Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 27;71(Pt 7):847–851. doi: 10.1107/S2056989015011792

Crystal structure of ortho­rhom­bic {bis­[(pyridin-2-yl)meth­yl](3,5,5,5-tetra­chloro­pent­yl)amine-κ3 N,N′,N′′}chlorido­copper(II) perchlorate

Katherine A Bussey a, Annie R Cavalier a, Jennifer R Connell a, Margaret E Mraz a, Kayode D Oshin a,*, Tomislav Pintauer b, Danielle L Gray c, Sean Parkin d
PMCID: PMC4518935  PMID: 26279883

In the crystal, weak Cu⋯Cl inter­actions between symmetry-related mol­ecules create a dimerization with a chloride occupying the apical position of the square-pyramidal geometry typical of many copper(II) chloride hetero-scorpionate complexes.

Keywords: crystal structure, four-coordinate copper(II), hetero-scorpionate complex, Atom Transfer Radical Addition (ATRA) reactions, disorder in cation and counter-ion

Abstract

In the title compound, [CuCl(C17H19Cl4N3)]ClO4, the CuII ion adopts a distorted square-planar geometry defined by one chloride ligand and the three nitro­gen atoms from the bis­[(pyridin-2-yl)meth­yl](3,5,5,5-tetra­chloro­pent­yl)amine ligand. The perchlorate counter-ion is disordered over three sets of sites with refined occupancies 0.0634 (17), 0.221 (16) and 0.145 (7). In addition, the hetero-scorpionate arm of the bis­[(pyridin-2-yl)meth­yl](3,5,5,5-tetra­chloro­pent­yl)amine ligand is disordered over two sets of sites with refined occupancies 0.839 (2) and 0.161 (2). In the crystal, weak Cu⋯Cl inter­actions between symmetry-related mol­ecules create a dimerization with a chloride occupying the apical position of the square-pyramidal geometry typical of many copper(II) chloride hetero-scorpionate complexes.

Chemical context  

The mechanistic and structural study of Atom Transfer Radical Addition (ATRA) reactions is a growing and promising field in organometallic chemistry. These reactions involve the formation of carbon–carbon bonds through addition of a poly-halogenated saturated hydro­carbon to alkenes (Eckenhoff & Pintauer, 2010). Also known as the Kharasch reaction, most proceed either in the presence of a free-radical precursor as the halogen transfer agent, or a transition metal complex as the halogen transfer agent (Muñoz-Molina et al., 2011). What makes these types of reactions attractive is generation of halogen-group functionalities within the product; which can be used as starting reagents in further functionalization reactions (Kleij et al., 2000). Of inter­est to this project is analysis of hetero-scorpionate complexes incorporating weakly coordinating olefinic moieties in ATRA reactions. Since their discovery in the 1960s by Swiatoslaw Trofimenko (Pettinari, 2004), scorpionate ligands are considered to be some of the most useful ligand structures available in modern coordination chemistry (Trofimenko, 1999). As such, we report the synthesis and crystal structure of the title compound [Cu(C17H19N3Cl4)(Cl)][ClO4] (1).

Structural commentary  

The title complex, (1) (Fig. 1), adopts a distorted square-planar geometry, as shown in the bond angles around the CuII ion. The CuII ion is coordinated by the binding of the two pyridine and amine nitro­gen atoms and a chlorido ligand. A τ-4 analysis of the distortions about the CuII ion yields a value of 0.15, slightly deviant from an ideal value of zero for perfect square-planar geometry [τ-4 = [360 – (α + β)]/141; Yang et al., 2007] where α and β are the two greatest valence angles of the coordination center]. The CuII ion sits 0.0922 (4) Å out of the mean basal plane formed by Cl1 and the three coordinating N atoms, giving rise to the distortion from true square-planar geometry. The Cu—Cl1 [2.2519 (8) Å], Cu—N(amine) [2.027 (2) Å], and Cu—N(py) [1.982 (3) and 1.987 (3) Å] bond lengths are in the anti­cipated range for copper(II) complexes.graphic file with name e-71-00847-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of (1), shown with 50% probability ellipsoids for non-H atoms and circles of arbitrary size for H atoms. Only the primary orientations of the disordered sites are shown.

Supra­molecular features  

Weak [2.8535 (9) Å] Cu⋯Cl inter­actions between adjacent mol­ecules creates a dimerization with two Cl atoms bridging the CuII atoms (Fig. 2). The inter-copper distance between neighbouring cations is 3.4040 (7) Å. When considered, the weak Cu⋯Cl inter­action becomes the apical position of a distorted square-pyramidal geometry for the CuII atoms. Further strengthening the dimer are weak electrostatic C—H⋯ Cl inter­actions between C11—H11A⋯Cl1i and C12—H12B ⋯Cl1i (Cl1i is generated by the symmetry operation − x, −y + 2, −z; Table 1). The three-dimensional packing structure (Fig. 3) is comprised from many weak C—H ⋯ O inter­actions that occur between carbon donors on the scorpionate arm or the bis­(pyridin-2-ylmeth­yl)amine and the oxygen atoms on varying orientations of the perchlorate counter-ion. Depending on the orientation of the chlorinated scorpionate arm, there are additional weak C—H⋯ Cl inter­actions.

Figure 2.

Figure 2

Dimer inter­actions between two [Cu(C17H19N3Cl4)(Cl)] (1) mol­ecules, shown with 50% probability ellipsoids for the primary orientations of the disordered sites. H atoms are removed for clarity. The symmetry operation to generate the additional cation is 1 − x, 1 − y, 1 − z.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C11H11ACl1i 0.99 2.84 3.441(3) 120
C12H12BCl1i 0.99 2.84 3.438(3) 120
C2H2O1ii 0.95 2.64 3.383(8) 136
C11H11AO4iii 0.99 2.53 3.123(7) 118
C12H12AO4 0.99 2.43 3.310(9) 148
C13H13AO1iv 0.99 2.64 3.578(11) 157
C14H14BO3iv 0.99 2.40 3.324(13) 154
C7H7O2iii 0.95 2.64 3.14(3) 113
C12H12AO4 0.99 2.37 3.32(2) 159
C14H14CO3iv 0.99 2.17 3.13(2) 163
C14H14DO4 0.99 2.41 3.26(2) 143
C16H16DO2iv 0.99 2.32 3.28(3) 162
C7H7O2"iii 0.95 2.57 3.26(2) 130
C12H12AO4" 0.99 2.53 3.33(4) 138
C13H13AO1"iv 0.99 2.45 3.33(2) 148
C2H2Cl4v 0.95 2.84 3.644(19) 143
C11H11BCl2 0.99 2.70 3.490(7) 137
C13H13BCl2vi 0.99 2.90 3.863(4) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Figure 3.

Figure 3

Packing diagram viewed along the b-axis direction showing the electrostatic inter­actions for the primary orientations of the disordered sites.

Database survey  

There are 200 structures with the bis­(pyridin-2-ylmeth­yl)amine ligand coordinating to copper with at least one bound chloride ligand (Groom & Allen 2014; CSD Version 5.36). Ignoring all the structures that have tethered pairs or tethered triplets of ligands, or have ligands whose amine group has substituents that additionally coordinate to the CuII atom, there are 58 remaining structures. Eighteen of these remaining structures have two bridging Cl ligands with one short axial Cu—Cl bond length (average 2.25 Å) and one long apical Cu—Cl bond length (average 2.72 Å).

Synthesis and crystallization  

The synthetic procedure is outlined in Fig. 4. Synthesis of 1-butene- bis (pyridin-2-ylmeth­yl)amine, (B): bis­(pyridin-2-ylmeth­yl) amine (BPMA) precursor (A) was synthesized and purified following literature procedures (Carvalho et al., 2006). BPMA (8.064 g, 40.5 mmol) was dissolved in 15 mL of aceto­nitrile followed by the addition of tri­ethyl­amine (4.098 g, 40.5 mmol) and 4-bromo­butene (5.468 g 40.5 mmol). The reaction was sealed and allowed to mix for 4 days to ensure complete deprotonation and coupling occurred. Generation of the tri­ethyl­amine hydrogen bromide salt Et3NH+·Br was observed as white crystals in the brown-colored solution. The mixture was filtered and the desired product extracted from the filtrate using a hexa­ne/water mixture. The hexane layer was separated and solvent removed to yield the ligand as a yellow-colored oil (8.516 g, 83%). The ligand was stored in a septum sealed round-bottom flask under argon gas in a refrigerator. 1H NMR (CDCl3, 400 MHz): δ2.31 (dd, J = 8.0 and 21.6 Hz, 2H), δ2.64 (t, J = 7.2 Hz, 2H), δ3.83 (s, 4H), δ4.97 (d, J = 10.4 Hz, 1H), δ5.01 (d, J = 18.8 Hz, 1H), δ5.75 (m, J = 10.4 Hz, 1H), δ7.13 (t, J = 6.4 Hz, 2H), δ 7.53 (d, J = 8.0 Hz, 2H), δ 7.64 (t, J = 7.6 Hz, 2H), δ8.51 (d, J = 4.4 Hz, 2H). 13C NMR (CDCl3, 400 MHz): δ 159.75, 149.01, 136.38, 135.38, 122.80, 121.88, 117.93, 77.13, 59.90, 57.32. FT–IR (liquid): v (cm−1) = 3066 (w), 2922 (w), 2816 (w), 2158 (s), 1639 (s), 1588 (s), 1361 (s), 994 (w), 756 (s). FT–IR (solid): v (cm−1) = 3394 (w), 3067 (w), 3008 (s), 2923 (w), 2817 (s), 2359 (s), 1619 (s), 1589 (s), 1432 (s).

Figure 4.

Figure 4

The synthetic scheme.

Synthesis of [CuI(butene- bis (pyridin-2-ylmeth­yl)amine)][ClO4], (C): In the drybox, 1-butene-bis(pyridin-2-ylmeth­yl)amine (A) (1.00 g, 3.95 mmol) was dissolved in 5 mL aceto­nitrile in a 50 mL Schlenk flask. Cu(ClO4) (1.292 g, 3.95 mmol) was added to the flask to give a yellow-colored solution. The reaction was allowed to mix for 6 h, then 15 mL of pentane was slowly added to the solution to generate a yellow precipitate. Solvent was removed from the flask through a vacuum line. The precipitate was washed twice by transferring 10 mL of pentane into the flask and stirring vigorously for thirty minutes. Solvent was removed and the precipitate dried under vacuum for 2 h to yield a yellow-colored solid (2.109 g, 92%). 1H NMR (CD3CN, 400 MHz): δ2.45 (dd, J = 8.8 and 22.4 Hz, 2H), δ2.77 (t, J = 8.0 Hz, 2H), δ3.87 (s, 4H), δ4.92 (d, J = 10.0 Hz, 1H), δ4.98 (d, J = 16.8 Hz, 1H), δ5.70 (m, J = 10.4 Hz, 1H), δ7.33 (d, J = 8.0 Hz, 2H), δ 7.38 (t, J = 6.0 Hz, 2H), δ 7.80 (t, J = 7.6 Hz, 2H), δ 8.63 (d, J = 4.8 Hz, 2H). FT–IR (solid): v (cm−1) = 3271 (w), 3083 (w), 2923 (w), 2818 (w), 2325 (s), 2303 (s), 1602 (s), 1477 (s). TOF–ESI–MS: (m/z) [M – (ClO4)]+, Calculated for C16H19N3Cu 316.0875, found 316.0897 (7 p.p.m.).

Synthesis of [CuII(1,1,1-tri­chloro, 3-chloropentylbis(pyridin-2-ylmeth­yl)amine)][Cl][ClO4], (1): In the drybox, [CuI(butene-bis(pyridin-2-ylmeth­yl)amine)][ClO4] (C) (0.50 g, 1.20 mmol) was dissolved in 5 mL aceto­nitrile in a glass vial with a stir bar. Nitro­gen gas purged CCl4 (0.174 mL, 1.80 mmol) was added to the vial producing a bluish-green-colored mixture. The reaction vial was sealed with a plastic cap and allowed to mix for 4 h, then removed from the drybox. Vapour diffusion crystallization at room temperature, incorporating 1 mL of the bluish-green solution with diethyl ether as the external diffusing solvent, produced blue-colored crystals suitable for X-ray analysis.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The proposed structure model includes disorder of the hetero-scorpionate arm of the bis[(pyridin-2-yl)meth­yl](3,5,5,5-tetra­chloro­pent­yl)amine ligand over two sets of sites and disorder of the perchlorate anion modelled over three sites. The geometries of the disordered [C5H7Cl4] arm were restrained to be the same (s.u. 0.01Å). The perchlorate anions were also restrained to have the same geometries (s.u. 0.01 Å). In addition, the sum of the occupancies of the three orientations for the perchlorate anions were restrained to add up to one (s.u. 0.001). All disordered sites were restrained to have similar displacement amplitudes (s.u. 0.01) for atoms overlapping by less than the sum of van der Waals radii. Displacement parameters for the perchlorate anion positions were also restrained to behave relatively isotropic. All non-H atoms were refined with anisotropic displacement parameters. H atoms were included as riding idealized contributors, with C—H = 0.95 (aromatic), 0.99 (sp 3 C—R2H2), and 1.00 Å (sp 3 C—R3H). The U iso(H) values were set to 1.2U eq(C) of the carrier atom. The (002) reflection was omitted from the final refinement because it was partially obscured by the beam stop.

Table 2. Experimental details.

Crystal data
Chemical formula [CuCl(C17H19Cl4N3)]ClO4
M r 605.59
Crystal system, space group Orthorhombic, P b c n
Temperature (K) 150
a, b, c () 17.4845(13), 10.6593(8), 25.1030(18)
V (3) 4678.5(6)
Z 8
Radiation type Mo K
(mm1) 1.65
Crystal size (mm) 0.72 0.31 0.04
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.638, 0.746
No. of measured, independent and observed [I > 2(I)] reflections 51373, 6305, 4147
R int 0.081
(sin /)max (1) 0.686
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.045, 0.108, 1.03
No. of reflections 6305
No. of parameters 437
No. of restraints 647
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.56, 0.39

Computer programs: APEX2, SAINT, XPREP and SADABS (Bruker, 2014), SHELXS2014/7 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), CrystalMaker (CrystalMaker, 1994) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015011792/lh5771sup1.cif

e-71-00847-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015011792/lh5771Isup2.hkl

e-71-00847-Isup2.hkl (501.6KB, hkl)

CCDC reference: 1407833

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank Duquesne University for instrument support.

supplementary crystallographic information

Crystal data

[CuCl(C17H19Cl4N3)]ClO4 Dx = 1.720 Mg m3
Mr = 605.59 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbcn Cell parameters from 5135 reflections
a = 17.4845 (13) Å θ = 2.2–23.3°
b = 10.6593 (8) Å µ = 1.65 mm1
c = 25.1030 (18) Å T = 150 K
V = 4678.5 (6) Å3 Prism, blue
Z = 8 0.72 × 0.31 × 0.04 mm
F(000) = 2440

Data collection

Bruker SMART APEXII CCD diffractometer 6305 independent reflections
Radiation source: fine-focus sealed tube 4147 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.081
profile data from φ and ω scans θmax = 29.2°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2014) h = −23→23
Tmin = 0.638, Tmax = 0.746 k = −14→14
51373 measured reflections l = −34→34

Refinement

Refinement on F2 647 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0376P)2 + 5.7335P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
6305 reflections Δρmax = 0.56 e Å3
437 parameters Δρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu1 0.01473 (2) 0.91372 (4) 0.05612 (2) 0.02853 (11)
N1 −0.01787 (15) 1.0476 (2) 0.10598 (10) 0.0314 (6)
N2 0.06695 (16) 0.7705 (2) 0.02079 (10) 0.0307 (6)
N3 0.10728 (14) 0.9061 (2) 0.10463 (10) 0.0255 (5)
Cl1 −0.09392 (4) 0.90746 (8) 0.00802 (3) 0.03601 (19)
C1 0.0368 (2) 0.6854 (3) −0.01322 (13) 0.0409 (9)
H1 −0.0161 0.6897 −0.0218 0.049*
C2 0.0808 (3) 0.5933 (4) −0.03554 (15) 0.0499 (10)
H2 0.0586 0.5343 −0.0593 0.060*
C3 0.1574 (3) 0.5865 (4) −0.02351 (16) 0.0535 (11)
H3 0.1884 0.5230 −0.0390 0.064*
C4 0.1888 (2) 0.6722 (3) 0.01107 (15) 0.0439 (9)
H4 0.2418 0.6693 0.0195 0.053*
C5 0.14184 (18) 0.7632 (3) 0.03345 (12) 0.0301 (7)
C6 0.03905 (18) 1.0893 (3) 0.13719 (12) 0.0299 (7)
C7 0.0263 (2) 1.1791 (3) 0.17579 (14) 0.0394 (8)
H7 0.0667 1.2054 0.1984 0.047*
C8 −0.0459 (2) 1.2302 (3) 0.18115 (16) 0.0481 (10)
H8 −0.0554 1.2931 0.2071 0.058*
C9 −0.1039 (2) 1.1889 (4) 0.14842 (17) 0.0495 (10)
H9 −0.1537 1.2238 0.1511 0.059*
C10 −0.0885 (2) 1.0960 (4) 0.11176 (15) 0.0411 (9)
H10 −0.1288 1.0654 0.0900 0.049*
C11 0.11701 (18) 1.0358 (3) 0.12597 (13) 0.0286 (7)
H11A 0.1441 1.0887 0.0996 0.034*
H11B 0.1477 1.0337 0.1591 0.034*
C12 0.17104 (17) 0.8613 (3) 0.07094 (12) 0.0283 (7)
H12A 0.2119 0.8256 0.0936 0.034*
H12B 0.1928 0.9323 0.0505 0.034*
C13 0.08923 (19) 0.8171 (3) 0.14857 (12) 0.0313 (7)
H13A 0.0711 0.7373 0.1328 0.038*
H13B 0.0468 0.8522 0.1700 0.038*
C14 0.1563 (2) 0.7886 (3) 0.18580 (13) 0.0380 (8)
H14A 0.1893 0.8635 0.1894 0.046* 0.839 (2)
H14B 0.1875 0.7192 0.1711 0.046* 0.839 (2)
H14C 0.1674 0.6985 0.1800 0.046* 0.161 (2)
H14D 0.2001 0.8345 0.1702 0.046* 0.161 (2)
C15 0.1234 (2) 0.7506 (4) 0.24114 (14) 0.0278 (8) 0.839 (2)
H15 0.0768 0.6978 0.2358 0.033* 0.839 (2)
Cl2 0.09677 (7) 0.89437 (12) 0.27515 (4) 0.0431 (3) 0.839 (2)
C16 0.1823 (2) 0.6764 (4) 0.27201 (14) 0.0298 (8) 0.839 (2)
H16A 0.2273 0.7311 0.2777 0.036* 0.839 (2)
H16B 0.1991 0.6055 0.2494 0.036* 0.839 (2)
C17 0.1586 (2) 0.6238 (4) 0.32558 (16) 0.0352 (9) 0.839 (2)
Cl3 0.16533 (13) 0.73299 (18) 0.37901 (7) 0.0524 (5) 0.839 (2)
Cl4 0.06429 (15) 0.5634 (3) 0.32483 (14) 0.0415 (5) 0.839 (2)
Cl5 0.22215 (6) 0.49641 (11) 0.34156 (5) 0.0460 (3) 0.839 (2)
C15' 0.1645 (9) 0.8073 (10) 0.2458 (4) 0.032 (3) 0.161 (2)
H15' 0.2176 0.7933 0.2592 0.038* 0.161 (2)
Cl2' 0.1272 (4) 0.9613 (6) 0.2612 (2) 0.0464 (17) 0.161 (2)
C16' 0.1082 (9) 0.7056 (12) 0.2629 (5) 0.033 (3) 0.161 (2)
H16C 0.0566 0.7432 0.2661 0.040* 0.161 (2)
H16D 0.1058 0.6407 0.2347 0.040* 0.161 (2)
C17' 0.1283 (7) 0.6432 (11) 0.3150 (5) 0.040 (3) 0.161 (2)
Cl3' 0.1395 (7) 0.7557 (10) 0.3665 (4) 0.062 (3) 0.161 (2)
Cl4' 0.0539 (8) 0.5400 (16) 0.3321 (8) 0.049 (3) 0.161 (2)
Cl5' 0.2150 (4) 0.5561 (6) 0.3065 (3) 0.0541 (19) 0.161 (2)
Cl6 0.3626 (3) 0.9480 (5) 0.1331 (2) 0.0408 (9) 0.634 (17)
O1 0.4211 (4) 1.0019 (10) 0.1000 (3) 0.065 (2) 0.634 (17)
O2 0.3883 (6) 0.9535 (10) 0.1871 (3) 0.061 (2) 0.634 (17)
O3 0.2938 (5) 1.0211 (10) 0.1273 (5) 0.058 (2) 0.634 (17)
O4 0.3463 (6) 0.8219 (6) 0.1179 (4) 0.052 (2) 0.634 (17)
Cl6' 0.3611 (9) 0.9340 (15) 0.1444 (7) 0.051 (2) 0.221 (16)
O1' 0.4122 (12) 0.951 (2) 0.0995 (8) 0.059 (4) 0.221 (16)
O2' 0.4055 (14) 0.949 (3) 0.1915 (8) 0.056 (4) 0.221 (16)
O3' 0.2990 (12) 1.022 (2) 0.1436 (9) 0.051 (4) 0.221 (16)
O4' 0.3301 (11) 0.8105 (15) 0.1398 (10) 0.047 (4) 0.221 (16)
Cl6" 0.3552 (10) 0.9434 (19) 0.1397 (7) 0.052 (3) 0.145 (7)
O1" 0.4277 (11) 1.007 (2) 0.1349 (11) 0.061 (4) 0.145 (7)
O2" 0.3490 (14) 0.902 (2) 0.1936 (7) 0.059 (4) 0.145 (7)
O3" 0.2941 (15) 1.027 (4) 0.1259 (16) 0.053 (5) 0.145 (7)
O4" 0.356 (2) 0.843 (3) 0.1021 (10) 0.051 (4) 0.145 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.02551 (19) 0.0343 (2) 0.02575 (19) −0.00116 (17) −0.00341 (16) 0.00344 (17)
N1 0.0324 (14) 0.0322 (14) 0.0296 (14) 0.0024 (12) 0.0030 (12) 0.0078 (11)
N2 0.0373 (15) 0.0336 (15) 0.0212 (13) −0.0058 (12) −0.0016 (11) −0.0007 (11)
N3 0.0282 (13) 0.0250 (13) 0.0234 (12) 0.0014 (11) −0.0012 (10) −0.0007 (10)
Cl1 0.0270 (4) 0.0476 (5) 0.0334 (4) −0.0072 (4) −0.0093 (3) 0.0132 (4)
C1 0.053 (2) 0.042 (2) 0.0279 (17) −0.0150 (17) −0.0050 (16) −0.0012 (15)
C2 0.076 (3) 0.043 (2) 0.0310 (19) −0.006 (2) −0.0020 (19) −0.0086 (17)
C3 0.075 (3) 0.046 (2) 0.040 (2) 0.007 (2) 0.006 (2) −0.0131 (18)
C4 0.047 (2) 0.046 (2) 0.039 (2) 0.0101 (18) 0.0055 (17) −0.0053 (17)
C5 0.0344 (17) 0.0332 (17) 0.0227 (15) −0.0004 (14) −0.0009 (13) −0.0001 (13)
C6 0.0364 (17) 0.0248 (15) 0.0284 (16) 0.0010 (14) 0.0046 (13) 0.0050 (13)
C7 0.053 (2) 0.0288 (17) 0.0361 (19) −0.0016 (16) 0.0088 (17) 0.0013 (15)
C8 0.068 (3) 0.0301 (19) 0.046 (2) 0.0114 (18) 0.027 (2) 0.0071 (17)
C9 0.043 (2) 0.047 (2) 0.059 (3) 0.0165 (18) 0.023 (2) 0.017 (2)
C10 0.0326 (18) 0.047 (2) 0.044 (2) 0.0082 (16) 0.0095 (15) 0.0172 (18)
C11 0.0317 (16) 0.0243 (15) 0.0297 (16) −0.0005 (13) −0.0034 (13) −0.0013 (13)
C12 0.0277 (16) 0.0302 (16) 0.0268 (16) 0.0015 (13) −0.0011 (13) −0.0007 (13)
C13 0.0423 (19) 0.0257 (16) 0.0258 (16) 0.0009 (14) −0.0019 (14) 0.0022 (13)
C14 0.051 (2) 0.0356 (19) 0.0277 (17) 0.0136 (16) −0.0045 (15) −0.0004 (15)
C15 0.030 (2) 0.029 (2) 0.0240 (19) 0.0028 (16) −0.0020 (16) −0.0036 (15)
Cl2 0.0539 (7) 0.0435 (7) 0.0319 (6) 0.0184 (6) 0.0005 (5) −0.0079 (5)
C16 0.0327 (19) 0.0306 (18) 0.0262 (17) 0.0009 (16) −0.0005 (15) 0.0009 (15)
C17 0.038 (2) 0.033 (2) 0.034 (2) 0.0022 (18) 0.0023 (18) 0.0034 (17)
Cl3 0.0836 (14) 0.0450 (9) 0.0286 (8) −0.0038 (8) −0.0016 (7) −0.0030 (6)
Cl4 0.0385 (8) 0.0382 (11) 0.0478 (11) −0.0028 (7) 0.0107 (7) 0.0139 (8)
Cl5 0.0458 (6) 0.0461 (6) 0.0462 (7) 0.0073 (5) −0.0033 (5) 0.0156 (5)
C15' 0.035 (5) 0.033 (5) 0.027 (5) 0.004 (5) −0.004 (5) −0.006 (5)
Cl2' 0.069 (4) 0.032 (3) 0.038 (3) −0.006 (3) −0.001 (3) −0.002 (2)
C16' 0.039 (5) 0.033 (5) 0.027 (5) 0.000 (5) 0.001 (5) −0.006 (5)
C17' 0.046 (5) 0.038 (5) 0.036 (5) 0.002 (5) 0.002 (5) −0.003 (5)
Cl3' 0.082 (7) 0.061 (5) 0.042 (5) −0.008 (5) −0.003 (4) −0.003 (4)
Cl4' 0.054 (6) 0.043 (6) 0.050 (6) −0.009 (4) 0.012 (4) 0.019 (4)
Cl5' 0.052 (3) 0.054 (4) 0.057 (4) 0.011 (3) −0.010 (3) 0.011 (3)
Cl6 0.0335 (13) 0.0350 (13) 0.0539 (17) 0.0105 (10) −0.0121 (11) −0.0163 (11)
O1 0.047 (3) 0.068 (5) 0.079 (4) −0.007 (3) −0.008 (3) −0.002 (4)
O2 0.052 (5) 0.073 (4) 0.058 (3) 0.013 (3) −0.031 (3) −0.026 (3)
O3 0.039 (3) 0.039 (3) 0.095 (5) 0.013 (3) −0.028 (3) −0.029 (3)
O4 0.054 (4) 0.031 (3) 0.070 (5) 0.010 (3) −0.020 (4) −0.018 (3)
Cl6' 0.037 (3) 0.040 (3) 0.075 (4) 0.009 (3) −0.021 (3) −0.015 (3)
O1' 0.047 (6) 0.058 (7) 0.073 (6) −0.001 (6) 0.007 (6) −0.002 (6)
O2' 0.042 (7) 0.063 (7) 0.064 (7) 0.007 (6) −0.023 (6) −0.018 (6)
O3' 0.040 (6) 0.042 (6) 0.069 (8) 0.013 (5) −0.032 (6) −0.025 (6)
O4' 0.036 (6) 0.034 (6) 0.071 (7) 0.002 (5) −0.015 (6) −0.010 (6)
Cl6" 0.043 (4) 0.045 (4) 0.070 (4) 0.001 (4) −0.018 (4) −0.017 (4)
O1" 0.047 (6) 0.063 (7) 0.072 (7) 0.004 (6) −0.016 (6) −0.013 (7)
O2" 0.047 (7) 0.057 (7) 0.071 (7) 0.008 (6) −0.012 (6) −0.021 (6)
O3" 0.041 (8) 0.042 (8) 0.076 (9) 0.010 (8) −0.021 (8) −0.020 (8)
O4" 0.049 (7) 0.038 (7) 0.067 (8) 0.008 (7) −0.013 (7) −0.024 (7)

Geometric parameters (Å, º)

Cu1—N1 1.982 (3) C14—C15' 1.527 (10)
Cu1—N2 1.987 (3) C14—C15 1.557 (5)
Cu1—N3 2.027 (2) C14—H14A 0.9900
Cu1—Cl1 2.2519 (8) C14—H14B 0.9900
N1—C6 1.342 (4) C14—H14C 0.9900
N1—C10 1.346 (4) C14—H14D 0.9900
N2—C5 1.350 (4) C15—C16 1.512 (5)
N2—C1 1.353 (4) C15—Cl2 1.815 (4)
N3—C12 1.479 (4) C15—H15 1.0000
N3—C13 1.489 (4) C16—C17 1.515 (5)
N3—C11 1.492 (4) C16—H16A 0.9900
C1—C2 1.367 (5) C16—H16B 0.9900
C1—H1 0.9500 C17—Cl4 1.771 (5)
C2—C3 1.375 (6) C17—Cl3 1.780 (4)
C2—H2 0.9500 C17—Cl5 1.800 (4)
C3—C4 1.375 (5) C15'—C16' 1.526 (10)
C3—H3 0.9500 C15'—Cl2' 1.807 (10)
C4—C5 1.390 (5) C15'—H15' 1.0000
C4—H4 0.9500 C16'—C17' 1.509 (10)
C5—C12 1.496 (4) C16'—H16C 0.9900
C6—C7 1.380 (4) C16'—H16D 0.9900
C6—C11 1.504 (4) C17'—Cl4' 1.758 (9)
C7—C8 1.381 (5) C17'—Cl3' 1.774 (9)
C7—H7 0.9500 C17'—Cl5' 1.790 (10)
C8—C9 1.377 (6) Cl6—O4 1.427 (4)
C8—H8 0.9500 Cl6—O2 1.429 (5)
C9—C10 1.378 (5) Cl6—O1 1.438 (6)
C9—H9 0.9500 Cl6—O3 1.442 (4)
C10—H10 0.9500 Cl6'—O2' 1.424 (8)
C11—H11A 0.9900 Cl6'—O4' 1.429 (8)
C11—H11B 0.9900 Cl6'—O3' 1.434 (8)
C12—H12A 0.9900 Cl6'—O1' 1.449 (9)
C12—H12B 0.9900 Cl6"—O2" 1.427 (9)
C13—C14 1.530 (4) Cl6"—O4" 1.429 (8)
C13—H13A 0.9900 Cl6"—O3" 1.436 (8)
C13—H13B 0.9900 Cl6"—O1" 1.444 (9)
N1—Cu1—N2 165.22 (11) C15'—C14—C13 130.4 (6)
N1—Cu1—N3 83.05 (10) C13—C14—C15 108.2 (3)
N2—Cu1—N3 82.56 (10) C13—C14—H14A 110.0
N1—Cu1—Cl1 96.74 (8) C15—C14—H14A 110.0
N2—Cu1—Cl1 97.22 (8) C13—C14—H14B 110.0
N3—Cu1—Cl1 173.97 (8) C15—C14—H14B 110.0
C6—N1—C10 119.3 (3) H14A—C14—H14B 108.4
C6—N1—Cu1 113.2 (2) C15'—C14—H14C 104.7
C10—N1—Cu1 127.5 (3) C13—C14—H14C 104.7
C5—N2—C1 119.2 (3) C15'—C14—H14D 104.7
C5—N2—Cu1 112.6 (2) C13—C14—H14D 104.7
C1—N2—Cu1 128.2 (2) H14C—C14—H14D 105.7
C12—N3—C13 112.2 (2) C16—C15—C14 110.0 (3)
C12—N3—C11 114.7 (2) C16—C15—Cl2 112.1 (3)
C13—N3—C11 110.4 (2) C14—C15—Cl2 107.2 (3)
C12—N3—Cu1 105.74 (18) C16—C15—H15 109.2
C13—N3—Cu1 107.54 (18) C14—C15—H15 109.2
C11—N3—Cu1 105.65 (18) Cl2—C15—H15 109.2
N2—C1—C2 121.4 (4) C15—C16—C17 117.6 (3)
N2—C1—H1 119.3 C15—C16—H16A 107.9
C2—C1—H1 119.3 C17—C16—H16A 107.9
C1—C2—C3 119.8 (4) C15—C16—H16B 107.9
C1—C2—H2 120.1 C17—C16—H16B 107.9
C3—C2—H2 120.1 H16A—C16—H16B 107.2
C2—C3—C4 119.5 (4) C16—C17—Cl4 112.3 (3)
C2—C3—H3 120.2 C16—C17—Cl3 114.1 (3)
C4—C3—H3 120.2 Cl4—C17—Cl3 107.9 (2)
C3—C4—C5 118.9 (4) C16—C17—Cl5 108.0 (3)
C3—C4—H4 120.6 Cl4—C17—Cl5 107.6 (2)
C5—C4—H4 120.6 Cl3—C17—Cl5 106.6 (2)
N2—C5—C4 121.2 (3) C16'—C15'—C14 97.1 (8)
N2—C5—C12 116.0 (3) C16'—C15'—Cl2' 110.7 (9)
C4—C5—C12 122.7 (3) C14—C15'—Cl2' 107.2 (7)
N1—C6—C7 121.3 (3) C16'—C15'—H15' 113.5
N1—C6—C11 115.9 (3) C14—C15'—H15' 113.5
C7—C6—C11 122.8 (3) Cl2'—C15'—H15' 113.5
C6—C7—C8 119.3 (4) C17'—C16'—C15' 113.9 (9)
C6—C7—H7 120.3 C17'—C16'—H16C 108.8
C8—C7—H7 120.3 C15'—C16'—H16C 108.8
C9—C8—C7 119.2 (4) C17'—C16'—H16D 108.8
C9—C8—H8 120.4 C15'—C16'—H16D 108.8
C7—C8—H8 120.4 H16C—C16'—H16D 107.7
C8—C9—C10 118.9 (3) C16'—C17'—Cl4' 108.3 (9)
C8—C9—H9 120.5 C16'—C17'—Cl3' 111.0 (8)
C10—C9—H9 120.5 Cl4'—C17'—Cl3' 109.0 (9)
N1—C10—C9 121.8 (4) C16'—C17'—Cl5' 108.9 (8)
N1—C10—H10 119.1 Cl4'—C17'—Cl5' 109.4 (8)
C9—C10—H10 119.1 Cl3'—C17'—Cl5' 110.2 (8)
N3—C11—C6 108.4 (2) O4—Cl6—O2 110.8 (5)
N3—C11—H11A 110.0 O4—Cl6—O1 111.4 (4)
C6—C11—H11A 110.0 O2—Cl6—O1 108.0 (5)
N3—C11—H11B 110.0 O4—Cl6—O3 108.3 (4)
C6—C11—H11B 110.0 O2—Cl6—O3 109.7 (5)
H11A—C11—H11B 108.4 O1—Cl6—O3 108.6 (5)
N3—C12—C5 109.2 (2) O2'—Cl6'—O4' 112.0 (10)
N3—C12—H12A 109.8 O2'—Cl6'—O3' 110.6 (10)
C5—C12—H12A 109.8 O4'—Cl6'—O3' 108.3 (10)
N3—C12—H12B 109.8 O2'—Cl6'—O1' 107.2 (10)
C5—C12—H12B 109.8 O4'—Cl6'—O1' 106.7 (10)
H12A—C12—H12B 108.3 O3'—Cl6'—O1' 111.9 (10)
N3—C13—C14 114.6 (3) O2"—Cl6"—O4" 113.4 (12)
N3—C13—H13A 108.6 O2"—Cl6"—O3" 111.3 (12)
C14—C13—H13A 108.6 O4"—Cl6"—O3" 108.4 (11)
N3—C13—H13B 108.6 O2"—Cl6"—O1" 106.9 (11)
C14—C13—H13B 108.6 O4"—Cl6"—O1" 106.9 (11)
H13A—C13—H13B 107.6 O3"—Cl6"—O1" 109.8 (12)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C11—H11A···Cl1i 0.99 2.84 3.441 (3) 120
C12—H12B···Cl1i 0.99 2.84 3.438 (3) 120
C2—H2···O1ii 0.95 2.64 3.383 (8) 136
C11—H11A···O4iii 0.99 2.53 3.123 (7) 118
C12—H12A···O4 0.99 2.43 3.310 (9) 148
C13—H13A···O1iv 0.99 2.64 3.578 (11) 157
C14—H14B···O3iv 0.99 2.40 3.324 (13) 154
C7—H7···O2′iii 0.95 2.64 3.14 (3) 113
C12—H12A···O4′ 0.99 2.37 3.32 (2) 159
C14—H14C···O3′iv 0.99 2.17 3.13 (2) 163
C14—H14D···O4′ 0.99 2.41 3.26 (2) 143
C16′—H16D···O2′iv 0.99 2.32 3.28 (3) 162
C7—H7···O2"iii 0.95 2.57 3.26 (2) 130
C12—H12A···O4" 0.99 2.53 3.33 (4) 138
C13—H13A···O1"iv 0.99 2.45 3.33 (2) 148
C2—H2···Cl4′v 0.95 2.84 3.644 (19) 143
C11—H11B···Cl2′ 0.99 2.70 3.490 (7) 137
C13—H13B···Cl2vi 0.99 2.90 3.863 (4) 165

Symmetry codes: (i) −x, −y+2, −z; (ii) x−1/2, −y+3/2, −z; (iii) −x+1/2, y+1/2, z; (iv) −x+1/2, y−1/2, z; (v) x, −y+1, z−1/2; (vi) −x, y, −z+1/2.

References

  1. Bruker (2014). APEX2, SAINT, XPREP, SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
  2. Carvalho, N. M. F., Horn, A. Jr, Bortoluzzi, A. J., Drago, V. & Antunes, O. A. C. (2006). Inorg. Chim. Acta, 359, 90–98.
  3. CrystalMaker (1994). CrystalMaker. CrystalMaker Software Ltd, Oxford, England (www.CrystalMaker.com).
  4. Eckenhoff, W. T. & Pintauer, T. (2010). Catal. Rev. 52, 1–59.
  5. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  6. Kleij, A. W., Gossage, R. A., Jastrzebski, J. T. B. H., Boersma, J. & van Koten, G. (2000). Angew. Chem. Int. Ed. 39, 176–178. [DOI] [PubMed]
  7. Muñoz-Molina, J. M., Sameera, W. M. C., Álvarez, E., Maseras, F., Belderrain, T. R. & Pérez, P. J. (2011). Inorg. Chem. 50, 2458–2467. [DOI] [PubMed]
  8. Pettinari, C. (2004). Chim. Ind. 10, 94–100.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Sheldrick, G. M. (2015). Acta Cryst A71, 3–8.
  11. Trofimenko, S. (1999). In Scorpionates: The Coordination Chemistry of Poly(pyrazolyl)borate Ligands. London: Imperial College Press.
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  13. Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015011792/lh5771sup1.cif

e-71-00847-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015011792/lh5771Isup2.hkl

e-71-00847-Isup2.hkl (501.6KB, hkl)

CCDC reference: 1407833

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES