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 27;71(Pt 7):867–869. doi: 10.1107/S2056989015012037

Crystal structure of catena-poly[[tetra­aqua­magnesium]-μ-(di­hydrogen hypodiphosphato)-κ2 O:O′]

Mimoza Gjikaj a,*, Madeline Haase a
PMCID: PMC4518914  PMID: 26279888

[Mg(H2P2O6)(H2O)4] is the first alkaline earth hypodiphosphate to be structurally determined. It consists of (H2P2O6)2− anions that are bridged by Mg2+ cations into a chain structure. Water mol­ecules complete the octa­hedral coordination sphere of the metal and built up a three-dimensional hydrogen-bonding network.

Keywords: crystal structure, hydrogen bonding, chain structure, hypodiphosphate, magnesium

Abstract

The crystal structure of the title compound, [Mg(H2P2O6)(H2O)4]n, is built up from (H2P2O6)2− anions bridging Mg2+ cations into chains extending parallel to [011]. The Mg2+ ion is located on an inversion centre and is octa­hedrally coordinated by the O atoms of two (H2P2O6)2− anions and four water mol­ecules. The centrosymmetric (H2P2O6)2− anion has a staggered conformation whereby the tetra­valent phospho­rus atom is surrounded tetra­hedrally by three O atoms and by one symmetry-related P atom. A three-dimensional O—H⋯O hydrogen-bonded network of medium strength involving the P—OH group of the anion and the water mol­ecules is present.

Chemical context  

A considerable number of alkaline metal hypodiphosphates have been characterized in the last few years (Szafranowska et al., 2012; Wu et al., 2012; Gjikaj et al., 2012, 2014). Until today, the described alkaline metal hypodiphosphates have only been of academic inter­est, with the exception of ammonium and sodium di­hydrogenhypodiphosphates (Collin & Willis, 1971). The acidic solutions of sodium di­hydrogen­hypo­diphosphate are used for the gravimetric immobilization of uranium(IV) as U2P2O6·3H2O and UP2O7 (Bloss et al., 1967). Furthermore, ammonium di­hydrogenhypodiphosphate finds a use as a flame retardant (Ruflin et al., 2007), and its ferroelectricity has recently been discovered (Szklarz et al., 2011).

The alkaline earth metal hypodiphosphates were first described by Salzer (1878). Ca2P2O6·2H2O and BaH2P2O6·2H2O were first synthesized by Palmer (1961), but structural data of hypodiphosphates of the alkaline earth metals are still missing. Here, we report the synthesis and the crystal structure of [Mg(H2P2O6)(H2O)4].

Structural commentary  

The principal building units in the crystal structure of [Mg(H2P2O6)(H2O)4] are [MgO6] octa­hedra and (H2P2O6)2− anions, forming chains extending parallel to [011] (Fig. 1). In the chains, each Mg2+ cation is bridged by two anions (Fig. 2). The Mg2+ ion is located on an inversion centre and is octa­hedrally coordinated by two (H2P2O6)2− anions and by four water mol­ecules with Mg—O bond lengths ranging from 2.0580 (17) to 2.0646 (18) Å. In the (H2P2O6)2− anion, which is located about an inversion centre and has a staggered conformation, the tetra­valent P atom is surrounded by three O atoms and one symmetry-related P atom with a P—P distance of 2.1843 (12) Å and P—O distances ranging from 1.5013 (16) to 1.5855 (16) Å. All bond lengths and angles of the hypodiphosphate anion are well within the expected ranges (Szafranowska et al., 2012; Gjikaj et al., 2014) and are comparable to those found for M 2P2O6·12H2O (M = Co and Ni; Hagen & Jansen, 1995; Haag et al., 2005).

Figure 1.

Figure 1

The crystal structure of the title compound, viewed along [100], showing the chain architecture.

Figure 2.

Figure 2

The mol­ecular entities in the title compound with atom labels and displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) −x, −y + 1, −z; (ii) −x, −y + 2, −z + 1; (iii) x, y + 1, z + 1.]

Supra­molecular features  

The crystal structure of [Mg(H2P2O6)(H2O)4] exhibits a three-dimensional hydrogen-bonded network, in which the (H2P2O6)2– anions are joined into ribbons along [100] by centrosymmetric pairs of PO3—H3⋯O2 hydrogen bonds (Table 1 and Fig. 3). The O⋯O distances between the (H2P2O6)2– anions and water mol­ecules located between the ribbons range from 2.786 (3) to 2.829 (3) Å), indicating hydrogen bonds of medium strength (Table 1). These values agree very well with those reported for Rb2H2P2O6·2H2O (Wu et al., 2012).

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O3H3O2i 0.79(4) 1.94(4) 2.687(2) 157(3)
O4H4AO2ii 0.82(3) 2.00(3) 2.817(2) 169(3)
O4H4BO1iii 0.85(4) 1.94(4) 2.786(2) 173(3)
O5H5AO2iv 0.75(4) 2.03(4) 2.768(3) 165(3)
O5H5BO3v 0.77(4) 2.08(4) 2.829(3) 165(4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 3.

Figure 3

The hydrogen bonds between (H2P2O6)2– anions and water mol­ecules in the title compound. The symmetry codes are as in Table 1.

Synthesis and crystallization  

Disodium di­hydrogenhypodiphosphate was prepared according to Leininger & Chulski (1953). An aqueous solution of hypodi­phospho­ric acid was obtained by passing a saturated solution of disodium di­hydrogenhypodiphosphate through a cation-exchange resin (Dowex 50WX2 50–100). About 40 ml of an aqueous solution of hypodi­phospho­ric acid (H4P2O6) were collected in the pH range 1.5–3.5 and subsequently added to magnesium carbonate (117 mg) at room temperature. Colourless block-shaped crystals of the title compound were obtained after several days at 278 K.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were located in a difference Fourier map and were refined isotropically without restraints.

Table 2. Experimental details.

Crystal data
Chemical formula [Mg(H2P2O6)(H2O)4]
M r 256.33
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 223
a, b, c () 5.1486(15), 6.595(2), 7.096(2)
, , () 112.31(2), 98.55(2), 98.28(2)
V (3) 215.09(11)
Z 1
Radiation type Mo K
(mm1) 0.61
Crystal size (mm) 0.28 0.25 0.23
 
Data collection
Diffractometer Stoe IPDS-II
Absorption correction Numerical (X-SHAPE and X-RED; Stoe Cie, 1999, 2001)
T min, T max 0.843, 0.869
No. of measured, independent and observed [I > 2(I)] reflections 2193, 799, 739
R int 0.057
(sin /)max (1) 0.609
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.036, 0.094, 1.15
No. of reflections 799
No. of parameters 81
H-atom treatment All H-atom parameters refined
max, min (e 3) 0.60, 0.53

Computer programs: X-AREA (Stoe Cie, 2002), SHELXS97 and SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015012037/wm5175sup1.cif

e-71-00867-sup1.cif (13KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015012037/wm5175Isup2.hkl

e-71-00867-Isup2.hkl (39.7KB, hkl)

CCDC reference: 1408335

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Mg(H2P2O6)(H2O)4] Z = 1
Mr = 256.33 F(000) = 132
Triclinic, P1 Dx = 1.979 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.1486 (15) Å Cell parameters from 3841 reflections
b = 6.595 (2) Å θ = 3.2–25.7°
c = 7.096 (2) Å µ = 0.61 mm1
α = 112.31 (2)° T = 223 K
β = 98.55 (2)° Block-shaped, colourless
γ = 98.28 (2)° 0.28 × 0.25 × 0.23 mm
V = 215.09 (11) Å3

Data collection

Stoe IPDS-II diffractometer 799 independent reflections
Radiation source: fine-focus sealed tube 739 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.057
ω–scans θmax = 25.7°, θmin = 3.2°
Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie, 1999, 2001) h = −6→6
Tmin = 0.843, Tmax = 0.869 k = −8→8
2193 measured reflections l = −8→8

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094 All H-atom parameters refined
S = 1.15 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.0577P] where P = (Fo2 + 2Fc2)/3
799 reflections (Δ/σ)max < 0.001
81 parameters Δρmax = 0.60 e Å3
0 restraints Δρmin = −0.53 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P 0.05636 (10) 0.66957 (9) 0.00780 (8) 0.0119 (2)
Mg 0.0000 1.0000 0.5000 0.0118 (3)
O1 0.1302 (3) 0.8332 (3) 0.2329 (2) 0.0158 (4)
O2 0.2710 (3) 0.6732 (3) −0.1158 (2) 0.0167 (4)
O3 −0.2044 (3) 0.6995 (3) −0.1200 (2) 0.0180 (4)
O4 0.3263 (3) 0.9689 (3) 0.6850 (3) 0.0233 (4)
O5 0.2204 (3) 1.2973 (3) 0.5191 (3) 0.0207 (4)
H3 −0.345 (8) 0.697 (6) −0.086 (6) 0.041 (9)*
H4A 0.326 (6) 0.895 (5) 0.756 (5) 0.019 (7)*
H4B 0.491 (7) 1.027 (5) 0.699 (5) 0.024 (7)*
H5A 0.229 (6) 1.410 (6) 0.605 (6) 0.026 (8)*
H5B 0.220 (7) 1.323 (6) 0.422 (6) 0.041 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P 0.0114 (3) 0.0134 (4) 0.0117 (4) 0.0031 (2) 0.0061 (2) 0.0046 (2)
Mg 0.0107 (5) 0.0141 (6) 0.0101 (5) 0.0033 (4) 0.0042 (4) 0.0035 (4)
O1 0.0155 (8) 0.0170 (8) 0.0141 (8) 0.0036 (6) 0.0072 (6) 0.0041 (6)
O2 0.0152 (8) 0.0201 (8) 0.0171 (8) 0.0049 (6) 0.0096 (6) 0.0075 (6)
O3 0.0137 (8) 0.0277 (9) 0.0188 (8) 0.0081 (7) 0.0082 (6) 0.0131 (7)
O4 0.0128 (9) 0.0347 (10) 0.0299 (10) 0.0040 (7) 0.0037 (7) 0.0219 (9)
O5 0.0295 (9) 0.0169 (9) 0.0150 (8) 0.0016 (7) 0.0097 (7) 0.0052 (8)

Geometric parameters (Å, º)

P—O1 1.5013 (16) Mg—O5ii 2.0646 (18)
P—O2 1.5122 (15) Mg—O5 2.0646 (18)
P—O3 1.5855 (16) O3—H3 0.79 (4)
P—Pi 2.1843 (12) O4—H4A 0.82 (3)
Mg—O4ii 2.0580 (17) O4—H4B 0.85 (4)
Mg—O4 2.0580 (17) O5—H5A 0.75 (4)
Mg—O1 2.0637 (15) O5—H5B 0.77 (4)
Mg—O1ii 2.0637 (15)
O1—P—O2 116.02 (9) O1ii—Mg—O5ii 88.52 (7)
O1—P—O3 112.90 (9) O4ii—Mg—O5 90.25 (8)
O2—P—O3 106.05 (9) O4—Mg—O5 89.75 (8)
O1—P—Pi 108.73 (7) O1—Mg—O5 88.52 (7)
O2—P—Pi 108.36 (7) O1ii—Mg—O5 91.48 (7)
O3—P—Pi 104.04 (7) O5ii—Mg—O5 180.0
O4ii—Mg—O4 180.0 P—O1—Mg 147.48 (9)
O4ii—Mg—O1 88.56 (7) P—O3—H3 123 (2)
O4—Mg—O1 91.44 (7) Mg—O4—H4A 128 (2)
O4ii—Mg—O1ii 91.44 (7) Mg—O4—H4B 125.9 (19)
O4—Mg—O1ii 88.56 (7) H4A—O4—H4B 106 (3)
O1—Mg—O1ii 180.00 (7) Mg—O5—H5A 124 (3)
O4ii—Mg—O5ii 89.75 (8) Mg—O5—H5B 121 (3)
O4—Mg—O5ii 90.25 (8) H5A—O5—H5B 104 (4)
O1—Mg—O5ii 91.48 (7)

Symmetry codes: (i) −x, −y+1, −z; (ii) −x, −y+2, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3···O2iii 0.79 (4) 1.94 (4) 2.687 (2) 157 (3)
O4—H4A···O2iv 0.82 (3) 2.00 (3) 2.817 (2) 169 (3)
O4—H4B···O1v 0.85 (4) 1.94 (4) 2.786 (2) 173 (3)
O5—H5A···O2vi 0.75 (4) 2.03 (4) 2.768 (3) 165 (3)
O5—H5B···O3vii 0.77 (4) 2.08 (4) 2.829 (3) 165 (4)

Symmetry codes: (iii) x−1, y, z; (iv) x, y, z+1; (v) −x+1, −y+2, −z+1; (vi) x, y+1, z+1; (vii) −x, −y+2, −z.

References

  1. Bloss, K. H., Henzel, N. & Beck, H. P. (1967). Z. Anal. Chem. 226, 25–28.
  2. Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Collin, R. L. & Willis, M. (1971). Acta Cryst. B27, 291–302.
  4. Gjikaj, M., Wu, P. & Brockner, W. (2012). Z. Anorg. Allg. Chem. 638, 2144–2149.
  5. Gjikaj, M., Wu, P. & Brockner, W. (2014). Z. Anorg. Allg. Chem. 640, 379–384.
  6. Haag, J. M., LeBret, G. C., Cleary, D. A. & Twamley, B. (2005). J. Solid State Chem. 178, 1308–1311.
  7. Hagen, S. & Jansen, M. (1995). Z. Anorg. Allg. Chem. 621, 149–152.
  8. Leininger, E. & Chulski, T. (1953). Inorg. Synth. 4, 68–71.
  9. Palmer, W. G. (1961). J. Chem. Soc. pp. 1079–1082.
  10. Ruflin, C., Fischbach, U., Grützmacher, H. & Levalois-Grützmacher, J. (2007). Heteroat. Chem. 18, 721–731.
  11. Salzer, Th. (1878). Liebigs Ann. 194, 28–39.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Stoe & Cie (1999). X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.
  15. Stoe & Cie (2001). X-RED. Stoe & Cie GmbH, Darmstadt, Germany.
  16. Stoe & Cie (2002). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.
  17. Szafranowska, B., Ślepokura, K. & Lis, T. (2012). Acta Cryst. C68, i71–i82. [DOI] [PubMed]
  18. Szklarz, P., Chański, M., Ślepokura, K. & Lis, T. (2011). Chem. Mater. 23, 1082–1084.
  19. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  20. Wu, P., Wiegand, Th., Eckert, H. & Gjikaj, M. (2012). J. Solid State Chem. 194, 212–218.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015012037/wm5175sup1.cif

e-71-00867-sup1.cif (13KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015012037/wm5175Isup2.hkl

e-71-00867-Isup2.hkl (39.7KB, hkl)

CCDC reference: 1408335

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES