Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 24;71(Pt 7):o503. doi: 10.1107/S2056989015011779

Crystal structure of (E)-5-di­ethyl­amino-2-({[4-(di­methyl­amino)­phen­yl]imino}­meth­yl)phenol

C Vidya Rani a, G Chakkaravarthi b,*, G Rajagopal a,*
PMCID: PMC4518928  PMID: 26279932

Abstract

The title Schiff base compound, C19H25N3O, is approximately planar, with a dihedral angle of 9.03 (13)° between the planes of the aromatic rings, and has an E conformation about the N=C bond. The mol­ecular structure is stabilized by an intra­molecular O—H⋯N hydrogen bond, with an S(6) ring motif. In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming sheets parallel to the bc plane.

Keywords: crystal structure, Schiff base, intra­molecular O—H⋯N hydrogen bond, C—H⋯π inter­actions

Related literature  

For biological activities of Schiff base derivatives, see: Savaliya et al. (2010); Xu et al. (2012). For the structures of similar compounds, see: Manvizhi et al. (2011); Thirugnanasundar et al. (2011).graphic file with name e-71-0o503-scheme1.jpg

Experimental  

Crystal data  

  • C19H25N3O

  • M r = 311.42

  • Monoclinic, Inline graphic

  • a = 8.8201 (7) Å

  • b = 7.8850 (7) Å

  • c = 13.0639 (10) Å

  • β = 108.407 (3)°

  • V = 862.06 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.26 × 0.22 × 0.20 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.981, T max = 0.985

  • 13009 measured reflections

  • 3825 independent reflections

  • 2438 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.159

  • S = 1.03

  • 3825 reflections

  • 214 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015011779/su5157sup1.cif

e-71-0o503-sup1.cif (26.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015011779/su5157Isup2.hkl

e-71-0o503-Isup2.hkl (183.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015011779/su5157Isup3.cml

. DOI: 10.1107/S2056989015011779/su5157fig1.tif

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intra­molecular O—H.·N hydrogen bonds is shown as a dashd lines (see Table 1 for details).

a . DOI: 10.1107/S2056989015011779/su5157fig2.tif

A view along the a axis of the crystal apcking of the title compound. The O—H.·N and C-H⋯π inter­actions are illustrated by dashed lines (see Table 1 for details).

CCDC reference: 1407678

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

Cg1 and Cg2 are the centroids of rings C3C8 and C10C15, respectively.

DHA DH HA D A DHA
O1H1N2 0.82 1.85 2.585(3) 148
C11H11Cg1i 0.93 2.71 3.517(3) 145
C17H17B Cg2ii 0.96 2.90 3.743(5) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

supplementary crystallographic information

S1. Structural commentary

Schiff base derivatives are known to exhibit anti­microbial (Savaliya et al., 2010) and anti­bacterial (Xu et al., 2012) activities. Herein we report on the synthesis and the crystal structure of a new Schiff base compound.

The molecular structure of the title compound is illustrated in Fg. 1. The geometric parameters are comparable to those reported for similar structures (Manvizhi et al., 2011; Thirugnanasundar et al., 2011). The dihedral angle between the benzene rings (C3—C8) and (C10—C15) is 9.03 (13)°. The molecular structure is stabilized by an intra­molecular O—H···N hydrogen bond (Table 1 and Fig. 1).

In the crystal, molecules are linked by C—H···π inter­actions forming sheets parallel to the bc plane (Table 1 and Fig. 2).

S2. Synthesis and crystallization

To an ethanol solution (10 ml) of 5-(di­ethyl­amino)-2-hy­droxy­benzaldehyde (96.5 mg, 0.5 mol) was added N1,N1-di­methyl­benzene-1,4-di­amine (68 mg, 0.5 mol). The mixture was stirred and 2 to 3 drops of glacial acetic acid were added. Stirring was continued for 30 mins and then the reaction mixture was refluxed for 2 h. On completion of the reaction, monitored by TLC, the mixture was allowed to cool to room temperature and the solid yellow precipitate that formed was filtered, dried, and recrystallized from DMF, giving colourless block-like crystals.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically and refined using riding model: O—H = 0.82 Å, C—H = 0.93 - 0.97 Å with Uiso(H) = 1.5Ueq(O,C) for the hydroxyl and methyl H atoms and 1.2Ueq(C) for other H atoms. The components of the anisotropic displacement parameters of the atoms in bonds N3—C16, N3—C18 and N1—C2 were restrained to be equal within an effective standard deviation of 0.001 using the DELU command, and the C16—C17 bond distance was restrained to 1.54 (1) Å.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular O—H..N hydrogen bonds is shown as a dashd lines (see Table 1 for details).

Fig. 2.

Fig. 2.

A view along the a axis of the crystal apcking of the title compound. The O—H..N and C-H···π interactions are illustrated by dashed lines (see Table 1 for details).

Crystal data

C19H25N3O F(000) = 336
Mr = 311.42 Dx = 1.200 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 4428 reflections
a = 8.8201 (7) Å θ = 2.4–27.2°
b = 7.8850 (7) Å µ = 0.08 mm1
c = 13.0639 (10) Å T = 295 K
β = 108.407 (3)° Block, colourless
V = 862.06 (12) Å3 0.26 × 0.22 × 0.20 mm
Z = 2

Data collection

Bruker Kappa APEXII CCD diffractometer 3825 independent reflections
Radiation source: fine-focus sealed tube 2438 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
ω and φ scan θmax = 27.3°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −11→10
Tmin = 0.981, Tmax = 0.985 k = −10→10
13009 measured reflections l = −16→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052 H-atom parameters constrained
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.0751P)2 + 0.1538P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
3825 reflections Δρmax = 0.29 e Å3
214 parameters Δρmin = −0.16 e Å3
6 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.014 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4431 (4) 0.6814 (5) 0.2015 (2) 0.0780 (10)
H1A 0.3484 0.6253 0.1573 0.117*
H1B 0.5213 0.6840 0.1644 0.117*
H1C 0.4171 0.7953 0.2159 0.117*
C2 0.6641 (4) 0.5264 (6) 0.3287 (3) 0.0902 (12)
H2A 0.7316 0.5867 0.3901 0.135*
H2B 0.7039 0.5405 0.2688 0.135*
H2C 0.6635 0.4081 0.3459 0.135*
C3 0.4220 (3) 0.5850 (3) 0.3736 (2) 0.0502 (6)
C4 0.2713 (3) 0.6598 (4) 0.3525 (2) 0.0547 (7)
H4 0.2275 0.7180 0.2880 0.066*
C5 0.1861 (3) 0.6502 (4) 0.42371 (19) 0.0512 (6)
H5 0.0860 0.7008 0.4067 0.061*
C6 0.2487 (3) 0.5648 (3) 0.52175 (18) 0.0444 (6)
C7 0.3965 (3) 0.4922 (3) 0.5425 (2) 0.0508 (6)
H7 0.4405 0.4352 0.6075 0.061*
C8 0.4820 (3) 0.5003 (4) 0.4715 (2) 0.0537 (7)
H8 0.5816 0.4483 0.4889 0.064*
C9 0.0435 (3) 0.6249 (4) 0.59847 (19) 0.0481 (6)
H9 −0.0034 0.6975 0.5411 0.058*
C10 −0.0294 (3) 0.6066 (3) 0.68154 (19) 0.0462 (6)
C11 −0.1669 (3) 0.6947 (3) 0.6784 (2) 0.0537 (7)
H11 −0.2150 0.7626 0.6188 0.064*
C12 −0.2347 (3) 0.6864 (4) 0.7586 (2) 0.0596 (8)
H12 −0.3278 0.7467 0.7524 0.072*
C13 −0.1648 (3) 0.5871 (4) 0.8507 (2) 0.0528 (6)
C14 −0.0279 (3) 0.4940 (3) 0.8547 (2) 0.0523 (7)
H14 0.0198 0.4255 0.9141 0.063*
C15 0.0370 (3) 0.5025 (3) 0.7722 (2) 0.0472 (6)
C16 −0.1784 (4) 0.4511 (5) 1.0194 (3) 0.0834 (10)
H16A −0.2702 0.4176 1.0403 0.100*
H16B −0.1393 0.3520 0.9915 0.100*
C17 −0.0541 (5) 0.5166 (6) 1.1125 (3) 0.1089 (14)
H17A 0.0389 0.5432 1.0925 0.163*
H17B −0.0274 0.4327 1.1686 0.163*
H17C −0.0917 0.6173 1.1380 0.163*
C18 −0.3507 (4) 0.7080 (5) 0.9409 (3) 0.0835 (10)
H18A −0.3375 0.7326 1.0160 0.100*
H18B −0.3372 0.8131 0.9062 0.100*
C19 −0.5106 (4) 0.6420 (8) 0.8890 (4) 0.1178 (15)
H19A −0.5223 0.6129 0.8156 0.177*
H19B −0.5881 0.7267 0.8905 0.177*
H19C −0.5270 0.5428 0.9268 0.177*
N1 0.5063 (3) 0.5915 (4) 0.30117 (18) 0.0693 (7)
N2 0.1707 (2) 0.5451 (3) 0.60028 (16) 0.0495 (5)
N3 −0.2261 (3) 0.5836 (4) 0.9344 (2) 0.0826 (9)
O1 0.1678 (2) 0.4075 (3) 0.77919 (17) 0.0695 (6)
H1 0.2010 0.4308 0.7289 0.104*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.097 (2) 0.090 (3) 0.0568 (17) −0.0042 (19) 0.0384 (16) 0.0063 (17)
C2 0.0743 (17) 0.127 (3) 0.082 (2) 0.0100 (19) 0.0428 (18) 0.012 (2)
C3 0.0561 (14) 0.0511 (15) 0.0454 (13) −0.0092 (13) 0.0189 (11) 0.0004 (12)
C4 0.0608 (16) 0.0587 (17) 0.0431 (13) 0.0034 (14) 0.0143 (12) 0.0113 (13)
C5 0.0487 (13) 0.0557 (16) 0.0487 (14) 0.0064 (12) 0.0148 (11) 0.0060 (13)
C6 0.0510 (14) 0.0410 (14) 0.0418 (13) −0.0028 (12) 0.0154 (11) 0.0013 (11)
C7 0.0506 (14) 0.0535 (16) 0.0453 (14) 0.0033 (13) 0.0110 (11) 0.0073 (12)
C8 0.0494 (14) 0.0554 (16) 0.0544 (16) 0.0018 (12) 0.0137 (12) 0.0038 (13)
C9 0.0505 (14) 0.0473 (15) 0.0436 (13) −0.0018 (13) 0.0107 (11) 0.0001 (11)
C10 0.0455 (13) 0.0444 (14) 0.0467 (13) −0.0009 (11) 0.0116 (10) −0.0012 (11)
C11 0.0547 (14) 0.0533 (16) 0.0496 (14) 0.0138 (12) 0.0113 (12) 0.0110 (12)
C12 0.0529 (14) 0.066 (2) 0.0604 (16) 0.0188 (13) 0.0188 (13) 0.0095 (14)
C13 0.0533 (14) 0.0548 (16) 0.0530 (14) 0.0039 (13) 0.0207 (11) 0.0075 (13)
C14 0.0543 (15) 0.0523 (16) 0.0506 (15) 0.0101 (13) 0.0167 (12) 0.0147 (13)
C15 0.0403 (12) 0.0443 (14) 0.0554 (15) 0.0053 (11) 0.0129 (11) 0.0050 (12)
C16 0.086 (2) 0.093 (3) 0.081 (2) 0.0042 (18) 0.0414 (19) 0.0168 (16)
C17 0.126 (3) 0.098 (3) 0.097 (3) 0.010 (3) 0.028 (3) −0.008 (3)
C18 0.080 (2) 0.107 (3) 0.075 (2) 0.0190 (17) 0.0400 (18) 0.0039 (19)
C19 0.094 (3) 0.134 (4) 0.131 (4) 0.014 (3) 0.043 (3) −0.015 (3)
N1 0.0737 (14) 0.083 (2) 0.0611 (15) 0.0044 (13) 0.0357 (13) 0.0146 (14)
N2 0.0530 (12) 0.0515 (14) 0.0459 (11) 0.0007 (10) 0.0184 (9) 0.0030 (10)
N3 0.0769 (16) 0.112 (2) 0.0696 (16) 0.0288 (15) 0.0381 (13) 0.0210 (15)
O1 0.0666 (12) 0.0777 (14) 0.0737 (14) 0.0302 (11) 0.0356 (10) 0.0283 (11)

Geometric parameters (Å, º)

C1—N1 1.432 (4) C11—C12 1.363 (4)
C1—H1A 0.9600 C11—H11 0.9300
C1—H1B 0.9600 C12—C13 1.404 (4)
C1—H1C 0.9600 C12—H12 0.9300
C2—N1 1.419 (4) C13—N3 1.364 (3)
C2—H2A 0.9600 C13—C14 1.400 (3)
C2—H2B 0.9600 C14—C15 1.373 (4)
C2—H2C 0.9600 C14—H14 0.9300
C3—N1 1.377 (3) C15—O1 1.354 (3)
C3—C8 1.390 (4) C16—C17 1.451 (5)
C3—C4 1.400 (4) C16—N3 1.485 (4)
C4—C5 1.370 (4) C16—H16A 0.9700
C4—H4 0.9300 C16—H16B 0.9700
C5—C6 1.397 (3) C17—H17A 0.9600
C5—H5 0.9300 C17—H17B 0.9600
C6—C7 1.370 (3) C17—H17C 0.9600
C6—N2 1.413 (3) C18—C19 1.454 (5)
C7—C8 1.370 (4) C18—N3 1.495 (4)
C7—H7 0.9300 C18—H18A 0.9700
C8—H8 0.9300 C18—H18B 0.9700
C9—N2 1.280 (3) C19—H19A 0.9600
C9—C10 1.433 (3) C19—H19B 0.9600
C9—H9 0.9300 C19—H19C 0.9600
C10—C11 1.386 (3) O1—H1 0.8200
C10—C15 1.407 (3)
N1—C1—H1A 109.5 N3—C13—C14 121.0 (2)
N1—C1—H1B 109.5 N3—C13—C12 121.3 (2)
H1A—C1—H1B 109.5 C14—C13—C12 117.7 (2)
N1—C1—H1C 109.5 C15—C14—C13 120.9 (2)
H1A—C1—H1C 109.5 C15—C14—H14 119.5
H1B—C1—H1C 109.5 C13—C14—H14 119.5
N1—C2—H2A 109.5 O1—C15—C14 118.5 (2)
N1—C2—H2B 109.5 O1—C15—C10 119.9 (2)
H2A—C2—H2B 109.5 C14—C15—C10 121.6 (2)
N1—C2—H2C 109.5 C17—C16—N3 109.7 (3)
H2A—C2—H2C 109.5 C17—C16—H16A 109.7
H2B—C2—H2C 109.5 N3—C16—H16A 109.7
N1—C3—C8 121.2 (2) C17—C16—H16B 109.7
N1—C3—C4 122.3 (2) N3—C16—H16B 109.7
C8—C3—C4 116.4 (2) H16A—C16—H16B 108.2
C5—C4—C3 122.2 (2) C16—C17—H17A 109.5
C5—C4—H4 118.9 C16—C17—H17B 109.5
C3—C4—H4 118.9 H17A—C17—H17B 109.5
C4—C5—C6 120.4 (2) C16—C17—H17C 109.5
C4—C5—H5 119.8 H17A—C17—H17C 109.5
C6—C5—H5 119.8 H17B—C17—H17C 109.5
C7—C6—C5 117.3 (2) C19—C18—N3 111.1 (3)
C7—C6—N2 117.5 (2) C19—C18—H18A 109.4
C5—C6—N2 125.2 (2) N3—C18—H18A 109.4
C8—C7—C6 122.6 (2) C19—C18—H18B 109.4
C8—C7—H7 118.7 N3—C18—H18B 109.4
C6—C7—H7 118.7 H18A—C18—H18B 108.0
C7—C8—C3 121.0 (2) C18—C19—H19A 109.5
C7—C8—H8 119.5 C18—C19—H19B 109.5
C3—C8—H8 119.5 H19A—C19—H19B 109.5
N2—C9—C10 122.5 (2) C18—C19—H19C 109.5
N2—C9—H9 118.8 H19A—C19—H19C 109.5
C10—C9—H9 118.8 H19B—C19—H19C 109.5
C11—C10—C15 116.4 (2) C3—N1—C2 120.8 (2)
C11—C10—C9 121.6 (2) C3—N1—C1 120.2 (2)
C15—C10—C9 121.9 (2) C2—N1—C1 118.6 (2)
C12—C11—C10 123.1 (2) C9—N2—C6 123.9 (2)
C12—C11—H11 118.5 C13—N3—C16 121.5 (3)
C10—C11—H11 118.5 C13—N3—C18 121.1 (3)
C11—C12—C13 120.3 (2) C16—N3—C18 117.4 (2)
C11—C12—H12 119.8 C15—O1—H1 109.5
C13—C12—H12 119.8
N1—C3—C4—C5 178.6 (3) C13—C14—C15—C10 1.1 (4)
C8—C3—C4—C5 −0.3 (4) C11—C10—C15—O1 177.5 (3)
C3—C4—C5—C6 0.5 (4) C9—C10—C15—O1 −4.4 (4)
C4—C5—C6—C7 −0.2 (4) C11—C10—C15—C14 −2.3 (4)
C4—C5—C6—N2 −179.1 (3) C9—C10—C15—C14 175.8 (3)
C5—C6—C7—C8 −0.3 (4) C8—C3—N1—C2 −6.4 (5)
N2—C6—C7—C8 178.7 (2) C4—C3—N1—C2 174.8 (3)
C6—C7—C8—C3 0.5 (4) C8—C3—N1—C1 −179.2 (3)
N1—C3—C8—C7 −179.0 (3) C4—C3—N1—C1 2.1 (4)
C4—C3—C8—C7 −0.2 (4) C10—C9—N2—C6 −177.7 (2)
N2—C9—C10—C11 179.7 (2) C7—C6—N2—C9 170.0 (2)
N2—C9—C10—C15 1.7 (4) C5—C6—N2—C9 −11.0 (4)
C15—C10—C11—C12 1.4 (4) C14—C13—N3—C16 −15.8 (5)
C9—C10—C11—C12 −176.7 (3) C12—C13—N3—C16 165.5 (3)
C10—C11—C12—C13 0.8 (4) C14—C13—N3—C18 167.5 (3)
C11—C12—C13—N3 176.7 (3) C12—C13—N3—C18 −11.3 (5)
C11—C12—C13—C14 −2.1 (4) C17—C16—N3—C13 97.4 (4)
N3—C13—C14—C15 −177.6 (3) C17—C16—N3—C18 −85.7 (4)
C12—C13—C14—C15 1.2 (4) C19—C18—N3—C13 91.4 (4)
C13—C14—C15—O1 −178.8 (3) C19—C18—N3—C16 −85.5 (4)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of rings C3-C8 and C10-C15, respectively.

D—H···A D—H H···A D···A D—H···A
O1—H1···N2 0.82 1.85 2.585 (3) 148
C11—H11···Cg1i 0.93 2.71 3.517 (3) 145
C17—H17B···Cg2ii 0.96 2.90 3.743 (5) 147

Symmetry codes: (i) −x, y+1/2, −z+1; (ii) −x, y−1/2, −z+2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5157).

References

  1. Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  3. Manvizhi, K., Chakkaravarthi, G., Anbalagan, G. & Rajagopal, G. (2011). Acta Cryst. E67, o2500. [DOI] [PMC free article] [PubMed]
  4. Savaliya, M. D., Dobaria, J. G. & Purohit, D. M. (2010). An Indian J. 6, 267–271.
  5. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Thirugnanasundar, A., Suresh, J., Ramu, A. & RajaGopal, G. (2011). Acta Cryst. E67, o2303. [DOI] [PMC free article] [PubMed]
  9. Xu, R.-B., Zhang, N., Zhou, H.-Y., Yang, S.-P., Li, Y.-Y., Shi, D.-H., Ma, W.-X. & Xu, X.-Y. (2012). J. Chem. Crystallogr. 42, 928–932.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015011779/su5157sup1.cif

e-71-0o503-sup1.cif (26.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015011779/su5157Isup2.hkl

e-71-0o503-Isup2.hkl (183.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015011779/su5157Isup3.cml

. DOI: 10.1107/S2056989015011779/su5157fig1.tif

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intra­molecular O—H.·N hydrogen bonds is shown as a dashd lines (see Table 1 for details).

a . DOI: 10.1107/S2056989015011779/su5157fig2.tif

A view along the a axis of the crystal apcking of the title compound. The O—H.·N and C-H⋯π inter­actions are illustrated by dashed lines (see Table 1 for details).

CCDC reference: 1407678

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES