Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 3;71(Pt 7):o444–o445. doi: 10.1107/S2056989015010026

Crystal structure of ethyl 4-(2-meth­oxy­phen­yl)-6-methyl-2-sulfanyl­idene-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

Shaaban K Mohamed a,b, Joel T Mague c, Mehmet Akkurt d, Ahmed Khodairy e, Eman A Ahmed e,*
PMCID: PMC4518927  PMID: 26279898

Abstract

In the title compound, C15H18N2O3S, the hydro­pyrimidine ring adopts a sofa conformation with the methine C atom as the flap. The benzene ring is almost perpendicular to the mean plane of the hydro­pyrimidine ring, making a dihedral angle of 85.51 (8)°, and the meth­oxy O atom lies over the centre of the pyrimidine ring. In the crystal, weak N—H⋯S inter­actions form a zigzag chain running along the b-axis direction.

Keywords: crystal structure, Biginelli reactions, dihyro­pyrimidino­nes, three-component reactions, N—H⋯S inter­actions

Related literature  

For syntheses of di­hydro­pyrimidino­nes and their analogous, see: Biginelli (1893); Varala et al. (2003); Gohain et al. (2004); Ahmed et al. (2009). For biological activities of hydro­pyrimidino­nes, see: Salehi et al. (2006); Singh et al. (2010); Hed et al. (2009); Russowsky et al. (2007); Shah et al. (2009). For the synthesis of the title compound, see: Ahmed et al. (2012).graphic file with name e-71-0o444-scheme1.jpg

Experimental  

Crystal data  

  • C15H18N2O3S

  • M r = 306.37

  • Triclinic, Inline graphic

  • a = 7.9791 (2) Å

  • b = 8.2031 (2) Å

  • c = 11.8405 (3) Å

  • α = 81.987 (1)°

  • β = 87.975 (1)°

  • γ = 80.850 (1)°

  • V = 757.60 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.00 mm−1

  • T = 150 K

  • 0.25 × 0.21 × 0.12 mm

Data collection  

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014) T min = 0.73, T max = 0.79

  • 9145 measured reflections

  • 2929 independent reflections

  • 2773 reflections with I > 2σ(I)

  • R int = 0.021

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.101

  • S = 1.08

  • 2929 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a ); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b ); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXL2014.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015010026/is5401sup1.cif

e-71-0o444-sup1.cif (283.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010026/is5401Isup2.hkl

e-71-0o444-Isup2.hkl (234.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015010026/is5401Isup3.cml

. DOI: 10.1107/S2056989015010026/is5401fig1.tif

The mol­ecular structure of the title compound showing labeling scheme and 50% probability ellipsoids.

. DOI: 10.1107/S2056989015010026/is5401fig2.tif

A section of the chain formed by N—H⋯S hydrogen bonds (dashed lines).

b . DOI: 10.1107/S2056989015010026/is5401fig3.tif

A packing diagram viewed along the b axis. N—H⋯S inter­actions are shown as dotted lines.

CCDC reference: 1402530

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H1AS1i 0.91 2.46 3.3539(13) 167
N2H2AS1ii 0.91 2.58 3.4327(14) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

supplementary crystallographic information

S1. Comment

Dihydropyrimidin-2(1H)-one scaffold compounds are an important class of substances in organic and medicinal chemistry. Aryl-substituted 3, 4-dihydropyrimidin-2(1H)-ones and their sulfur analogue have been reported to possess diverse range of pharmacological activity (Salehi et al., 2006) such as anticancer, anti HIV, antibacterial, antimalarial, antihypertensive, sedative, hypnotics, anticonvulsant, antithyroid,antihistaminic agents and antibiotics (Singh et al., 2010; Hed et al., 2009; Russowsky et al., 2007; Shah et al., 2009). This stimulated the invention of a wide range of synthetic methods for their preparation and chemical transformations. In recent years, several modified procedures have been reported to improve the efficiency of the Biginelli dihydropyrimidine synthesis (Biginelli, 1893) by using different catalysts e.g. Lewis acids (Varala et al., 2003; Gohain et al., 2004) or by using basic condition via phase transfer catalysis (Ahmed et al., 2009). In this context, we report in this study the crystal structure of the title compound.

In the title compound (Fig. 1), the plane of the benzene ring is almost parallel to the C1···N2 vector with the methoxy oxygen atom (O1) lying over the centre of the pyrimidine ring. The pyrimidine ring has Cremer-Pople puckering parameters Q = 0.201 (2) Å, θ = 62.2 (5)° and φ = 42.9 (2)°. In the crystal, weak N—H···S interactions (Table 1) form a chain running parallel to the b axis (Figs. 2 & 3).

S2. Experimental

The title compound was prepared according to our reported method (Ahmed et al., 2012). Colourless crystals suitable for X-ray analysis were grown from ethanol (m.p. 473–475 K, yield 98%).

S3. Refinement

H-atoms attached to C were placed in calculated positions (C—H = 0.95–1.00 Å), while those attached to N were placed in a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 or 1.5 times those of the attached atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing labeling scheme and 50% probability ellipsoids.

Fig. 2.

Fig. 2.

A section of the chain formed by N—H···S hydrogen bonds (dashed lines).

Fig. 3.

Fig. 3.

A packing diagram viewed along the b axis. N—H···S interactions are shown as dotted lines.

Crystal data

C15H18N2O3S Z = 2
Mr = 306.37 F(000) = 324
Triclinic, P1 Dx = 1.343 Mg m3
a = 7.9791 (2) Å Cu Kα radiation, λ = 1.54178 Å
b = 8.2031 (2) Å Cell parameters from 7936 reflections
c = 11.8405 (3) Å θ = 3.8–72.2°
α = 81.987 (1)° µ = 2.00 mm1
β = 87.975 (1)° T = 150 K
γ = 80.850 (1)° Thick plate, colourless
V = 757.60 (3) Å3 0.25 × 0.21 × 0.12 mm

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer 2929 independent reflections
Radiation source: INCOATEC IµS micro–focus source 2773 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.021
Detector resolution: 10.4167 pixels mm-1 θmax = 72.2°, θmin = 3.8°
ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Bruker, 2014) k = −10→10
Tmin = 0.73, Tmax = 0.79 l = −14→14
9145 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: mixed
wR(F2) = 0.101 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.4254P] where P = (Fo2 + 2Fc2)/3
2929 reflections (Δ/σ)max = 0.001
193 parameters Δρmax = 0.43 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 1.08339 (5) 0.22865 (4) 1.02799 (3) 0.02400 (13)
O1 0.64475 (15) 0.28798 (15) 0.86937 (10) 0.0312 (3)
O2 0.8568 (2) 0.26940 (18) 0.47910 (11) 0.0494 (4)
O3 0.75790 (16) 0.52294 (15) 0.52331 (9) 0.0304 (3)
N1 0.96037 (16) 0.42742 (15) 0.84338 (11) 0.0213 (3)
H1A 0.9617 0.5109 0.8864 0.026*
N2 0.99441 (17) 0.14788 (16) 0.83198 (11) 0.0240 (3)
H2A 1.0080 0.0431 0.8710 0.029*
C1 0.85934 (19) 0.47576 (19) 0.73835 (13) 0.0216 (3)
H1 0.9084 0.5685 0.6916 0.026*
C2 1.00503 (19) 0.27318 (19) 0.89394 (13) 0.0209 (3)
C3 0.9414 (2) 0.1739 (2) 0.71936 (13) 0.0247 (3)
C4 0.9585 (3) 0.0158 (2) 0.66684 (15) 0.0351 (4)
H4A 0.8722 0.0271 0.6082 0.053*
H4B 0.9429 −0.0770 0.7259 0.053*
H4C 1.0717 −0.0061 0.6320 0.053*
C5 0.88282 (19) 0.3296 (2) 0.66990 (13) 0.0230 (3)
C6 0.8339 (2) 0.3648 (2) 0.54883 (14) 0.0277 (3)
C7 0.6888 (2) 0.5701 (2) 0.40933 (14) 0.0331 (4)
H7A 0.6051 0.4980 0.3959 0.040*
H7B 0.7806 0.5588 0.3512 0.040*
C8 0.6050 (3) 0.7480 (3) 0.40272 (18) 0.0486 (5)
H8A 0.5172 0.7580 0.4625 0.073*
H8B 0.5529 0.7841 0.3278 0.073*
H8C 0.6900 0.8183 0.4136 0.073*
C9 0.6761 (2) 0.5437 (2) 0.76670 (13) 0.0255 (3)
C10 0.6100 (2) 0.7098 (2) 0.72635 (15) 0.0304 (4)
H10 0.6797 0.7785 0.6817 0.036*
C11 0.4425 (3) 0.7744 (2) 0.75156 (17) 0.0382 (4)
H11 0.3972 0.8861 0.7228 0.046*
C12 0.3434 (2) 0.6753 (2) 0.81827 (16) 0.0370 (4)
H12 0.2298 0.7205 0.8357 0.044*
C13 0.4043 (2) 0.5117 (2) 0.86057 (15) 0.0320 (4)
H13 0.3342 0.4452 0.9068 0.038*
C14 0.5720 (2) 0.4459 (2) 0.83384 (13) 0.0269 (3)
C15 0.5435 (2) 0.1762 (2) 0.93170 (16) 0.0361 (4)
H15A 0.4988 0.2205 1.0013 0.054*
H15B 0.6133 0.0671 0.9521 0.054*
H15C 0.4489 0.1642 0.8845 0.054*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0304 (2) 0.0195 (2) 0.0222 (2) −0.00308 (15) −0.00427 (14) −0.00340 (14)
O1 0.0296 (6) 0.0277 (6) 0.0355 (6) −0.0073 (5) 0.0044 (5) 0.0011 (5)
O2 0.0744 (10) 0.0443 (8) 0.0274 (7) 0.0095 (7) −0.0101 (6) −0.0165 (6)
O3 0.0391 (7) 0.0314 (6) 0.0209 (6) −0.0055 (5) −0.0058 (5) −0.0026 (5)
N1 0.0255 (6) 0.0180 (6) 0.0217 (6) −0.0048 (5) −0.0032 (5) −0.0046 (5)
N2 0.0309 (7) 0.0181 (6) 0.0238 (6) −0.0034 (5) −0.0014 (5) −0.0056 (5)
C1 0.0237 (7) 0.0218 (7) 0.0202 (7) −0.0052 (6) −0.0020 (6) −0.0033 (6)
C2 0.0202 (7) 0.0206 (7) 0.0227 (7) −0.0045 (6) 0.0013 (6) −0.0044 (6)
C3 0.0261 (8) 0.0261 (8) 0.0241 (8) −0.0069 (6) 0.0019 (6) −0.0084 (6)
C4 0.0497 (11) 0.0273 (9) 0.0309 (9) −0.0059 (8) −0.0026 (8) −0.0121 (7)
C5 0.0235 (7) 0.0256 (8) 0.0217 (7) −0.0063 (6) 0.0014 (6) −0.0067 (6)
C6 0.0278 (8) 0.0332 (9) 0.0233 (8) −0.0059 (7) 0.0010 (6) −0.0066 (6)
C7 0.0370 (9) 0.0430 (10) 0.0199 (8) −0.0104 (8) −0.0046 (7) 0.0000 (7)
C8 0.0683 (14) 0.0410 (11) 0.0346 (10) −0.0088 (10) −0.0160 (10) 0.0062 (8)
C9 0.0268 (8) 0.0292 (8) 0.0222 (7) −0.0048 (6) −0.0031 (6) −0.0081 (6)
C10 0.0335 (9) 0.0276 (8) 0.0289 (8) 0.0007 (7) −0.0053 (7) −0.0055 (7)
C11 0.0398 (10) 0.0284 (9) 0.0436 (10) 0.0035 (8) −0.0066 (8) −0.0041 (8)
C12 0.0352 (9) 0.0377 (10) 0.0367 (9) 0.0019 (8) 0.0000 (7) −0.0094 (8)
C13 0.0320 (9) 0.0368 (9) 0.0278 (8) −0.0069 (7) −0.0017 (7) −0.0049 (7)
C14 0.0294 (8) 0.0286 (8) 0.0233 (8) −0.0044 (7) −0.0036 (6) −0.0049 (6)
C15 0.0366 (10) 0.0323 (9) 0.0386 (10) −0.0106 (8) 0.0047 (8) 0.0033 (8)

Geometric parameters (Å, º)

S1—C2 1.6969 (15) C5—C6 1.476 (2)
O1—C14 1.349 (2) C7—C8 1.498 (3)
O1—C15 1.430 (2) C7—H7A 0.9900
O2—C6 1.205 (2) C7—H7B 0.9900
O3—C6 1.340 (2) C8—H8A 0.9800
O3—C7 1.4541 (19) C8—H8B 0.9800
N1—C2 1.322 (2) C8—H8C 0.9800
N1—C1 1.4783 (18) C9—C14 1.397 (2)
N1—H1A 0.9098 C9—C10 1.403 (2)
N2—C2 1.3580 (19) C10—C11 1.395 (3)
N2—C3 1.391 (2) C10—H10 0.9500
N2—H2A 0.9098 C11—C12 1.376 (3)
C1—C5 1.522 (2) C11—H11 0.9500
C1—C9 1.523 (2) C12—C13 1.382 (3)
C1—H1 1.0000 C12—H12 0.9500
C3—C5 1.347 (2) C13—C14 1.403 (2)
C3—C4 1.501 (2) C13—H13 0.9500
C4—H4A 0.9800 C15—H15A 0.9800
C4—H4B 0.9800 C15—H15B 0.9800
C4—H4C 0.9800 C15—H15C 0.9800
C14—O1—C15 118.77 (14) C8—C7—H7A 110.4
C6—O3—C7 116.45 (13) O3—C7—H7B 110.4
C2—N1—C1 125.30 (12) C8—C7—H7B 110.4
C2—N1—H1A 117.1 H7A—C7—H7B 108.6
C1—N1—H1A 114.7 C7—C8—H8A 109.5
C2—N2—C3 123.59 (14) C7—C8—H8B 109.5
C2—N2—H2A 116.2 H8A—C8—H8B 109.5
C3—N2—H2A 119.5 C7—C8—H8C 109.5
N1—C1—C5 108.79 (12) H8A—C8—H8C 109.5
N1—C1—C9 110.68 (12) H8B—C8—H8C 109.5
C5—C1—C9 115.38 (12) C14—C9—C10 118.77 (16)
N1—C1—H1 107.2 C14—C9—C1 121.76 (15)
C5—C1—H1 107.2 C10—C9—C1 119.46 (15)
C9—C1—H1 107.2 C11—C10—C9 120.32 (17)
N1—C2—N2 117.28 (14) C11—C10—H10 119.8
N1—C2—S1 122.70 (11) C9—C10—H10 119.8
N2—C2—S1 119.94 (12) C12—C11—C10 119.55 (17)
C5—C3—N2 119.62 (14) C12—C11—H11 120.2
C5—C3—C4 127.50 (15) C10—C11—H11 120.2
N2—C3—C4 112.89 (14) C11—C12—C13 121.84 (17)
C3—C4—H4A 109.5 C11—C12—H12 119.1
C3—C4—H4B 109.5 C13—C12—H12 119.1
H4A—C4—H4B 109.5 C12—C13—C14 118.62 (17)
C3—C4—H4C 109.5 C12—C13—H13 120.7
H4A—C4—H4C 109.5 C14—C13—H13 120.7
H4B—C4—H4C 109.5 O1—C14—C9 115.19 (15)
C3—C5—C6 121.63 (14) O1—C14—C13 123.92 (15)
C3—C5—C1 120.93 (14) C9—C14—C13 120.89 (16)
C6—C5—C1 117.42 (14) O1—C15—H15A 109.5
O2—C6—O3 122.34 (16) O1—C15—H15B 109.5
O2—C6—C5 126.96 (16) H15A—C15—H15B 109.5
O3—C6—C5 110.70 (13) O1—C15—H15C 109.5
O3—C7—C8 106.67 (14) H15A—C15—H15C 109.5
O3—C7—H7A 110.4 H15B—C15—H15C 109.5
C2—N1—C1—C5 −25.4 (2) C3—C5—C6—O3 171.37 (14)
C2—N1—C1—C9 102.32 (16) C1—C5—C6—O3 −6.8 (2)
C1—N1—C2—N2 16.9 (2) C6—O3—C7—C8 177.69 (16)
C1—N1—C2—S1 −166.47 (11) N1—C1—C9—C14 −61.89 (18)
C3—N2—C2—N1 0.7 (2) C5—C1—C9—C14 62.18 (19)
C3—N2—C2—S1 −176.02 (12) N1—C1—C9—C10 116.92 (15)
C2—N2—C3—C5 −6.0 (2) C5—C1—C9—C10 −119.01 (16)
C2—N2—C3—C4 173.96 (15) C14—C9—C10—C11 −1.1 (2)
N2—C3—C5—C6 176.60 (14) C1—C9—C10—C11 −179.90 (15)
C4—C3—C5—C6 −3.3 (3) C9—C10—C11—C12 1.3 (3)
N2—C3—C5—C1 −5.3 (2) C10—C11—C12—C13 −0.7 (3)
C4—C3—C5—C1 174.72 (16) C11—C12—C13—C14 −0.3 (3)
N1—C1—C5—C3 18.7 (2) C15—O1—C14—C9 −175.65 (14)
C9—C1—C5—C3 −106.35 (17) C15—O1—C14—C13 4.3 (2)
N1—C1—C5—C6 −163.15 (13) C10—C9—C14—O1 −179.93 (14)
C9—C1—C5—C6 71.79 (18) C1—C9—C14—O1 −1.1 (2)
C7—O3—C6—O2 5.8 (2) C10—C9—C14—C13 0.1 (2)
C7—O3—C6—C5 −174.41 (13) C1—C9—C14—C13 178.93 (14)
C3—C5—C6—O2 −8.9 (3) C12—C13—C14—O1 −179.41 (16)
C1—C5—C6—O2 172.98 (18) C12—C13—C14—C9 0.5 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···S1i 0.91 2.46 3.3539 (13) 167
N2—H2A···S1ii 0.91 2.58 3.4327 (14) 157

Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) −x+2, −y, −z+2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: IS5401).

References

  1. Ahmed, B., Khan, R. A., Habibullah & Keshari, M. (2009). Tetrahedron Lett. 50, 2889–2892.
  2. Ahmed, E. A., Mohamed, M. A. A. & El-Saghier, A. M. M. (2012). J. Am. Sci. 8, 815–818.
  3. Biginelli, P. (1893). Gazz. Chim. Ital. 23, 360–416.
  4. Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  5. Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
  6. Gohain, M., Prajapati, D. & Sandhu, J. S. (2004). Synlett, pp. 0235–0238.
  7. Hed, L. C., Sharma, R., Pareek, C. & Chaudhari, P. B. (2009). Eur. J. Chem. 6, 770–774.
  8. Russowsky, D., Benvenutti, E. V., Roxo, G. S. & Grasel, F. (2007). Lett. Org. Chem. 4, 39–42.
  9. Salehi, P., Dabiri, M., Khosropour, A. R. & Roozbehniya, P. (2006). J. Iran. Chem. Soc. 3, 98–104.
  10. Shah, T. B., Gupte, A., Patel, M. R., Chaudhari, V. S., Patel, H. & Patel, V. C. (2009). Indian J. Chem. Sect. B, 48, 88–96.
  11. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  12. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  13. Singh, O. M., Devi, N. S., Devi, L. R. & Khumanthem, N. (2010). Int. J. Drug Des. Discov. 1, 258–264.
  14. Varala, R., Alam, M. M. & Adapa, S. R. (2003). Synlett, pp. 67–70.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015010026/is5401sup1.cif

e-71-0o444-sup1.cif (283.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010026/is5401Isup2.hkl

e-71-0o444-Isup2.hkl (234.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015010026/is5401Isup3.cml

. DOI: 10.1107/S2056989015010026/is5401fig1.tif

The mol­ecular structure of the title compound showing labeling scheme and 50% probability ellipsoids.

. DOI: 10.1107/S2056989015010026/is5401fig2.tif

A section of the chain formed by N—H⋯S hydrogen bonds (dashed lines).

b . DOI: 10.1107/S2056989015010026/is5401fig3.tif

A packing diagram viewed along the b axis. N—H⋯S inter­actions are shown as dotted lines.

CCDC reference: 1402530

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES