A 1:1.4 molar equivalent of benzene-1,3,5-tricarboxylic acid cocrystallized with 4-hydroxypyridine yields the 4-hydroxypyridin-1-ium 3,5-dicarboxybenzoate salt.
Keywords: crystal structure; 4-hydroxypyridin-1-ium; 3,5-dicarboxybenzoate; hydrogen bonding; cocrystal
Abstract
The structure of the title salt, C5H6NO+·C9H5O6 −, (I), shows that 4-hydroxypyridine has abstracted an H atom from benzene-1,3,5-tricarboxylic acid, yielding a pyridinium cation and carboxylate anion. The two ions form an extensive three-dimensional hydrogen-bonded network throughout the crystal. The hydrogen bonds that comprise the core of the network are considered strong, with O—H⋯O and N—H⋯O donor-to-acceptor distances ranging from 2.533 (2) to 2.700 (2) Å. Packing is further enhanced by π-stacking of the cations and anions with like species [centroid–centroid distance = 3.6206 (13) Å].
Chemical Context
As a study in crystal engineering utilizing hydrogen bonding between disparate molecules (Desiraju, 2003 ▸), we have been investigating the cocrystallization of various pyridine compounds with benzene carboxylic acids (Staun & Oliver, 2012 ▸). From previous work, 4-hydroxypyridine undergoes hydrogen migration from the hydroxy O to the pyridine N atom, yielding 4-pyridone (Tyl et al., 2008 ▸). We were surprised to find that in the case of 4-hydroxypyridin-1-ium 3,5-dicarboxybenzoate, (I), an H atom is abstracted from one carboxylic acid group, yielding a pyridinium salt. This result allows for the hydroxy O and pyridine N atom to both act as hydrogen-bond donors, rather than the donor/acceptor situation of the 4-pyridone species. These two molecules have been incorporated as linker species in metal–organic frameworks (Guo et al., 2011 ▸).
Structural Commentary
The structure of (I) shows that the 4-hydroxypyridine has abstracted an H atom from the benzenetricarboxylic acid, yielding a pyridinium cation and a carboxylate anion (Fig. 1 ▸). Bond distances about the pyridine ring show some localization of the bonds: C1—C2 and C4—C5 are slightly shorter than the ideal aromatic distance [1.367 (3) and 1.369 (3) Å, respectively, cf. 1.390 Å for an aromatic C—C bond]. The N1—C1 and N1—C5 distances are typical for an aromatic N atom [1.345 (3) and 1.348 (3) Å, respectively]. The remaining bonds within the ring display typical aromatic distances [C2—C3 = 1.405 (3) Å and C3—C4 = 1.402 (3) Å]. The C3—O1 distance of 1.326 (2) Å is typical for a hydroxy O atom bound to an aromatic ring. Bond angles within the pyridine ring are unexceptional.
Figure 1.
Labeling scheme for (I). Displacement ellipsoids are depicted at the 50% probability level. The inter-ion hydrogen bond is shown as a dashed red line.
Two of the three carboxylic acid groups show distinct single- and double-bond character [C12—O3 = 1.305 (3) Å and C14—O7 = 1.332 (3) Å; C12—O2 = 1.224 (2) Å and C14—O6 = 1.204 (3) Å]. The remaining carboxylate group displays C—O bond distances that are similar to each other and indicate delocalization of the C—O bonds [1.268 (3) and 1.249 (2) Å for C13—O4 and C4—O5, respectively], supporting the proposed single negative charge on the benzenetricarboxylic acid molecule. This is further supported by the presence of H atoms, located in a difference Fourier map, on atoms O3 and O7. Bond distances and angles within the benzene ring are as expected.
Supramolecular Features
The local intermolecular contacts consist of the pyridinium cation forming a hydrogen bond from the hydroxy group to the anionic carboxylate group (O1⋯O5; see Table 1 ▸ for detailed contacts) and from pyridine atom N1 to carboxylate atom O4i [symmetry code: (i) −x +
, y +
, z −
]. Carboxylic acid atoms O3 and O7 are donors for hydrogen bonds to atoms O4ii and O2iii, respectively [symmetry codes: (ii) −x, −y, z −
; (iii) −x, −y + 1, z +
]. Since these hydrogen bonds extend over several molecules, an extensive hydrogen-bonded network exists in this structure.
Table 1. Hydrogen-bond geometry (, ).
| DHA | DH | HA | D A | DHA |
|---|---|---|---|---|
| O1H1OO5 | 0.95(3) | 1.59(4) | 2.533(2) | 171(3) |
| N1H1NO4i | 0.98(3) | 1.73(3) | 2.700(2) | 173(4) |
| O3H3OO4ii | 0.93(3) | 1.65(3) | 2.574(2) | 172(3) |
| O7H7OO2iii | 0.90(3) | 1.79(3) | 2.678(2) | 166(3) |
Symmetry codes: (i)
; (ii)
; (iii)
.
Pertinent features of this extended network are an
(28) ring comprised of 3,5-dicarboxybenzoate ions (Fig. 2 ▸) (Bernstein et al., 1995 ▸). The carboxylic acid groups are involved in the hydrogen bonding within this ring. There is also an
(44) ring of 3,5-dicarboxybenzoate ions, that incorporate a different chain of carboxylic acid groups. These rings are bridged by the 4-hydroxypyridinium cations resulting in the three-dimensional network. The hydrogen bonds within the structure are surprisingly strong, with O—H⋯O and N—H⋯O distances ranging from 2.533 (2) to 2.700 (2) Å (Table 1 ▸).
Figure 2.
A view of (I) approximately along the crystallographic c axis. Color code: blue represents the
(28) ring, purple the
(44) ring, and green the bridging 4-hydroxypyridinium cations.
The cations and anions form homogeneous π-stacked columns parallel to the c axis, that is, 4-pyridinium cations stacking with other cations and 3,5-dicarboxybenzoate anions stacking with other anions. The centroid-to-centroid distances for both the pyridinium and the dicarboxybenzoate interactions are 3.6206 (13) Å, i.e. the c-axis spacing. The centroid-to-perpendicular distances are 3.3629 (9) Å for the cation and 3.4372 (9) Å for the anion. Both measurements are within accepted π–π contact ranges (see Table 2 ▸; Spek, 2009 ▸).
Table 2. -stacking interactions within (I).
| Interaction | Cg Cg () | Cgperp () |
|---|---|---|
| Cg1Cg1i | 3.6206(13) | 3.4373(9) |
| Cg2Cg2i | 3.6206(13) | 3.3627(9) |
Cg1 is the centroid of the 3,5-dicarboxybenzoate ring, Cg2 is the centroid of the 4-hydroxypyridinium ring [symmetry code: (i) x, y, 1+z], Cg Cg is the centroid-to-centroid distance, and Cgperp is the distance to the plane perpendicular to the ring centroid.
Database Survey
A search of the Cambridge Structural Database (CSD, Version 5.36 plus 3 updates; Groom & Allen, 2014 ▸) for 4-hydroxypyridine and benzenetricarboxylic acid gave only five hits. In the compound that is most closely related to the title compound, namely benzene-1,3,5-tricarboxylic acid pyridin-4(1H)-one (Campos-Gaxiola et al., 2014 ▸), there are three molecules of 4-pyridone present in the asymmetric unit. Benzenetricarboxylic acid and a tetrakis[(pyridin-4-yloxy)methyl]methane moiety (incorporating a 4-hydroxypyridine functionality) have been utilized in the devlopment of frameworks incorporating copper and cadmium (Guo et al., 2011 ▸).
Synthesis and Crystallization
To a solution of benzene-1,3,5-tricarboxylic acid (0.035 g, 1.24 mmol) in MeOH (3 ml) in a 20 ml vial was added a solution of 4-hydroxypyridine (0.0218 g, 1.77 mmol) in MeOH (3 ml). The mixture was shaken vigorously, covered with perforated Parafilm and allowed to evaporate slowly over a period of 5 d, yielding colorless rod-like crystals.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3 ▸. Carboxylic, hydroxy, and pyridinium H atoms were initally located in a difference Fourier map. H atoms on the 4-hydroxypyridinium cation were refined freely. H atoms on the carboxylic acid groups were included with refined coordinates and atomic displacement parameters tied to that of the O atom to which they are bonded. C—H hydrogens were included in idealized positions riding on the C atom to which they are bonded, with C—H distances constrained to 0.95 Å and U iso(H) = 1.2 U eq(C).
Table 3. Experimental details.
| Crystal data | |
| Chemical formula | C5H6NO+C9H5O6 |
| M r | 305.24 |
| Crystal system, space group | Orthorhombic, P n a21 |
| Temperature (K) | 122 |
| a, b, c () | 29.3465(10), 12.2113(5), 3.6206(2) |
| V (3) | 1297.47(10) |
| Z | 4 |
| Radiation type | Cu K |
| (mm1) | 1.10 |
| Crystal size (mm) | 0.11 0.06 0.06 |
| Data collection | |
| Diffractometer | Bruker APEXII |
| Absorption correction | Numerical (SADABS; Krause et al., 2015 ▸) |
| T min, T max | 0.694, 0.753 |
| No. of measured, independent and observed [I > 2(I)] reflections | 6000, 2322, 2172 |
| R int | 0.018 |
| (sin /)max (1) | 0.614 |
| Refinement | |
| R[F 2 > 2(F 2)], wR(F 2), S | 0.028, 0.071, 1.05 |
| No. of reflections | 2322 |
| No. of parameters | 213 |
| No. of restraints | 1 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| max, min (e 3) | 0.15, 0.19 |
| Absolute structure | Flack x determined using 786 quotients [(I +)(I )]/[(I +)+(I )] (Parsons et al., 2013 ▸) |
| Absolute structure parameter | 0.20(8) |
The compound is achiral, but crystallizes with a noncentrosymmetric, polar space group. The Flack x parameter refined to 0.20 (8), which suggests the possibility of a small amount of inversion twinnning (Parsons et al., 2013 ▸), but the strength of the anomalous signal is very weak. We compared both a model twinned by inversion and the untwinned model, and there was no significant difference. We therefore elected to model the structure without inclusion of a twin component.
Supplementary Material
Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015011780/pk2555sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015011780/pk2555Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015011780/pk2555Isup3.cml
CCDC reference: 1407819
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
We thank the University of Notre Dame for generous support of the micro-focus source used in this project. SLS thanks the Indiana Academy of Science for a Junior Research Grant and the Henderson lab for kind donation of materials and research space.
supplementary crystallographic information
Crystal data
| C5H6NO+·C9H5O6− | Dx = 1.563 Mg m−3 |
| Mr = 305.24 | Cu Kα radiation, λ = 1.54184 Å |
| Orthorhombic, Pna21 | Cell parameters from 2373 reflections |
| a = 29.3465 (10) Å | θ = 3.4–71.2° |
| b = 12.2113 (5) Å | µ = 1.10 mm−1 |
| c = 3.6206 (2) Å | T = 122 K |
| V = 1297.47 (10) Å3 | Rod, colorless |
| Z = 4 | 0.11 × 0.06 × 0.06 mm |
| F(000) = 632 |
Data collection
| Bruker APEXII diffractometer | 2322 independent reflections |
| Radiation source: Incoatec micro-focus | 2172 reflections with I > 2σ(I) |
| Detector resolution: 8.33 pixels mm-1 | Rint = 0.018 |
| combination of ω and φ–scans | θmax = 71.2°, θmin = 3.0° |
| Absorption correction: numerical SADABS (Krause et al., 2015) | h = −27→35 |
| Tmin = 0.694, Tmax = 0.753 | k = −13→14 |
| 6000 measured reflections | l = −4→4 |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: mixed |
| R[F2 > 2σ(F2)] = 0.028 | H atoms treated by a mixture of independent and constrained refinement |
| wR(F2) = 0.071 | w = 1/[σ2(Fo2) + (0.0441P)2 + 0.1815P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.05 | (Δ/σ)max = 0.001 |
| 2322 reflections | Δρmax = 0.15 e Å−3 |
| 213 parameters | Δρmin = −0.19 e Å−3 |
| 1 restraint | Absolute structure: Flack x determined using 786 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
| Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.20 (8) |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.23997 (5) | 0.04165 (12) | 0.3072 (5) | 0.0195 (4) | |
| H1O | 0.2112 (11) | 0.062 (3) | 0.405 (11) | 0.057 (11)* | |
| N1 | 0.32385 (6) | 0.30371 (16) | 0.1767 (5) | 0.0181 (4) | |
| H1N | 0.3450 (9) | 0.365 (3) | 0.166 (11) | 0.048 (10)* | |
| C1 | 0.33796 (7) | 0.2029 (2) | 0.0796 (6) | 0.0186 (5) | |
| H1A | 0.3679 | 0.1933 | −0.0157 | 0.022* | |
| C2 | 0.30997 (6) | 0.11410 (19) | 0.1159 (7) | 0.0169 (4) | |
| H2A | 0.3201 | 0.0433 | 0.0444 | 0.020* | |
| C3 | 0.26602 (6) | 0.12932 (17) | 0.2608 (6) | 0.0145 (4) | |
| C4 | 0.25177 (7) | 0.23551 (18) | 0.3521 (6) | 0.0160 (4) | |
| H4A | 0.2218 | 0.2481 | 0.4424 | 0.019* | |
| C5 | 0.28155 (7) | 0.32085 (18) | 0.3095 (6) | 0.0174 (4) | |
| H5A | 0.2723 | 0.3929 | 0.3741 | 0.021* | |
| O2 | −0.06609 (4) | 0.25817 (12) | 0.5787 (5) | 0.0182 (3) | |
| O3 | −0.04180 (5) | 0.08670 (13) | 0.5070 (5) | 0.0215 (4) | |
| H3O | −0.0703 (9) | 0.067 (2) | 0.417 (9) | 0.032* | |
| O4 | 0.11707 (4) | −0.02696 (12) | 0.7027 (5) | 0.0196 (4) | |
| O5 | 0.16718 (4) | 0.10740 (13) | 0.6111 (6) | 0.0252 (4) | |
| O6 | 0.11934 (5) | 0.47723 (13) | 1.1519 (5) | 0.0220 (4) | |
| O7 | 0.05337 (5) | 0.53129 (13) | 0.8992 (5) | 0.0204 (4) | |
| H7O | 0.0611 (8) | 0.598 (3) | 0.987 (9) | 0.031* | |
| C6 | 0.01288 (6) | 0.21569 (17) | 0.6846 (6) | 0.0127 (4) | |
| C7 | 0.04618 (7) | 0.13490 (17) | 0.6462 (6) | 0.0128 (4) | |
| H7A | 0.0380 | 0.0638 | 0.5628 | 0.015* | |
| C8 | 0.09153 (6) | 0.15874 (17) | 0.7304 (6) | 0.0133 (4) | |
| C9 | 0.10330 (6) | 0.26321 (18) | 0.8480 (6) | 0.0142 (4) | |
| H9A | 0.1341 | 0.2795 | 0.9056 | 0.017* | |
| C10 | 0.07019 (6) | 0.34410 (18) | 0.8820 (6) | 0.0131 (4) | |
| C11 | 0.02463 (6) | 0.32021 (17) | 0.8012 (6) | 0.0134 (4) | |
| H11A | 0.0019 | 0.3751 | 0.8261 | 0.016* | |
| C12 | −0.03557 (6) | 0.18988 (17) | 0.5860 (6) | 0.0138 (4) | |
| C13 | 0.12794 (6) | 0.07323 (18) | 0.6782 (6) | 0.0150 (4) | |
| C14 | 0.08419 (7) | 0.45642 (18) | 0.9953 (6) | 0.0156 (5) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0143 (7) | 0.0151 (8) | 0.0291 (9) | −0.0021 (6) | 0.0044 (7) | −0.0012 (7) |
| N1 | 0.0152 (8) | 0.0205 (10) | 0.0185 (9) | −0.0067 (8) | −0.0004 (7) | 0.0002 (8) |
| C1 | 0.0122 (9) | 0.0270 (12) | 0.0166 (11) | −0.0006 (9) | 0.0006 (8) | 0.0004 (10) |
| C2 | 0.0142 (9) | 0.0208 (11) | 0.0157 (10) | 0.0018 (8) | 0.0008 (8) | −0.0017 (9) |
| C3 | 0.0133 (9) | 0.0166 (11) | 0.0135 (10) | −0.0014 (8) | −0.0015 (8) | −0.0005 (9) |
| C4 | 0.0132 (9) | 0.0180 (11) | 0.0170 (10) | 0.0010 (8) | 0.0016 (8) | −0.0006 (10) |
| C5 | 0.0190 (10) | 0.0171 (11) | 0.0161 (11) | −0.0012 (8) | 0.0000 (8) | −0.0007 (9) |
| O2 | 0.0116 (6) | 0.0130 (7) | 0.0299 (9) | 0.0009 (5) | −0.0012 (6) | 0.0000 (7) |
| O3 | 0.0124 (7) | 0.0138 (8) | 0.0382 (11) | −0.0007 (6) | −0.0073 (7) | −0.0059 (7) |
| O4 | 0.0122 (6) | 0.0134 (7) | 0.0331 (9) | 0.0017 (6) | 0.0034 (6) | 0.0022 (7) |
| O5 | 0.0120 (7) | 0.0220 (9) | 0.0417 (11) | −0.0023 (6) | 0.0085 (7) | −0.0032 (8) |
| O6 | 0.0179 (7) | 0.0204 (8) | 0.0277 (9) | −0.0050 (6) | −0.0047 (7) | −0.0032 (7) |
| O7 | 0.0179 (8) | 0.0126 (8) | 0.0308 (10) | 0.0003 (6) | −0.0019 (7) | −0.0057 (7) |
| C6 | 0.0125 (8) | 0.0126 (10) | 0.0130 (9) | 0.0008 (8) | 0.0013 (7) | 0.0010 (8) |
| C7 | 0.0142 (8) | 0.0112 (10) | 0.0129 (10) | −0.0014 (7) | 0.0007 (7) | 0.0018 (8) |
| C8 | 0.0128 (9) | 0.0143 (10) | 0.0129 (10) | −0.0005 (8) | 0.0009 (8) | 0.0022 (9) |
| C9 | 0.0111 (9) | 0.0166 (11) | 0.0150 (10) | −0.0017 (8) | −0.0008 (8) | 0.0002 (9) |
| C10 | 0.0139 (9) | 0.0136 (10) | 0.0117 (10) | −0.0017 (8) | 0.0003 (8) | 0.0002 (8) |
| C11 | 0.0139 (9) | 0.0138 (10) | 0.0127 (10) | 0.0024 (8) | 0.0004 (8) | 0.0006 (8) |
| C12 | 0.0152 (9) | 0.0125 (10) | 0.0137 (10) | 0.0000 (8) | −0.0002 (8) | 0.0009 (9) |
| C13 | 0.0129 (9) | 0.0159 (11) | 0.0164 (10) | 0.0001 (8) | 0.0000 (8) | −0.0007 (9) |
| C14 | 0.0139 (9) | 0.0168 (11) | 0.0162 (11) | −0.0012 (8) | 0.0026 (9) | −0.0015 (9) |
Geometric parameters (Å, º)
| O1—C3 | 1.326 (2) | O5—C13 | 1.249 (2) |
| O1—H1O | 0.95 (3) | O6—C14 | 1.204 (3) |
| N1—C1 | 1.345 (3) | O7—C14 | 1.332 (3) |
| N1—C5 | 1.348 (3) | O7—H7O | 0.90 (3) |
| N1—H1N | 0.98 (3) | C6—C11 | 1.388 (3) |
| C1—C2 | 1.367 (3) | C6—C7 | 1.396 (3) |
| C1—H1A | 0.9500 | C6—C12 | 1.499 (3) |
| C2—C3 | 1.405 (3) | C7—C8 | 1.396 (3) |
| C2—H2A | 0.9500 | C7—H7A | 0.9500 |
| C3—C4 | 1.402 (3) | C8—C9 | 1.389 (3) |
| C4—C5 | 1.369 (3) | C8—C13 | 1.506 (3) |
| C4—H4A | 0.9500 | C9—C10 | 1.391 (3) |
| C5—H5A | 0.9500 | C9—H9A | 0.9500 |
| O2—C12 | 1.224 (2) | C10—C11 | 1.399 (3) |
| O3—C12 | 1.305 (3) | C10—C14 | 1.489 (3) |
| O3—H3O | 0.93 (3) | C11—H11A | 0.9500 |
| O4—C13 | 1.268 (3) | ||
| C3—O1—H1O | 111 (2) | C6—C7—C8 | 119.90 (19) |
| C1—N1—C5 | 121.26 (19) | C6—C7—H7A | 120.1 |
| C1—N1—H1N | 119.9 (18) | C8—C7—H7A | 120.1 |
| C5—N1—H1N | 118.7 (18) | C9—C8—C7 | 119.70 (18) |
| N1—C1—C2 | 121.04 (19) | C9—C8—C13 | 119.95 (17) |
| N1—C1—H1A | 119.5 | C7—C8—C13 | 120.29 (19) |
| C2—C1—H1A | 119.5 | C8—C9—C10 | 120.39 (18) |
| C1—C2—C3 | 118.9 (2) | C8—C9—H9A | 119.8 |
| C1—C2—H2A | 120.6 | C10—C9—H9A | 119.8 |
| C3—C2—H2A | 120.6 | C9—C10—C11 | 120.1 (2) |
| O1—C3—C4 | 123.01 (18) | C9—C10—C14 | 119.06 (17) |
| O1—C3—C2 | 118.02 (19) | C11—C10—C14 | 120.86 (18) |
| C4—C3—C2 | 118.97 (19) | C6—C11—C10 | 119.51 (18) |
| C5—C4—C3 | 119.15 (19) | C6—C11—H11A | 120.2 |
| C5—C4—H4A | 120.4 | C10—C11—H11A | 120.2 |
| C3—C4—H4A | 120.4 | O2—C12—O3 | 123.40 (18) |
| N1—C5—C4 | 120.7 (2) | O2—C12—C6 | 123.77 (19) |
| N1—C5—H5A | 119.7 | O3—C12—C6 | 112.83 (17) |
| C4—C5—H5A | 119.7 | O5—C13—O4 | 124.62 (19) |
| C12—O3—H3O | 117.1 (18) | O5—C13—C8 | 116.56 (19) |
| C14—O7—H7O | 110.8 (17) | O4—C13—C8 | 118.82 (17) |
| C11—C6—C7 | 120.42 (17) | O6—C14—O7 | 124.0 (2) |
| C11—C6—C12 | 120.09 (17) | O6—C14—C10 | 124.07 (19) |
| C7—C6—C12 | 119.45 (18) | O7—C14—C10 | 111.89 (17) |
| C5—N1—C1—C2 | −0.7 (3) | C7—C6—C11—C10 | −0.3 (3) |
| N1—C1—C2—C3 | −0.7 (3) | C12—C6—C11—C10 | −178.11 (19) |
| C1—C2—C3—O1 | −177.5 (2) | C9—C10—C11—C6 | −0.5 (3) |
| C1—C2—C3—C4 | 2.1 (3) | C14—C10—C11—C6 | 177.9 (2) |
| O1—C3—C4—C5 | 177.3 (2) | C11—C6—C12—O2 | 4.8 (4) |
| C2—C3—C4—C5 | −2.2 (3) | C7—C6—C12—O2 | −173.0 (2) |
| C1—N1—C5—C4 | 0.5 (3) | C11—C6—C12—O3 | −175.4 (2) |
| C3—C4—C5—N1 | 0.9 (3) | C7—C6—C12—O3 | 6.7 (3) |
| C11—C6—C7—C8 | 0.9 (3) | C9—C8—C13—O5 | −25.5 (3) |
| C12—C6—C7—C8 | 178.7 (2) | C7—C8—C13—O5 | 151.8 (2) |
| C6—C7—C8—C9 | −0.7 (3) | C9—C8—C13—O4 | 154.9 (2) |
| C6—C7—C8—C13 | −178.04 (19) | C7—C8—C13—O4 | −27.8 (3) |
| C7—C8—C9—C10 | −0.1 (3) | C9—C10—C14—O6 | −20.3 (3) |
| C13—C8—C9—C10 | 177.3 (2) | C11—C10—C14—O6 | 161.3 (2) |
| C8—C9—C10—C11 | 0.7 (3) | C9—C10—C14—O7 | 159.0 (2) |
| C8—C9—C10—C14 | −177.74 (19) | C11—C10—C14—O7 | −19.4 (3) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1—H1O···O5 | 0.95 (3) | 1.59 (4) | 2.533 (2) | 171 (3) |
| N1—H1N···O4i | 0.98 (3) | 1.73 (3) | 2.700 (2) | 173 (4) |
| O3—H3O···O4ii | 0.93 (3) | 1.65 (3) | 2.574 (2) | 172 (3) |
| O7—H7O···O2iii | 0.90 (3) | 1.79 (3) | 2.678 (2) | 166 (3) |
Symmetry codes: (i) −x+1/2, y+1/2, z−1/2; (ii) −x, −y, z−1/2; (iii) −x, −y+1, z+1/2.
References
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2012). APEX2 and SAINT. Bruker–Nonius AXS Inc. Madison, Wisconsin, USA.
- Campos-Gaxiola, J. J., Zamora Falcon, F., Corral Higuera, R., Höpfl, H. & Cruz-Enríquez, A. (2014). Acta Cryst. E70, o453–o454. [DOI] [PMC free article] [PubMed]
- Cason, C. J. (2003). POV-RAY. Persistence of Vision Ray Tracer Pty Ltd, Victoria, Australia.
- Desiraju, G. R. (2003). J. Mol. Struct. 656, 5–15.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
- Guo, J., Ma, J.-F., Liu, B., Kan, W.-Q. & Yang, J. (2011). Cryst. Growth Des. 11, 3609–3621.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Staun, S. L. & Oliver, A. G. (2012). Acta Cryst. C68, o84–o87. [DOI] [PubMed]
- Tyl, A., Nowak, M. & Kusz, J. (2008). Acta Cryst. C64, o661–o664. [DOI] [PubMed]
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015011780/pk2555sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015011780/pk2555Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015011780/pk2555Isup3.cml
CCDC reference: 1407819
Additional supporting information: crystallographic information; 3D view; checkCIF report


