Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 13;71(Pt 7):o475–o476. doi: 10.1107/S205698901501107X

Crystal structure of 4-methyl­benzyl N′-[(thio­phen-2-yl)methyl­idene]hydrazinecarbodi­thio­ate

Syahirah binti Ramli a,*, Thahira Begum S A Ravoof a,*, Mohamed Ibrahim Mohamed Tahir a, Edward R T Tiekink b
PMCID: PMC4518925  PMID: 26279916

Abstract

In the title compound, C15H16N2S3 {systematic name: [({[(4-methyl­phen­yl)meth­yl]sulfan­yl}methane­thio­yl)amino][1-(thio­phen-2-yl)ethyl­idene]amine}, the central CN2S2 residue is almost planar (r.m.s. deviation = 0.0061 Å) and forms dihedral angles of 7.39 (10) and 64.91 (5)° with the thienyl and p-tolyl rings, respectively; the dihedral angle between these rings is 57.52 (6)°. The non-thione S atoms are syn, and with respect to the thione S atom, the benzyl group is anti. In the crystal, centrosymmetrically related mol­ecules self-associate via eight-membered {⋯HNCS}2 synthons. The dimeric aggregates stack along the a axis and are are consolidated into a three-dimensional architecture via methyl-C—H⋯π(benzene) and benzene-C—H⋯π(thien­yl) inter­actions.

Keywords: crystal structure, hydrogen bonding, di­thio­carbazate, C—H⋯π inter­actions

Related literature  

For the structure of the parent compound, in which the benzyl residue is syn to the thione S atom, see: Chan et al. (2003). For the synthesis, see: Tarafder et al. (2002).graphic file with name e-71-0o475-scheme1.jpg

Experimental  

Crystal data  

  • C15H16N2S3

  • M r = 320.48

  • Monoclinic, Inline graphic

  • a = 5.6956 (4) Å

  • b = 14.3424 (9) Å

  • c = 18.9255 (11) Å

  • β = 90.263 (5)°

  • V = 1545.98 (17) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.30 mm−1

  • T = 150 K

  • 0.15 × 0.10 × 0.06 mm

Data collection  

  • Oxford Diffraction Xcaliber Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.774, T max = 1.000

  • 8463 measured reflections

  • 2830 independent reflections

  • 2506 reflections with I > 2σ(I)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.109

  • S = 1.06

  • 2830 reflections

  • 186 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) 1, I. DOI: 10.1107/S205698901501107X/hb7439sup1.cif

e-71-0o475-sup1.cif (302.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901501107X/hb7439Isup2.hkl

e-71-0o475-Isup2.hkl (226.4KB, hkl)

. DOI: 10.1107/S205698901501107X/hb7439fig1.tif

The mol­ecular structure of the title compound showing displacement ellipsoids at the 70% probability level.

. DOI: 10.1107/S205698901501107X/hb7439fig2.tif

Overlay diagram of the title compound (red image) with the parent compound (blue). The mol­ecules have been overlapped so that the thienyl residues are coincident.

a . DOI: 10.1107/S205698901501107X/hb7439fig3.tif

A view of the unit-cell contents in projection down the a axis. The N—H⋯S (orange) and C—H⋯π (purple) inter­actions are shown as dashed lines.

CCDC reference: 1405284

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

Cg1 and Cg2 are the centroids of the S3,C3C6 and C8C13 rings, respectively.

DHA DH HA D A DHA
N1H1NS2i 0.87(2) 2.57(2) 3.4433(18) 176(3)
C2H22Cg2ii 0.98 2.85 3.616(3) 138
C12H12Cg1iii 0.95 2.89 3.560(2) 130

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The research was funded by Universiti Putra Malaysia (UPM) under Research University Grant Schemes (RUGS No. 9419400), the Fundamental Research Grant Scheme (FRGS No. 5524425) and the Science Fund (Science Fund No. 06-01-04-SF810). SR thanks the UPM for the award of a Graduate Research Fellowship.

supplementary crystallographic information

S1. Experimental

The title compound was prepared as per a reported procedure (Tarafder et al., 2002). The light-yellow precipitate formed was filtered off and recrystallized from its acetonitrile solution as yellow prisms. Yield 56%; M.pt: 175–177 °C. Anal. Calcd for C15H16N2S3: C, 56.21; H, 5.03; N, 8.74. Found: C, 55.97; H, 4.96; N, 8.10. IR (cm-1, FT—IR): 3143 w, 1511 m, 1060 m, 924 s. 1H-NMR: (DMSO-d6, p.p.m.) δ: 12.42 (s, 1H, NH), 7.24–7.55 (multiplet, 4H, Ar–H), 7.03–7.10 (multiplet, 3H, thiophene-H), 4.37 (s, 2H, –SCH2), 2.24, 2.36 (s, 6H, –CH3), 13 C-NMR:(DMSO-d6, p.p.m.) δ: 197.98 (C=S), 159.15 (C=N), 129.32–142.86 (Ar–C), 128.39–129.90 (thiophene-C), 38.23 (SCH2), 15.58, 21.24 (CH3).

S2. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) = 1.2–1.5Ueq(C). The N—H atom was refined with N—H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing displacement ellipsoids at the 70% probability level.

Fig. 2.

Fig. 2.

Overlay diagram of the title compound (red image) with the parent compound (blue). The molecules have been overlapped so that the thienyl residues are coincident.

Fig. 3.

Fig. 3.

A view of the unit-cell contents in projection down the a axis. The N—H···S (orange) and C—H···π (purple) interactions are shown as dashed lines.

Crystal data

C15H16N2S3 F(000) = 672
Mr = 320.48 Dx = 1.377 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54182 Å
a = 5.6956 (4) Å Cell parameters from 3915 reflections
b = 14.3424 (9) Å θ = 3.1–71.3°
c = 18.9255 (11) Å µ = 4.30 mm1
β = 90.263 (5)° T = 150 K
V = 1545.98 (17) Å3 Prism, yellow
Z = 4 0.15 × 0.10 × 0.06 mm

Data collection

Oxford Diffraction Xcaliber Eos Gemini diffractometer 2830 independent reflections
Radiation source: fine-focus sealed tube 2506 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.023
Detector resolution: 16.1952 pixels mm-1 θmax = 71.3°, θmin = 3.9°
ω scans h = −6→6
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −17→17
Tmin = 0.774, Tmax = 1.000 l = −16→22
8463 measured reflections

Refinement

Refinement on F2 1 restraint
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0667P)2 + 0.9619P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
2830 reflections Δρmax = 0.49 e Å3
186 parameters Δρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.51174 (9) 0.72659 (3) 0.42082 (3) 0.01620 (16)
S2 0.71326 (10) 0.92093 (3) 0.43627 (3) 0.02009 (17)
S3 −0.06660 (10) 0.60844 (4) 0.53247 (3) 0.02183 (17)
N1 0.3513 (3) 0.85288 (12) 0.50603 (10) 0.0179 (4)
H1N 0.339 (5) 0.9097 (9) 0.5222 (13) 0.021*
N2 0.1971 (3) 0.78079 (12) 0.51907 (10) 0.0170 (4)
C1 0.5185 (4) 0.83886 (14) 0.45784 (12) 0.0171 (4)
C2 0.0454 (4) 0.79016 (15) 0.56846 (12) 0.0179 (5)
C2' 0.0181 (5) 0.87383 (16) 0.61556 (13) 0.0258 (5)
H2'1 0.1735 0.8977 0.6287 0.039*
H2'2 −0.0675 0.8559 0.6583 0.039*
H2'3 −0.0696 0.9224 0.5904 0.039*
C3 −0.1146 (4) 0.71133 (15) 0.57733 (12) 0.0174 (4)
C4 −0.3185 (4) 0.56050 (16) 0.56418 (13) 0.0237 (5)
H4 −0.3703 0.4993 0.5530 0.028*
C5 −0.4368 (4) 0.61936 (17) 0.60721 (13) 0.0243 (5)
H5 −0.5818 0.6033 0.6286 0.029*
C6 −0.3258 (4) 0.70718 (14) 0.61767 (12) 0.0175 (5)
H6 −0.3834 0.7557 0.6470 0.021*
C7 0.7561 (4) 0.73279 (15) 0.35948 (12) 0.0184 (5)
H7A 0.7341 0.7856 0.3265 0.022*
H7B 0.9052 0.7421 0.3856 0.022*
C8 0.7625 (4) 0.64185 (14) 0.31920 (11) 0.0165 (4)
C9 0.5788 (4) 0.61510 (15) 0.27450 (12) 0.0186 (5)
H9 0.4473 0.6551 0.2684 0.022*
C10 0.5867 (4) 0.53072 (15) 0.23898 (12) 0.0188 (5)
H10 0.4602 0.5136 0.2087 0.023*
C11 0.7773 (4) 0.47032 (15) 0.24688 (11) 0.0179 (5)
C11' 0.7835 (4) 0.37808 (16) 0.20945 (14) 0.0259 (5)
H11A 0.8516 0.3863 0.1624 0.039*
H11B 0.6235 0.3537 0.2048 0.039*
H11C 0.8795 0.3341 0.2367 0.039*
C12 0.9610 (4) 0.49777 (15) 0.29108 (12) 0.0179 (5)
H12 1.0934 0.4581 0.2968 0.022*
C13 0.9533 (4) 0.58213 (15) 0.32682 (12) 0.0177 (5)
H13 1.0800 0.5993 0.3569 0.021*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0185 (3) 0.0122 (3) 0.0180 (3) −0.00068 (18) 0.0030 (2) −0.00096 (18)
S2 0.0217 (3) 0.0135 (3) 0.0251 (3) −0.0034 (2) 0.0057 (2) −0.0019 (2)
S3 0.0233 (3) 0.0177 (3) 0.0244 (3) −0.0018 (2) −0.0013 (2) −0.0007 (2)
N1 0.0208 (10) 0.0120 (8) 0.0209 (10) −0.0019 (7) 0.0041 (8) −0.0017 (7)
N2 0.0180 (9) 0.0139 (8) 0.0192 (9) −0.0007 (7) 0.0008 (7) 0.0009 (7)
C1 0.0205 (11) 0.0131 (10) 0.0176 (11) 0.0012 (8) −0.0015 (9) −0.0002 (8)
C2 0.0188 (11) 0.0159 (10) 0.0190 (11) 0.0000 (8) −0.0014 (9) −0.0011 (8)
C2' 0.0298 (13) 0.0226 (11) 0.0251 (13) −0.0066 (10) 0.0095 (10) −0.0053 (10)
C3 0.0186 (11) 0.0169 (10) 0.0168 (11) −0.0001 (8) −0.0023 (9) −0.0008 (8)
C4 0.0232 (12) 0.0205 (11) 0.0272 (13) −0.0058 (9) −0.0092 (10) 0.0064 (9)
C5 0.0185 (12) 0.0320 (13) 0.0225 (12) −0.0039 (10) −0.0024 (9) 0.0099 (10)
C6 0.0182 (11) 0.0146 (10) 0.0198 (11) 0.0005 (8) −0.0076 (9) 0.0023 (8)
C7 0.0181 (11) 0.0168 (10) 0.0204 (11) −0.0022 (8) 0.0061 (9) −0.0006 (8)
C8 0.0178 (11) 0.0160 (10) 0.0157 (10) −0.0023 (8) 0.0052 (8) 0.0008 (8)
C9 0.0169 (11) 0.0199 (10) 0.0190 (11) 0.0026 (8) 0.0012 (9) 0.0026 (8)
C10 0.0165 (11) 0.0230 (11) 0.0167 (11) −0.0019 (9) −0.0008 (9) 0.0002 (9)
C11 0.0194 (11) 0.0179 (10) 0.0164 (11) −0.0014 (8) 0.0038 (9) −0.0009 (8)
C11' 0.0259 (13) 0.0222 (11) 0.0296 (13) 0.0003 (9) 0.0008 (10) −0.0073 (10)
C12 0.0161 (11) 0.0179 (10) 0.0198 (11) 0.0026 (8) 0.0003 (9) 0.0011 (8)
C13 0.0154 (11) 0.0203 (10) 0.0175 (11) −0.0016 (8) −0.0008 (9) 0.0003 (8)

Geometric parameters (Å, º)

S1—C1 1.756 (2) C6—H6 0.9500
S1—C7 1.818 (2) C7—C8 1.511 (3)
S2—C1 1.670 (2) C7—H7A 0.9900
S3—C4 1.703 (2) C7—H7B 0.9900
S3—C3 1.725 (2) C8—C13 1.391 (3)
N1—C1 1.337 (3) C8—C9 1.396 (3)
N1—N2 1.379 (3) C9—C10 1.385 (3)
N1—H1N 0.874 (10) C9—H9 0.9500
N2—C2 1.283 (3) C10—C11 1.396 (3)
C2—C3 1.462 (3) C10—H10 0.9500
C2—C2' 1.503 (3) C11—C12 1.393 (3)
C2'—H2'1 0.9800 C11—C11' 1.501 (3)
C2'—H2'2 0.9800 C11'—H11A 0.9800
C2'—H2'3 0.9800 C11'—H11B 0.9800
C3—C6 1.429 (3) C11'—H11C 0.9800
C4—C5 1.354 (4) C12—C13 1.387 (3)
C4—H4 0.9500 C12—H12 0.9500
C5—C6 1.423 (3) C13—H13 0.9500
C5—H5 0.9500
C1—S1—C7 101.21 (10) C8—C7—S1 107.47 (14)
C4—S3—C3 92.08 (12) C8—C7—H7A 110.2
C1—N1—N2 117.73 (17) S1—C7—H7A 110.2
C1—N1—H1N 115.8 (18) C8—C7—H7B 110.2
N2—N1—H1N 125.9 (18) S1—C7—H7B 110.2
C2—N2—N1 118.90 (18) H7A—C7—H7B 108.5
N1—C1—S2 122.48 (16) C13—C8—C9 118.5 (2)
N1—C1—S1 113.31 (16) C13—C8—C7 120.0 (2)
S2—C1—S1 124.21 (14) C9—C8—C7 121.5 (2)
N2—C2—C3 115.14 (19) C10—C9—C8 120.5 (2)
N2—C2—C2' 126.0 (2) C10—C9—H9 119.7
C3—C2—C2' 118.9 (2) C8—C9—H9 119.7
C2—C2'—H2'1 109.5 C9—C10—C11 121.1 (2)
C2—C2'—H2'2 109.5 C9—C10—H10 119.4
H2'1—C2'—H2'2 109.5 C11—C10—H10 119.4
C2—C2'—H2'3 109.5 C12—C11—C10 118.0 (2)
H2'1—C2'—H2'3 109.5 C12—C11—C11' 120.9 (2)
H2'2—C2'—H2'3 109.5 C10—C11—C11' 121.1 (2)
C6—C3—C2 128.3 (2) C11—C11'—H11A 109.5
C6—C3—S3 111.28 (16) C11—C11'—H11B 109.5
C2—C3—S3 120.31 (17) H11A—C11'—H11B 109.5
C5—C4—S3 112.48 (18) C11—C11'—H11C 109.5
C5—C4—H4 123.8 H11A—C11'—H11C 109.5
S3—C4—H4 123.8 H11B—C11'—H11C 109.5
C4—C5—C6 114.4 (2) C13—C12—C11 120.9 (2)
C4—C5—H5 122.8 C13—C12—H12 119.5
C6—C5—H5 122.8 C11—C12—H12 119.5
C5—C6—C3 109.7 (2) C12—C13—C8 120.9 (2)
C5—C6—H6 125.1 C12—C13—H13 119.6
C3—C6—H6 125.1 C8—C13—H13 119.6
C1—N1—N2—C2 175.2 (2) C2—C3—C6—C5 175.4 (2)
N2—N1—C1—S2 179.03 (15) S3—C3—C6—C5 −1.4 (2)
N2—N1—C1—S1 −1.3 (3) C1—S1—C7—C8 −176.13 (15)
C7—S1—C1—N1 179.94 (17) S1—C7—C8—C13 −115.3 (2)
C7—S1—C1—S2 −0.39 (17) S1—C7—C8—C9 63.9 (2)
N1—N2—C2—C3 178.49 (18) C13—C8—C9—C10 0.3 (3)
N1—N2—C2—C2' −0.5 (3) C7—C8—C9—C10 −178.9 (2)
N2—C2—C3—C6 −167.3 (2) C8—C9—C10—C11 0.1 (3)
C2'—C2—C3—C6 11.7 (3) C9—C10—C11—C12 −0.6 (3)
N2—C2—C3—S3 9.2 (3) C9—C10—C11—C11' 178.8 (2)
C2'—C2—C3—S3 −171.73 (17) C10—C11—C12—C13 0.7 (3)
C4—S3—C3—C6 0.80 (17) C11'—C11—C12—C13 −178.7 (2)
C4—S3—C3—C2 −176.29 (18) C11—C12—C13—C8 −0.3 (3)
C3—S3—C4—C5 0.04 (19) C9—C8—C13—C12 −0.2 (3)
S3—C4—C5—C6 −0.9 (3) C7—C8—C13—C12 179.1 (2)
C4—C5—C6—C3 1.5 (3)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the S3,C3–C6 and C8–C13 rings, respectively.

D—H···A D—H H···A D···A D—H···A
N1—H1N···S2i 0.87 (2) 2.57 (2) 3.4433 (18) 176 (3)
C2′—H2′2···Cg2ii 0.98 2.85 3.616 (3) 138
C12—H12···Cg1iii 0.95 2.89 3.560 (2) 130

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x−1, −y+1/2, z−1/2; (iii) −x+1, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7439).

References

  1. Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Chan, M.-H. E., Crouse, K. A., Tarafder, M. T. H. & Yamin, B. M. (2003). Acta Cryst. E59, o628–o629.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  6. Tarafder, M. T. H., Khoo, T.-J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2691–2698.
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1, I. DOI: 10.1107/S205698901501107X/hb7439sup1.cif

e-71-0o475-sup1.cif (302.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901501107X/hb7439Isup2.hkl

e-71-0o475-Isup2.hkl (226.4KB, hkl)

. DOI: 10.1107/S205698901501107X/hb7439fig1.tif

The mol­ecular structure of the title compound showing displacement ellipsoids at the 70% probability level.

. DOI: 10.1107/S205698901501107X/hb7439fig2.tif

Overlay diagram of the title compound (red image) with the parent compound (blue). The mol­ecules have been overlapped so that the thienyl residues are coincident.

a . DOI: 10.1107/S205698901501107X/hb7439fig3.tif

A view of the unit-cell contents in projection down the a axis. The N—H⋯S (orange) and C—H⋯π (purple) inter­actions are shown as dashed lines.

CCDC reference: 1405284

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES