Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 3;71(Pt 7):741–743. doi: 10.1107/S2056989015010051

Crystal structure of methyl (S)-2-{(R)-4-[(tert-but­oxy­carbon­yl)amino]-3-oxo-1,2-thia­zolidin-2-yl}-3-methyl­butano­ate: a chemical model for oxidized protein tyrosine phosphatase 1B (PTP1B)

Kasi Viswanatharaju Ruddraraju a, Roman Hillebrand a, Charles L Barnes a, Kent S Gates a,*
PMCID: PMC4518936  PMID: 26279856

The title compound crystallized with two independent mol­ecules (A and B) in the asymmetric unit. In the crystal, separate chains of A and B mol­ecules, propagating along the b-axis direction, are formed via N—H⋯O, C—H⋯S and C—H⋯O hydrogen bonds

Keywords: crystal structure, iso­thia­zolidine-3-one derivative, oxidized PTP1B, sulfenyl amide, hydrogen bonding

Abstract

The asymmetric unit of the title compound, C14H24N2O5S, contains two independent mol­ecules (A and B). In each mol­ecule, the iso­thia­zolidin-3-one ring adopts an envelope conformation with the methyl­ene C atom as the flap. In the crystal, the A mol­ecules are linked to one another by N—H⋯O hydrogen bonds, forming columns along [010]. The B mol­ecules are also linked to one another by N—H⋯O hydrogen bonds, forming columns along the same direction, i.e. [010]. Within the individual columns, there are also C—H⋯S and C—H⋯O hydrogen bonds present. The columns of A and B mol­ecules are linked by C—H⋯O hydrogen bonds, forming sheets parallel to (10-1). The absolute structure was determined by resonant scattering [Flack parameter = 0.00 (3)].

Chemical context  

X-ray crystallographic analyses of the enzyme PTP1B have revealed an unprecedented post-translational modification that may be important in redox regulation of protein function (Zhou et al., 2011; Salmeen et al., 2003; van Montfort et al., 2003; Tanner et al., 2011; Sivaramakrishnan et al., 2010). Specifically, oxidation converts the catalytic cysteine in this enzyme to an iso­thia­zolidin-3-one heterocycle that is commonly referred to as a sulfenyl amide residue. As part of early efforts in the area of cephalosporin synthesis, a dipeptide containing a protein sulfenyl amide residue was synthesized (Morin et al., 1973). However, to the best of our knowledge, there are no examples of low mol­ecular weight sulfenyl amides that have been characterized crystallographically, although structures of related 1,2-benziso­thia­zol-3(2H)-ones have been reported (Kim et al., 1996; Ranganathan et al., 2002; Wang et al., 2011). Herein we describe the synthesis and crystal structure of the title compound, a low mol­ecular weight mimic of oxidized PTP1B.graphic file with name e-71-00741-scheme1.jpg

Structural commentary  

The mol­ecular structures of the two independent mol­ecules (A and B) of the title compound are shown in Fig. 1. The two mol­ecules differ only in the orientation of the isopropyl group (Fig. 1). The bond lengths and angles are very similar to those seen in the crystal structures of the oxidized enzyme PTP1B (see: pdb codes 1oem, 1oes, 3sme). In both mol­ecules, the iso­thio­zolidin-3-one ring adopts an envelope conformation with the methyl­ene C atom (C1A in mol­ecule A and C1B in mol­ecule B) as the flap, similar to the conformation of oxidized PTP1B (pdb code: 1oem). In previously reported chemical models (1,2-benziso­thia­zole compounds) of PTP1B, the five-membered ring is planar (Kim et al., 1996; Ranganathan et al., 2002; Wang et al., 2011; Sivaramakrishnan et al., 2005). The S—N bond lengths in the title compound [S1A—N1A = 1.740 (2) Å and S1B—N1B = 1.733 (2) Å], are similar to the same bond distance of ca 1.71 Å in oxidized PTP1B (pdb code: 1oem).

Figure 1.

Figure 1

A view of the mol­ecular structure of the two independent mol­ecules (A and B) of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal, N—H⋯O hydrogen-bonding inter­actions give infinite, separate columns of A and B mol­ecules along the b-axis (Table 1 and Fig. 2). Within the columns there are C—H⋯S and C—H⋯O hydrogen bonds present (Table 1). The columns of A and B mol­ecules are linked by C—H⋯O hydrogen bonds, forming sheets parallel to (10Inline graphic); see Fig. 2.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N2AH2ANO1A i 0.88 2.07 2.925(3) 164
N2BH2BNO1B ii 0.88 2.05 2.921(3) 169
C2AH2AO5A i 1.00 2.57 3.549(3) 167
C1BH1B2O1B iii 0.99 2.56 3.371(4) 139
C4AH4AS1A iv 1.00 2.70 3.526(3) 140
C4BH4BS1B iv 1.00 2.70 3.488(3) 136
C9BH9B3O2A v 0.98 2.52 3.400(4) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 2.

Figure 2

A view along the b axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details; A mol­ecules are blue and B mol­ecules are red).

Database survey  

A search in the Cambridge Structural Database (Version 5.36; Groom & Allen, 2014) for the substructure 1,2-benziso­thia­zole-3-one resulted in over twenty hits, which include three structures similar to the title compound: methyl 2-hy­droxy-2-(3-oxobenzo[d]iso­thia­zol-2(3H)-yl)propano­ate (Ranganathan et al., 2002), 2-(3-oxobenzo[d]iso­thia­zol-2(3H)-yl)acetic acid (Wang et al., 2011) and 2-phenethyl­benzo[d]iso­thia­zol-3(2H)-one (Kim et al., 1996). In all three compounds, the five-membered isothizolinone ring is planar. However, the S—N bond lengths are similar to that in the title compound; see Structural commentary.

Synthesis and crystallization  

The title compound was prepared by a modification of a previously published procedure (Shiau et al., 2006). Pyridine (20 eq) was added to a solution of l-valine ester of N,N-di-tert-butyl­oxycarbonyl-l-cystine (1.0 g, 1.5 mmol) in 50 mL of anhydrous CH2Cl2. The solution was cooled in a liquid nitro­gen bath, under an N2 atmosphere, and stirred for 15 min. Bromine (135 µL, 2.6 mmol) in dry CH2Cl2 was added dropwise over a period of 30 min. The solution was allowed to warm to 273 K over 1 h, and then CH2Cl2 was evaporated in vacuo using a rotatory evaporator to afford the crude material. Flash chromatography (50% EtOAc/hexa­nes) of the crude material gave the title compound as a white solid (360 mg, 72% yield). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution of title compound in DMF.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were included in calculated positions and treated as riding atoms: N—H = 0.88 Å, C—H = 0.98–1.00 Å with U iso(H) = 1.5U eq(C) for methyl H atoms and 1.2U eq(N,C) for other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C14H24N2O5S
M r 332.41
Crystal system, space group Monoclinic, P21
Temperature (K) 173
a, b, c () 11.509(3), 5.9290(18), 25.751(8)
() 98.307(3)
V (3) 1738.7(9)
Z 4
Radiation type Mo K
(mm1) 0.21
Crystal size (mm) 0.50 0.15 0.05
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.88, 0.99
No. of measured, independent and observed [I > 2(I)] reflections 19532, 7699, 6307
R int 0.026
(sin /)max (1) 0.650
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.040, 0.086, 1.05
No. of reflections 7699
No. of parameters 409
No. of restraints 1
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.22, 0.25
Absolute structure Flack x determined using 2415 quotients [(I +)(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.00(3)

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015010051/su5136sup1.cif

e-71-00741-sup1.cif (595.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010051/su5136Isup2.hkl

e-71-00741-Isup2.hkl (421.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015010051/su5136Isup3.cml

CCDC reference: 1402668

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C14H24N2O5S F(000) = 712
Mr = 332.41 Dx = 1.270 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 7090 reflections
a = 11.509 (3) Å θ = 2.6–22.2°
b = 5.9290 (18) Å µ = 0.21 mm1
c = 25.751 (8) Å T = 173 K
β = 98.307 (3)° Needle, colourless
V = 1738.7 (9) Å3 0.50 × 0.15 × 0.05 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 7699 independent reflections
Radiation source: fine-focus sealed tube 6307 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
ω scans θmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −14→14
Tmin = 0.88, Tmax = 0.99 k = −7→7
19532 measured reflections l = −32→33

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0332P)2 + 0.3913P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
7699 reflections Δρmax = 0.22 e Å3
409 parameters Δρmin = −0.25 e Å3
1 restraint Absolute structure: Flack x determined using 2415 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.00 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1A 0.17551 (7) 0.37685 (12) 0.89628 (3) 0.0306 (2)
O1A 0.37713 (16) 0.8791 (4) 0.92762 (7) 0.0258 (5)
O2A −0.04290 (17) 0.8246 (4) 0.84881 (8) 0.0391 (6)
O3A 0.07144 (17) 0.8801 (4) 0.92603 (8) 0.0334 (5)
O4A 0.25361 (16) 0.8018 (3) 1.02566 (7) 0.0287 (5)
O5A 0.40692 (16) 0.7475 (3) 1.09140 (7) 0.0277 (5)
N1A 0.23825 (18) 0.6385 (4) 0.88732 (9) 0.0217 (5)
N2A 0.40950 (19) 0.5788 (4) 1.01516 (8) 0.0249 (5)
H2AN 0.4807 0.5362 1.0286 0.030*
C1A 0.2486 (2) 0.3592 (5) 0.96298 (11) 0.0276 (6)
H1A1 0.1983 0.4206 0.9877 0.033*
H1A2 0.2687 0.2009 0.9727 0.033*
C2A 0.3596 (2) 0.5013 (5) 0.96366 (10) 0.0222 (6)
H2A 0.4199 0.4062 0.9497 0.027*
C3A 0.3281 (2) 0.6971 (5) 0.92527 (10) 0.0202 (6)
C4A 0.1701 (2) 0.8095 (5) 0.85499 (10) 0.0224 (6)
H4A 0.2129 0.9552 0.8627 0.027*
C5A 0.0523 (2) 0.8373 (5) 0.87466 (11) 0.0255 (6)
C6A −0.0312 (3) 0.8925 (7) 0.95220 (12) 0.0433 (9)
H6A1 −0.0795 0.7577 0.9439 0.065*
H6A2 −0.0769 1.0270 0.9403 0.065*
H6A3 −0.0068 0.9012 0.9902 0.065*
C7A 0.1596 (3) 0.7759 (5) 0.79545 (11) 0.0300 (7)
H7A 0.1022 0.8904 0.7788 0.036*
C8A 0.1133 (3) 0.5449 (6) 0.77637 (12) 0.0399 (8)
H8A1 0.0416 0.5108 0.7913 0.060*
H8A2 0.1728 0.4299 0.7876 0.060*
H8A3 0.0958 0.5455 0.7380 0.060*
C9A 0.2768 (3) 0.8254 (7) 0.77685 (13) 0.0466 (9)
H9A1 0.3349 0.7131 0.7916 0.070*
H9A2 0.3037 0.9763 0.7886 0.070*
H9A3 0.2672 0.8186 0.7384 0.070*
C10A 0.3474 (2) 0.7172 (5) 1.04305 (10) 0.0226 (6)
C11A 0.3593 (3) 0.8922 (5) 1.13002 (11) 0.0299 (7)
C12A 0.3575 (3) 1.1359 (6) 1.11241 (13) 0.0390 (8)
H12A 0.3039 1.1522 1.0794 0.058*
H12B 0.4368 1.1816 1.1071 0.058*
H12C 0.3308 1.2317 1.1393 0.058*
C13A 0.4492 (3) 0.8548 (8) 1.17880 (12) 0.0547 (11)
H13A 0.5272 0.8994 1.1715 0.082*
H13B 0.4501 0.6949 1.1885 0.082*
H13C 0.4280 0.9459 1.2078 0.082*
C14A 0.2390 (3) 0.8122 (6) 1.13960 (13) 0.0423 (9)
H14A 0.2411 0.6490 1.1458 0.063*
H14B 0.1811 0.8464 1.1088 0.063*
H14C 0.2171 0.8894 1.1704 0.063*
S1B 0.82980 (7) 0.48748 (12) 0.60817 (3) 0.0323 (2)
O1B 0.61995 (16) 0.9736 (4) 0.57159 (7) 0.0273 (5)
O2B 1.03914 (18) 0.9218 (4) 0.65232 (9) 0.0431 (7)
O3B 0.92605 (17) 1.0176 (4) 0.57700 (8) 0.0322 (5)
O4B 0.74978 (16) 0.8851 (4) 0.47590 (7) 0.0291 (5)
O5B 0.59660 (16) 0.8252 (4) 0.41038 (7) 0.0289 (5)
N1B 0.76343 (19) 0.7473 (4) 0.61334 (9) 0.0228 (5)
N2B 0.5954 (2) 0.6591 (4) 0.48677 (8) 0.0249 (5)
H2BN 0.5257 0.6095 0.4729 0.030*
C1B 0.7557 (3) 0.4505 (5) 0.54193 (11) 0.0281 (7)
H1B1 0.8053 0.5048 0.5161 0.034*
H1B2 0.7365 0.2897 0.5348 0.034*
C2B 0.6441 (2) 0.5915 (5) 0.53926 (10) 0.0215 (6)
H2B 0.5838 0.4986 0.5538 0.026*
C3B 0.6726 (2) 0.7945 (5) 0.57522 (10) 0.0202 (6)
C4B 0.8258 (2) 0.9234 (5) 0.64632 (10) 0.0225 (6)
H4B 0.7808 1.0668 0.6388 0.027*
C5B 0.9443 (3) 0.9547 (5) 0.62751 (11) 0.0263 (7)
C6B 1.0263 (3) 1.0160 (8) 0.54915 (13) 0.0472 (9)
H6B1 1.0737 0.8810 0.5589 0.071*
H6B2 1.0740 1.1510 0.5584 0.071*
H6B3 0.9993 1.0148 0.5113 0.071*
C7B 0.8375 (3) 0.8825 (5) 0.70572 (11) 0.0292 (6)
H7B 0.8995 0.7658 0.7156 0.035*
C8B 0.7239 (3) 0.7992 (8) 0.72175 (14) 0.0514 (10)
H8B1 0.7050 0.6502 0.7063 0.077*
H8B2 0.6606 0.9050 0.7093 0.077*
H8B3 0.7323 0.7882 0.7601 0.077*
C9B 0.8768 (3) 1.1022 (6) 0.73369 (12) 0.0405 (8)
H9B1 0.8166 1.2180 0.7245 0.061*
H9B2 0.9508 1.1521 0.7228 0.061*
H9B3 0.8883 1.0777 0.7717 0.061*
C10B 0.6558 (2) 0.7978 (5) 0.45889 (10) 0.0242 (6)
C11B 0.6433 (3) 0.9681 (6) 0.37099 (11) 0.0320 (7)
C12B 0.6446 (3) 1.2118 (6) 0.38854 (14) 0.0455 (9)
H12D 0.6719 1.3076 0.3617 0.068*
H12E 0.6977 1.2282 0.4217 0.068*
H12F 0.5652 1.2573 0.3936 0.068*
C13B 0.7631 (3) 0.8901 (7) 0.36143 (14) 0.0492 (9)
H13D 0.7624 0.7260 0.3567 0.074*
H13E 0.8214 0.9304 0.3916 0.074*
H13F 0.7833 0.9630 0.3298 0.074*
C14B 0.5525 (4) 0.9286 (8) 0.32308 (13) 0.0617 (13)
H14D 0.5547 0.7702 0.3124 0.093*
H14E 0.5697 1.0255 0.2943 0.093*
H14F 0.4742 0.9646 0.3315 0.093*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.0326 (5) 0.0190 (4) 0.0366 (4) −0.0017 (3) −0.0067 (4) −0.0018 (3)
O1A 0.0176 (10) 0.0280 (12) 0.0308 (11) −0.0052 (9) 0.0005 (8) 0.0013 (9)
O2A 0.0231 (11) 0.0551 (16) 0.0367 (12) 0.0073 (10) −0.0034 (9) 0.0028 (11)
O3A 0.0255 (11) 0.0482 (14) 0.0262 (11) 0.0065 (10) 0.0035 (8) −0.0077 (10)
O4A 0.0221 (10) 0.0357 (13) 0.0275 (11) 0.0075 (9) 0.0005 (8) −0.0033 (9)
O5A 0.0258 (11) 0.0327 (12) 0.0236 (10) 0.0037 (9) −0.0001 (8) −0.0046 (9)
N1A 0.0168 (11) 0.0180 (12) 0.0288 (13) 0.0022 (9) −0.0014 (9) −0.0016 (10)
N2A 0.0201 (12) 0.0323 (14) 0.0214 (12) 0.0059 (10) −0.0002 (9) −0.0031 (10)
C1A 0.0310 (15) 0.0246 (15) 0.0273 (15) −0.0011 (13) 0.0044 (12) −0.0013 (13)
C2A 0.0183 (13) 0.0266 (15) 0.0215 (14) 0.0064 (12) 0.0025 (10) −0.0002 (12)
C3A 0.0153 (13) 0.0251 (15) 0.0206 (14) 0.0021 (11) 0.0040 (11) −0.0017 (11)
C4A 0.0205 (13) 0.0208 (15) 0.0247 (14) 0.0047 (11) −0.0013 (11) −0.0015 (11)
C5A 0.0235 (14) 0.0217 (15) 0.0302 (15) 0.0049 (11) 0.0002 (12) 0.0018 (12)
C6A 0.0353 (18) 0.060 (2) 0.0372 (18) 0.0117 (18) 0.0127 (14) 0.0000 (17)
C7A 0.0307 (15) 0.0352 (18) 0.0231 (15) 0.0053 (14) 0.0009 (12) −0.0019 (13)
C8A 0.049 (2) 0.039 (2) 0.0301 (17) 0.0009 (16) 0.0002 (15) −0.0087 (14)
C9A 0.044 (2) 0.059 (3) 0.0393 (19) 0.0004 (18) 0.0137 (15) −0.0010 (17)
C10A 0.0209 (14) 0.0242 (15) 0.0226 (14) −0.0020 (11) 0.0027 (11) 0.0008 (11)
C11A 0.0335 (16) 0.0327 (18) 0.0242 (15) −0.0018 (14) 0.0063 (13) −0.0067 (13)
C12A 0.0441 (19) 0.0284 (18) 0.047 (2) −0.0075 (15) 0.0164 (16) −0.0039 (15)
C13A 0.066 (3) 0.066 (3) 0.0271 (18) 0.007 (2) −0.0105 (17) −0.0095 (18)
C14A 0.053 (2) 0.042 (2) 0.0364 (18) −0.0120 (17) 0.0213 (16) −0.0065 (15)
S1B 0.0358 (5) 0.0192 (4) 0.0375 (5) 0.0025 (3) −0.0100 (4) 0.0014 (3)
O1B 0.0231 (11) 0.0299 (12) 0.0273 (11) 0.0050 (9) −0.0020 (8) −0.0014 (9)
O2B 0.0224 (11) 0.0622 (18) 0.0414 (13) −0.0038 (11) −0.0060 (10) 0.0064 (12)
O3B 0.0287 (11) 0.0411 (14) 0.0273 (11) −0.0026 (10) 0.0054 (9) 0.0025 (10)
O4B 0.0228 (10) 0.0369 (12) 0.0271 (10) −0.0081 (10) 0.0017 (8) 0.0049 (9)
O5B 0.0277 (11) 0.0373 (13) 0.0204 (10) −0.0046 (9) −0.0003 (8) 0.0041 (9)
N1B 0.0228 (12) 0.0168 (12) 0.0269 (12) −0.0019 (9) −0.0028 (10) 0.0016 (9)
N2B 0.0213 (12) 0.0314 (14) 0.0208 (12) −0.0082 (10) −0.0007 (9) 0.0019 (10)
C1B 0.0312 (16) 0.0242 (16) 0.0285 (16) 0.0035 (12) 0.0034 (13) 0.0009 (12)
C2B 0.0210 (13) 0.0234 (14) 0.0198 (13) −0.0046 (11) 0.0015 (11) 0.0019 (11)
C3B 0.0132 (12) 0.0253 (15) 0.0225 (14) −0.0028 (11) 0.0041 (10) 0.0018 (11)
C4B 0.0239 (14) 0.0183 (14) 0.0236 (14) −0.0009 (11) −0.0026 (11) 0.0009 (11)
C5B 0.0268 (16) 0.0222 (15) 0.0290 (16) −0.0040 (12) 0.0011 (12) −0.0005 (12)
C6B 0.042 (2) 0.061 (3) 0.042 (2) −0.0102 (19) 0.0164 (16) −0.0010 (18)
C7B 0.0307 (15) 0.0292 (16) 0.0264 (15) 0.0029 (14) −0.0009 (12) 0.0044 (13)
C8B 0.050 (2) 0.066 (3) 0.040 (2) −0.011 (2) 0.0131 (16) 0.0059 (18)
C9B 0.052 (2) 0.040 (2) 0.0262 (16) 0.0019 (16) −0.0044 (15) −0.0033 (15)
C10B 0.0219 (14) 0.0279 (16) 0.0228 (14) 0.0028 (12) 0.0032 (11) 0.0009 (12)
C11B 0.0347 (17) 0.0374 (19) 0.0245 (16) 0.0024 (14) 0.0066 (13) 0.0086 (13)
C12B 0.053 (2) 0.037 (2) 0.050 (2) 0.0086 (17) 0.0193 (17) 0.0127 (16)
C13B 0.058 (2) 0.052 (2) 0.043 (2) 0.014 (2) 0.0264 (17) 0.0134 (18)
C14B 0.068 (3) 0.085 (4) 0.0281 (19) −0.010 (2) −0.0056 (18) 0.018 (2)

Geometric parameters (Å, º)

S1A—N1A 1.740 (2) S1B—N1B 1.733 (2)
S1A—C1A 1.803 (3) S1B—C1B 1.807 (3)
O1A—C3A 1.215 (3) O1B—C3B 1.219 (3)
O2A—C5A 1.200 (3) O2B—C5B 1.199 (3)
O3A—C5A 1.334 (3) O3B—C5B 1.340 (3)
O3A—C6A 1.444 (4) O3B—C6B 1.444 (4)
O4A—C10A 1.215 (3) O4B—C10B 1.222 (3)
O5A—C10A 1.344 (3) O5B—C10B 1.344 (3)
O5A—C11A 1.477 (3) O5B—C11B 1.481 (4)
N1A—C3A 1.361 (3) N1B—C3B 1.356 (3)
N1A—C4A 1.465 (3) N1B—C4B 1.466 (3)
N2A—C10A 1.360 (4) N2B—C10B 1.349 (4)
N2A—C2A 1.442 (3) N2B—C2B 1.443 (3)
N2A—H2AN 0.8800 N2B—H2BN 0.8800
C1A—C2A 1.529 (4) C1B—C2B 1.526 (4)
C1A—H1A1 0.9900 C1B—H1B1 0.9900
C1A—H1A2 0.9900 C1B—H1B2 0.9900
C2A—C3A 1.534 (4) C2B—C3B 1.525 (4)
C2A—H2A 1.0000 C2B—H2B 1.0000
C4A—C5A 1.523 (4) C4B—C5B 1.523 (4)
C4A—C7A 1.533 (4) C4B—C7B 1.535 (4)
C4A—H4A 1.0000 C4B—H4B 1.0000
C6A—H6A1 0.9800 C6B—H6B1 0.9800
C6A—H6A2 0.9800 C6B—H6B2 0.9800
C6A—H6A3 0.9800 C6B—H6B3 0.9800
C7A—C9A 1.524 (4) C7B—C8B 1.510 (4)
C7A—C8A 1.525 (5) C7B—C9B 1.526 (5)
C7A—H7A 1.0000 C7B—H7B 1.0000
C8A—H8A1 0.9800 C8B—H8B1 0.9800
C8A—H8A2 0.9800 C8B—H8B2 0.9800
C8A—H8A3 0.9800 C8B—H8B3 0.9800
C9A—H9A1 0.9800 C9B—H9B1 0.9800
C9A—H9A2 0.9800 C9B—H9B2 0.9800
C9A—H9A3 0.9800 C9B—H9B3 0.9800
C11A—C12A 1.514 (5) C11B—C13B 1.507 (4)
C11A—C14A 1.518 (4) C11B—C12B 1.513 (5)
C11A—C13A 1.523 (4) C11B—C14B 1.516 (4)
C12A—H12A 0.9800 C12B—H12D 0.9800
C12A—H12B 0.9800 C12B—H12E 0.9800
C12A—H12C 0.9800 C12B—H12F 0.9800
C13A—H13A 0.9800 C13B—H13D 0.9800
C13A—H13B 0.9800 C13B—H13E 0.9800
C13A—H13C 0.9800 C13B—H13F 0.9800
C14A—H14A 0.9800 C14B—H14D 0.9800
C14A—H14B 0.9800 C14B—H14E 0.9800
C14A—H14C 0.9800 C14B—H14F 0.9800
N1A—S1A—C1A 91.87 (13) N1B—S1B—C1B 91.57 (12)
C5A—O3A—C6A 116.4 (2) C5B—O3B—C6B 117.1 (2)
C10A—O5A—C11A 120.8 (2) C10B—O5B—C11B 121.4 (2)
C3A—N1A—C4A 121.3 (2) C3B—N1B—C4B 122.3 (2)
C3A—N1A—S1A 114.78 (19) C3B—N1B—S1B 115.47 (19)
C4A—N1A—S1A 119.59 (17) C4B—N1B—S1B 119.55 (17)
C10A—N2A—C2A 120.6 (2) C10B—N2B—C2B 120.5 (2)
C10A—N2A—H2AN 119.7 C10B—N2B—H2BN 119.8
C2A—N2A—H2AN 119.7 C2B—N2B—H2BN 119.8
C2A—C1A—S1A 104.66 (19) C2B—C1B—S1B 104.80 (19)
C2A—C1A—H1A1 110.8 C2B—C1B—H1B1 110.8
S1A—C1A—H1A1 110.8 S1B—C1B—H1B1 110.8
C2A—C1A—H1A2 110.8 C2B—C1B—H1B2 110.8
S1A—C1A—H1A2 110.8 S1B—C1B—H1B2 110.8
H1A1—C1A—H1A2 108.9 H1B1—C1B—H1B2 108.9
N2A—C2A—C1A 114.0 (2) N2B—C2B—C3B 111.7 (2)
N2A—C2A—C3A 112.2 (2) N2B—C2B—C1B 113.9 (2)
C1A—C2A—C3A 106.9 (2) C3B—C2B—C1B 107.4 (2)
N2A—C2A—H2A 107.9 N2B—C2B—H2B 107.9
C1A—C2A—H2A 107.9 C3B—C2B—H2B 107.9
C3A—C2A—H2A 107.9 C1B—C2B—H2B 107.9
O1A—C3A—N1A 124.2 (2) O1B—C3B—N1B 123.9 (3)
O1A—C3A—C2A 125.1 (2) O1B—C3B—C2B 125.4 (2)
N1A—C3A—C2A 110.7 (2) N1B—C3B—C2B 110.6 (2)
N1A—C4A—C5A 108.3 (2) N1B—C4B—C5B 106.8 (2)
N1A—C4A—C7A 115.9 (2) N1B—C4B—C7B 115.4 (2)
C5A—C4A—C7A 113.6 (2) C5B—C4B—C7B 112.5 (2)
N1A—C4A—H4A 106.1 N1B—C4B—H4B 107.3
C5A—C4A—H4A 106.1 C5B—C4B—H4B 107.3
C7A—C4A—H4A 106.1 C7B—C4B—H4B 107.3
O2A—C5A—O3A 124.7 (3) O2B—C5B—O3B 124.4 (3)
O2A—C5A—C4A 126.5 (3) O2B—C5B—C4B 126.8 (3)
O3A—C5A—C4A 108.9 (2) O3B—C5B—C4B 108.7 (2)
O3A—C6A—H6A1 109.5 O3B—C6B—H6B1 109.5
O3A—C6A—H6A2 109.5 O3B—C6B—H6B2 109.5
H6A1—C6A—H6A2 109.5 H6B1—C6B—H6B2 109.5
O3A—C6A—H6A3 109.5 O3B—C6B—H6B3 109.5
H6A1—C6A—H6A3 109.5 H6B1—C6B—H6B3 109.5
H6A2—C6A—H6A3 109.5 H6B2—C6B—H6B3 109.5
C9A—C7A—C8A 110.8 (3) C8B—C7B—C9B 111.1 (3)
C9A—C7A—C4A 110.1 (2) C8B—C7B—C4B 111.7 (2)
C8A—C7A—C4A 114.4 (3) C9B—C7B—C4B 108.2 (2)
C9A—C7A—H7A 107.1 C8B—C7B—H7B 108.6
C8A—C7A—H7A 107.1 C9B—C7B—H7B 108.6
C4A—C7A—H7A 107.1 C4B—C7B—H7B 108.6
C7A—C8A—H8A1 109.5 C7B—C8B—H8B1 109.5
C7A—C8A—H8A2 109.5 C7B—C8B—H8B2 109.5
H8A1—C8A—H8A2 109.5 H8B1—C8B—H8B2 109.5
C7A—C8A—H8A3 109.5 C7B—C8B—H8B3 109.5
H8A1—C8A—H8A3 109.5 H8B1—C8B—H8B3 109.5
H8A2—C8A—H8A3 109.5 H8B2—C8B—H8B3 109.5
C7A—C9A—H9A1 109.5 C7B—C9B—H9B1 109.5
C7A—C9A—H9A2 109.5 C7B—C9B—H9B2 109.5
H9A1—C9A—H9A2 109.5 H9B1—C9B—H9B2 109.5
C7A—C9A—H9A3 109.5 C7B—C9B—H9B3 109.5
H9A1—C9A—H9A3 109.5 H9B1—C9B—H9B3 109.5
H9A2—C9A—H9A3 109.5 H9B2—C9B—H9B3 109.5
O4A—C10A—O5A 126.4 (3) O4B—C10B—O5B 125.9 (3)
O4A—C10A—N2A 124.1 (2) O4B—C10B—N2B 124.4 (2)
O5A—C10A—N2A 109.5 (2) O5B—C10B—N2B 109.7 (2)
O5A—C11A—C12A 110.1 (2) O5B—C11B—C13B 111.5 (3)
O5A—C11A—C14A 111.3 (2) O5B—C11B—C12B 109.3 (3)
C12A—C11A—C14A 112.0 (3) C13B—C11B—C12B 111.8 (3)
O5A—C11A—C13A 101.4 (3) O5B—C11B—C14B 101.1 (3)
C12A—C11A—C13A 111.4 (3) C13B—C11B—C14B 111.1 (3)
C14A—C11A—C13A 110.3 (3) C12B—C11B—C14B 111.5 (3)
C11A—C12A—H12A 109.5 C11B—C12B—H12D 109.5
C11A—C12A—H12B 109.5 C11B—C12B—H12E 109.5
H12A—C12A—H12B 109.5 H12D—C12B—H12E 109.5
C11A—C12A—H12C 109.5 C11B—C12B—H12F 109.5
H12A—C12A—H12C 109.5 H12D—C12B—H12F 109.5
H12B—C12A—H12C 109.5 H12E—C12B—H12F 109.5
C11A—C13A—H13A 109.5 C11B—C13B—H13D 109.5
C11A—C13A—H13B 109.5 C11B—C13B—H13E 109.5
H13A—C13A—H13B 109.5 H13D—C13B—H13E 109.5
C11A—C13A—H13C 109.5 C11B—C13B—H13F 109.5
H13A—C13A—H13C 109.5 H13D—C13B—H13F 109.5
H13B—C13A—H13C 109.5 H13E—C13B—H13F 109.5
C11A—C14A—H14A 109.5 C11B—C14B—H14D 109.5
C11A—C14A—H14B 109.5 C11B—C14B—H14E 109.5
H14A—C14A—H14B 109.5 H14D—C14B—H14E 109.5
C11A—C14A—H14C 109.5 C11B—C14B—H14F 109.5
H14A—C14A—H14C 109.5 H14D—C14B—H14F 109.5
H14B—C14A—H14C 109.5 H14E—C14B—H14F 109.5
C1A—S1A—N1A—C3A 13.0 (2) C1B—S1B—N1B—C3B 12.9 (2)
C1A—S1A—N1A—C4A −144.0 (2) C1B—S1B—N1B—C4B −148.9 (2)
N1A—S1A—C1A—C2A −27.2 (2) N1B—S1B—C1B—C2B −26.1 (2)
C10A—N2A—C2A—C1A −61.9 (3) C10B—N2B—C2B—C3B 57.7 (3)
C10A—N2A—C2A—C3A 59.8 (3) C10B—N2B—C2B—C1B −64.2 (3)
S1A—C1A—C2A—N2A 158.7 (2) S1B—C1B—C2B—N2B 157.0 (2)
S1A—C1A—C2A—C3A 34.2 (3) S1B—C1B—C2B—C3B 32.7 (3)
C4A—N1A—C3A—O1A −18.2 (4) C4B—N1B—C3B—O1B −15.1 (4)
S1A—N1A—C3A—O1A −174.7 (2) S1B—N1B—C3B—O1B −176.4 (2)
C4A—N1A—C3A—C2A 162.8 (2) C4B—N1B—C3B—C2B 166.6 (2)
S1A—N1A—C3A—C2A 6.2 (3) S1B—N1B—C3B—C2B 5.3 (3)
N2A—C2A—C3A—O1A 28.5 (4) N2B—C2B—C3B—O1B 30.9 (4)
C1A—C2A—C3A—O1A 154.1 (3) C1B—C2B—C3B—O1B 156.4 (3)
N2A—C2A—C3A—N1A −152.5 (2) N2B—C2B—C3B—N1B −150.9 (2)
C1A—C2A—C3A—N1A −26.8 (3) C1B—C2B—C3B—N1B −25.3 (3)
C3A—N1A—C4A—C5A −103.6 (3) C3B—N1B—C4B—C5B −106.0 (3)
S1A—N1A—C4A—C5A 51.9 (3) S1B—N1B—C4B—C5B 54.6 (3)
C3A—N1A—C4A—C7A 127.3 (3) C3B—N1B—C4B—C7B 128.2 (3)
S1A—N1A—C4A—C7A −77.2 (3) S1B—N1B—C4B—C7B −71.3 (3)
C6A—O3A—C5A—O2A 5.4 (5) C6B—O3B—C5B—O2B 8.6 (5)
C6A—O3A—C5A—C4A −174.9 (3) C6B—O3B—C5B—C4B −169.0 (3)
N1A—C4A—C5A—O2A −126.7 (3) N1B—C4B—C5B—O2B −117.3 (3)
C7A—C4A—C5A—O2A 3.7 (4) C7B—C4B—C5B—O2B 10.3 (4)
N1A—C4A—C5A—O3A 53.7 (3) N1B—C4B—C5B—O3B 60.1 (3)
C7A—C4A—C5A—O3A −176.0 (2) C7B—C4B—C5B—O3B −172.3 (2)
N1A—C4A—C7A—C9A −71.8 (3) N1B—C4B—C7B—C8B −44.0 (4)
C5A—C4A—C7A—C9A 161.7 (3) C5B—C4B—C7B—C8B −166.8 (3)
N1A—C4A—C7A—C8A 53.7 (3) N1B—C4B—C7B—C9B −166.6 (3)
C5A—C4A—C7A—C8A −72.8 (3) C5B—C4B—C7B—C9B 70.6 (3)
C11A—O5A—C10A—O4A 1.1 (4) C11B—O5B—C10B—O4B 1.0 (4)
C11A—O5A—C10A—N2A 179.7 (2) C11B—O5B—C10B—N2B −179.4 (2)
C2A—N2A—C10A—O4A −7.4 (4) C2B—N2B—C10B—O4B −4.3 (4)
C2A—N2A—C10A—O5A 173.9 (2) C2B—N2B—C10B—O5B 176.1 (2)
C10A—O5A—C11A—C12A −67.5 (3) C10B—O5B—C11B—C13B 57.3 (4)
C10A—O5A—C11A—C14A 57.3 (3) C10B—O5B—C11B—C12B −66.9 (4)
C10A—O5A—C11A—C13A 174.5 (3) C10B—O5B—C11B—C14B 175.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2A—H2AN···O1Ai 0.88 2.07 2.925 (3) 164
N2B—H2BN···O1Bii 0.88 2.05 2.921 (3) 169
C2A—H2A···O5Ai 1.00 2.57 3.549 (3) 167
C1B—H1B2···O1Biii 0.99 2.56 3.371 (4) 139
C4A—H4A···S1Aiv 1.00 2.70 3.526 (3) 140
C4B—H4B···S1Biv 1.00 2.70 3.488 (3) 136
C9B—H9B3···O2Av 0.98 2.52 3.400 (4) 149

Symmetry codes: (i) −x+1, y−1/2, −z+2; (ii) −x+1, y−1/2, −z+1; (iii) x, y−1, z; (iv) x, y+1, z; (v) x+1, y, z.

References

  1. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  3. Kim, W., Dannaldson, J. & Gates, K. S. (1996). Tetrahedron Lett. 37, 5337–5340.
  4. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  5. Montfort, R. L. M. van, Congreve, M., Tisi, D., Carr, R. & Jhoti, H. (2003). Nature, 423, 773–777. [DOI] [PubMed]
  6. Morin, R. B., Gordon, E. M., McGrath, T. & Shuman, R. (1973). Tetrahedron Lett. 14, 2159–2162.
  7. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  8. Ranganathan, S., Muraleedharan, K. M., Bharadwaj, P., Chatterji, D. & Karle, I. (2002). Tetrahedron, 58, 2861–2874.
  9. Salmeen, A., Andersen, J. N., Myers, M. P., Meng, T.-C., Hinks, J. A., Tonks, N. K. & Barford, D. (2003). Nature, 423, 769–773. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  12. Shiau, P. T., Erlanson, D. A. & Gordon, E. M. (2006). Org. Lett. 8, 5697–5699. [DOI] [PubMed]
  13. Sivaramakrishnan, S., Cummings, A. H. & Gates, K. S. (2010). Bioorg. Med. Chem. Lett. 20, 444–447. [DOI] [PMC free article] [PubMed]
  14. Sivaramakrishnan, S., Keerthi, K. & Gates, K. S. (2005). J. Am. Chem. Soc. 127, 10830–10831. [DOI] [PubMed]
  15. Tanner, J. J., Parsons, Z. D., Cummings, A. H., Zhou, H. & Gates, K. S. (2011). Antioxid. Redox Signal. 15, 77–97. [DOI] [PubMed]
  16. Wang, X., Yang, J.-X., You, C., Tan, X. & Lin, Q. (2011). Acta Cryst. E67, o3295. [DOI] [PMC free article] [PubMed]
  17. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  18. Zhou, H., Singh, H., Parsons, Z. D., Lewis, S. M., Bhattacharya, S., Seiner, D. R., LaButti, J. N., Reilly, T. J., Tanner, J. J. & Gates, K. S. (2011). J. Am. Chem. Soc. 132, 15803–15805. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015010051/su5136sup1.cif

e-71-00741-sup1.cif (595.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010051/su5136Isup2.hkl

e-71-00741-Isup2.hkl (421.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015010051/su5136Isup3.cml

CCDC reference: 1402668

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES