Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 20;71(Pt 7):816–820. doi: 10.1107/S2056989015011494

Crystal structure of 4,4′-diethynylbiphen­yl

Tei Tagg a, C John McAdam b, Brian H Robinson b, Jim Simpson b,*
PMCID: PMC4518938  PMID: 26279875

4,4′-Diethynylbiphenyl crystallizes with four unique mol­ecules in the asymmetric unit. The crystal structure is stabilized by weak C—H⋯π(ring) and C C—H⋯π(alkyne) contacts.

Keywords: crystal structure; 4,4′-diethynyl­biphen­yl; C—H⋯π(ring) inter­actions; C C—H⋯π contacts

Abstract

The title compound, C16H10, crystallizes with four unique mol­ecules, designated 1–4, in the asymmetric unit of the monoclinic unit cell. None of the mol­ecules is planar, with the benzene rings of mol­ecules 1–4 inclined to one another at angles of 42.41 (4), 24.07 (6), 42.59 (4) and 46.88 (4)°, respectively. In the crystal, weak C—H⋯π(ring) interactions, augmented by even weaker C C—H⋯π(alkyne) contacts, generate a three-dimensional network structure with inter­linked columns of mol­ecules formed along the c-axis direction.

Chemical context  

Donor–acceptor (DA) dyads with the innate ability to generate long-lived charge separation in their excited states have elicited a great deal of current inter­est. Their applications cover fields ranging from artificial photosynthesis to solar cell technology (Rogozina et al., 2013; Fukuzumi et al., 2014). We have produced a variety of such dyads based on ferrocene as the donor and with a variety of acceptors (see for example: Flood et al., 2007; Cuffe et al., 2005; McAdam et al., 2003). More recently, we have been inter­ested in expanding the range of donor–acceptor dyads by inter­polating a potentially conductive spacer between the donor and the acceptor to yield donor–spacer–acceptor (DSA) dyads. Biphenyl is a conductive spacer that we have used with some recent success, joined to a ferrocene donor through an alkene unit and to an acceptor via an alkyne link (McAdam et al., 2010; Tagg et al., 2015). We are inter­ested in further developing the chemistry of biphenyl as a potential spacer, with alkyne links to both the donor and the acceptor. Surprisingly, the mol­ecular and crystal structure of the precursor mol­ecule, 4,4′-diethynylbiphenyl (Liu, Liu et al., 2005), has not been previously studied and we report its structure here.graphic file with name e-71-00816-scheme1.jpg

Structural commentary  

The title compound, (I), crystallizes with four unique mol­ecules in the asymmetric unit, identified by the leading digits 1–4 in the numbering schemes, Fig. 1. Each mol­ecule comprises a central biphenyl ring system symmetrically substituted at the 4 and 4′ positions by terminal alkyne units. None of the mol­ecules is planar, with the two benzene rings of each mol­ecule inclined to one another at angles of 42.41 (4), 24.07 (6), 42.59 (4) and 46.88 (4)° for mol­ecules 1–4, respectively. Bond distances and angles in the biphenyl ring systems are not unusual and compare well, both inter­nally, over the four unique mol­ecules, and with those observed in related systems (see for example: O’Brien et al., 2010, Butler et al., 2008; Muller, et al., 2006, Nitsche et al., 2003). The Cn4—Cn7 and Cn4′—Cn7′ distances (n = 1–4) [mean 1.445 (2) Å] are generally somewhat long, enough indeed to raise alerts in the checkCIF procedure. However analysis in Vista (Groom & Allen, 2014) of comparable values for eight other biphenyl systems, with terminal alkyne functions in the 4-position, provides a mean value of 1.442 (16) Å, not at all dissimilar to the values observed here (see for example: Langley et al., 1998; Mague et al., 1997; McAdam et al., 2010; Laliberté et al., 2006). The C C distances are also generally reasonable, with the exception of C27′—C28′, 1.130 (2) Å, which is unusually short compared to more typical C C distances of 1.181 (14) Å (Allen et al. 1987). There is no obvious explanation for this, except to note that the adjacent C27′—C24′ distance 1.4507 (19) Å is the longest of those reported here.

Figure 1.

Figure 1

The asymmetric unit of (I), showing the numbering schemes for the four unique mol­ecules designated as types 1–4 with the types discriminated by the leading characters in the atom labels.

Supra­molecular features  

The absence of donor and acceptor components, to provide classical hydrogen bonding or even C—H⋯E (E = O, N, halogen) contacts, challenge the packing in this system. There has been considerable speculation on the factors influencing the formation of structures with Z′ > 1 (Desiraju, 2007; Steed & Steed, 2015; Anderson & Steed 2007, Nichol & Clegg, 2007), and the nature, extent and degree of the inter­molecular contacts are clearly contributory factors. In this instance, the packing in the structure is profoundly influenced by an extensive series of weak edge-to-face C—H⋯π(ring) inter­actions (Table 1) augmented by still weaker C C—H⋯π(alkyne) contacts. It is likely that the inherent weakness of these contacts may influence the adoption of a Z′ > 1 structure.

Table 1. CH interactions (, ).

Cg1, Cg3, Cg4, Cg6 and Cg8 are the centroids of the C11C16, C21C26, C21C26, C31C36 and C41C46 rings, respectively.

DHA DH HA D A DHA
C13H13Cg6i 0.95 2.73 3.4910(13) 137
C15H15Cg6 0.95 2.70 3.4782(13) 140
C16H16Cg1ii 0.95 2.92 3.5375(12) 124
C23H23Cg8i 0.95 2.71 3.4809(13) 139
C25H25Cg8 0.95 2.76 3.4976(14) 136
C33H33Cg4iii 0.95 2.88 3.6153(13) 135
C36H36Cg3iii 0.95 2.87 3.6112(12) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

A complementary set of C—H⋯π contacts, involving in one case mol­ecules 1 and 3 and in the second mol­ecules 2 and 4, sandwiches a mol­ecule of 1 between two mol­ecules of 3 and a mol­ecule of 2 between two mol­ecules of 4. These contacts generate infinite chains approximately along the c-axis direction. The two chains lie approximately orthogonal to one another, Fig. 2. Weak C16′—H16′⋯Cg1 contacts form inversion dimers between two adjacent 1 mol­ecules, Fig. 3, and dimers also result from C—H⋯π contacts involving both rings of adjacent 2 and 3 mol­ecules, Fig. 4; both these sets of contacts contribute to the overall packing. In addition to these C—H⋯π(ring) inter­actions, one further set of somewhat unusual contacts is formed, again involving all four mol­ecules in the structure. These are weak C C—H⋯π(alkyne) contacts (Desiraju & Steiner, 1999) involving the relatively acidic C—H donors of the alkyne substituents. These again involve pairs of mol­ecules with C18—H18⋯C37 C38 and C38′—H38′⋯C17′ C18′ contacts generating one set of zigzag chains along b with an adjacent and complementary zigzag produced by C28—H28⋯C47 C48 and C48′—H48′⋯C27′ C28′ inter­actions, These chains generate layers of mol­ecules in the ac plane, Fig. 5. The contacts display the classic T shape, found also in the neutron structure of acetyl­ene (McMullan et al., 1992), but not perfectly so. The Hn8⋯Cn7 distances are consistently slightly shorter [mean of the four distances = 2.77 (3) Å] than the Hn8⋯Cn8 equivalents [mean 2.97 (4) Å]. The mean Hn8⋯C C centroid distance is 2.82 (4) Å and these values all fall well within projected ranges for such contacts (Desiraju & Steiner, 1999). The overall effect of this plethora of weak inter­actions is to stack mol­ecules into ‘multiple-decker sandwich’ columns, linked together along the c-axis direction, Fig. 6.

Figure 2.

Figure 2

Complementary chains of 1, 3 and 2, 4 mol­ecules extending along the c-axis direction. In this and subsequent figures, C—H⋯π(ring) contacts are drawn as dotted lines with ring centroids shown as coloured spheres.

Figure 3.

Figure 3

Inversion dimers formed through C—H⋯π(ring) contacts between mol­ecules of type 1.

Figure 4.

Figure 4

Dimers formed through C—H⋯π(ring) contacts between mol­ecules of types 2 and 4.

Figure 5.

Figure 5

Zigzag chains of mol­ecules generated by C—H⋯C C contacts between mol­ecules of types 1 and 3 and mol­ecules of types 2 and 4. The centroids of the C C bonds are drawn as coloured spheres and the C—H⋯C C contacts are shown as dotted lines.

Figure 6.

Figure 6

Overall packing for (I) viewed along the c axis. Representative C—H⋯π(ring) and C—H⋯π(alkyne) contacts are drawn as dotted lines.

Database survey  

Structures of 4-4′-disubstituted bi­phenyls abound with 2891 hits on the CSD (Groom & Allen, 2014). However, those with 4,4′-alkyne substituents are far less plentiful with only 29 entries. These fall into two distinct categories. First compounds with one or both of the alkyne substituents on the bi­phenyls bound to carbon or silicon atoms, 14 entries (see for example: Zhou et al., 2012; McAdam et al., 2010; O’Brien et al., 2010, Zeng et al., 2007; Muller, et al., 2006; Nitsche et al., 2003). Second, the well represented class of organometallic acetyl­ides, also referred to as ethynyl compounds. These have either the terminal hydrogen atoms of the alkyne groups both replaced by a transition metal complex moiety (see for example: Shanmugaraju et al., 2011; Gao et al., 2007; Ibn Ghazala et al., 2006; Liu, Poon et al., 2005) or, much less frequently, only a single terminal hydrogen atom is replaced to afford ethynyl complexes with terminal C C–H substituents (Zeng et al., 2013; Saha et al., 2005).

Synthesis and crystallization  

The title compound (I) was prepared by a literature procedure (Liu, Liu et al., 2005) and recrystallized from di­chloro­methane/hexane (1:1) to give pale-yellow plates suitable for X-ray analysis.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were refined using a riding model with d(C—H) = 0.95 Å, U iso = 1.2U eq(C) for both the aromatic and terminal alkyne H atoms. Two low angle reflections with F o << F c, with intensities likely to have been attenuated by the beam-stop, were removed for the final refinement cycles.

Table 2. Experimental details.

Crystal data
Chemical formula C16H10
M r 202.24
Crystal system, space group Monoclinic, P21/c
Temperature (K) 85
a, b, c () 23.4263(5), 21.1181(5), 9.2989(2)
() 100.731(1)
V (3) 4519.89(17)
Z 16
Radiation type Mo K
(mm1) 0.07
Crystal size (mm) 0.46 0.40 0.07
 
Data collection
Diffractometer BrukerNonius APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2011)
T min, T max 0.887, 0.980
No. of measured, independent and observed [I > 2(I)] reflections 77658, 8885, 7147
R int 0.030
(sin /)max (1) 0.617
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.036, 0.103, 1.03
No. of reflections 8885
No. of parameters 577
No. of restraints 42
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.29, 0.16

Computer programs: , APEX2 and SAINT (Bruker, 2011), SHELXS (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), TITAN2000 (Hunter Simpson, 1999), Mercury (Macrae et al., 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015011494/hg5446sup1.cif

e-71-00816-sup1.cif (2.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015011494/hg5446Isup2.hkl

e-71-00816-Isup2.hkl (486.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015011494/hg5446Isup3.cml

CCDC reference: 1406589

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the New Zealand Ministry of Business, Innovation and Employment, Science Investment Fund (grant No. UOO-X1206) for support of this work and the University of Otago for the purchase of the diffractometer.

supplementary crystallographic information

Crystal data

C16H10 F(000) = 1696
Mr = 202.24 Dx = 1.189 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 23.4263 (5) Å Cell parameters from 8416 reflections
b = 21.1181 (5) Å θ = 4.9–62.5°
c = 9.2989 (2) Å µ = 0.07 mm1
β = 100.731 (1)° T = 85 K
V = 4519.89 (17) Å3 Plate, pale yellow
Z = 16 0.46 × 0.40 × 0.07 mm

Data collection

Bruker–Nonius APEXII CCD diffractometer 8885 independent reflections
Radiation source: fine-focus sealed tube 7147 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
φ and ω scans θmax = 26.0°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Bruker, 2011) h = −28→28
Tmin = 0.887, Tmax = 0.980 k = −26→26
77658 measured reflections l = −11→11

Refinement

Refinement on F2 42 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0471P)2 + 1.454P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
8885 reflections Δρmax = 0.29 e Å3
577 parameters Δρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Two low angle reflections with Fo << Fc with intensities affected by the beam-stop were removed for the final refinement cycles.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C18 0.26084 (6) 0.61801 (6) 0.27932 (15) 0.0318 (3)
H18 0.2298 0.6477 0.2663 0.038*
C17 0.29917 (5) 0.58137 (6) 0.29541 (13) 0.0240 (3)
C16 0.40471 (6) 0.45861 (6) 0.46859 (13) 0.0252 (3)
H16 0.4152 0.4381 0.5606 0.030*
C15 0.36119 (5) 0.50352 (6) 0.44947 (13) 0.0253 (3)
H15 0.3417 0.5130 0.5278 0.030*
C14 0.34553 (5) 0.53520 (5) 0.31607 (13) 0.0206 (2)
C13 0.37510 (5) 0.52063 (6) 0.20294 (13) 0.0226 (3)
H13 0.3657 0.5423 0.1121 0.027*
C12 0.41799 (5) 0.47484 (6) 0.22237 (12) 0.0221 (2)
H12 0.4372 0.4650 0.1438 0.027*
C11 0.43363 (5) 0.44272 (5) 0.35501 (12) 0.0196 (2)
C11' 0.47811 (5) 0.39198 (5) 0.37373 (12) 0.0197 (2)
C12' 0.47908 (5) 0.34774 (5) 0.26198 (12) 0.0214 (2)
H12' 0.4516 0.3511 0.1732 0.026*
C13' 0.51937 (5) 0.29931 (6) 0.27899 (13) 0.0229 (3)
H13' 0.5192 0.2696 0.2023 0.027*
C15' 0.56013 (5) 0.33806 (5) 0.52006 (13) 0.0231 (3)
H15' 0.5880 0.3351 0.6082 0.028*
C16' 0.51939 (5) 0.38625 (5) 0.50273 (12) 0.0222 (2)
H16' 0.5195 0.4159 0.5796 0.027*
C14' 0.56056 (5) 0.29371 (5) 0.40853 (13) 0.0212 (2)
C17' 0.60326 (5) 0.24352 (6) 0.42461 (13) 0.0242 (3)
C18' 0.63815 (6) 0.20297 (6) 0.43483 (14) 0.0294 (3)
H18' 0.6663 0.1702 0.4431 0.035*
C28 0.01222 (6) 0.61620 (7) −0.10611 (15) 0.0359 (3)
H28 −0.0189 0.6457 −0.1243 0.043*
C27 0.05092 (6) 0.57953 (6) −0.08355 (14) 0.0277 (3)
C24 0.09698 (5) 0.53344 (6) −0.05973 (13) 0.0231 (3)
C25 0.12721 (6) 0.51937 (6) 0.08080 (14) 0.0292 (3)
H25 0.1184 0.5417 0.1626 0.035*
C26 0.16983 (6) 0.47332 (6) 0.10195 (13) 0.0280 (3)
H26 0.1901 0.4647 0.1983 0.034*
C23 0.11208 (5) 0.50095 (6) −0.17817 (13) 0.0227 (3)
H23 0.0931 0.5109 −0.2750 0.027*
C22 0.15419 (5) 0.45468 (5) −0.15572 (13) 0.0217 (2)
H22 0.1634 0.4327 −0.2377 0.026*
C21 0.18383 (5) 0.43917 (5) −0.01531 (13) 0.0212 (2)
C21' 0.22840 (5) 0.38863 (5) 0.00710 (13) 0.0219 (2)
C22' 0.22770 (5) 0.33988 (6) −0.09553 (13) 0.0247 (3)
H22' 0.1977 0.3390 −0.1798 0.030*
C23' 0.26965 (5) 0.29318 (6) −0.07676 (14) 0.0278 (3)
H23' 0.2686 0.2610 −0.1486 0.033*
C25' 0.31418 (5) 0.34058 (6) 0.15210 (14) 0.0269 (3)
H25' 0.3433 0.3405 0.2381 0.032*
C26' 0.27264 (5) 0.38763 (6) 0.13152 (13) 0.0240 (3)
H26' 0.2740 0.4200 0.2030 0.029*
C24' 0.31377 (5) 0.29291 (6) 0.04756 (14) 0.0270 (3)
C27' 0.35848 (6) 0.24449 (7) 0.06802 (16) 0.0352 (3)
C28' 0.39403 (7) 0.20760 (7) 0.08536 (18) 0.0447 (4)
H28' 0.4239 0.1766 0.0999 0.054*
C38 0.11161 (6) 0.79841 (6) 0.69494 (16) 0.0334 (3)
H38 0.0828 0.8306 0.6771 0.040*
C37 0.14702 (5) 0.75884 (6) 0.71693 (14) 0.0274 (3)
C34 0.19066 (5) 0.70967 (5) 0.74066 (13) 0.0231 (3)
C35 0.18803 (5) 0.66086 (6) 0.84074 (13) 0.0240 (3)
H35 0.1577 0.6605 0.8958 0.029*
C36 0.22913 (5) 0.61314 (5) 0.86027 (13) 0.0218 (2)
H36 0.2265 0.5800 0.9277 0.026*
C33 0.23589 (5) 0.70960 (6) 0.66094 (13) 0.0250 (3)
H33 0.2381 0.7423 0.5920 0.030*
C32 0.27727 (5) 0.66226 (6) 0.68221 (13) 0.0229 (3)
H32 0.3080 0.6631 0.6285 0.027*
C31 0.27464 (5) 0.61318 (5) 0.78158 (12) 0.0199 (2)
C31' 0.31938 (5) 0.56270 (5) 0.80312 (12) 0.0192 (2)
C32' 0.30445 (5) 0.49923 (5) 0.81532 (12) 0.0209 (2)
H32' 0.2648 0.4881 0.8105 0.025*
C33' 0.34629 (5) 0.45206 (6) 0.83436 (12) 0.0220 (2)
H33' 0.3352 0.4091 0.8416 0.026*
C35' 0.41999 (5) 0.53127 (6) 0.83133 (12) 0.0225 (2)
H35' 0.4597 0.5424 0.8375 0.027*
C36' 0.37810 (5) 0.57790 (6) 0.81118 (12) 0.0211 (2)
H36' 0.3892 0.6208 0.8027 0.025*
C34' 0.40476 (5) 0.46768 (6) 0.84285 (12) 0.0206 (2)
C37' 0.44936 (5) 0.41951 (6) 0.86414 (12) 0.0237 (3)
C38' 0.48707 (6) 0.38135 (6) 0.88180 (14) 0.0302 (3)
H38' 0.5173 0.3507 0.8960 0.036*
C48 −0.13344 (6) 0.79702 (7) 0.30586 (17) 0.0402 (3)
H48 −0.1621 0.8292 0.2858 0.048*
C47 −0.09783 (6) 0.75706 (6) 0.33069 (15) 0.0324 (3)
C44 −0.05457 (5) 0.70779 (6) 0.35722 (14) 0.0272 (3)
C45 −0.05343 (5) 0.66035 (6) 0.25252 (14) 0.0264 (3)
H45 −0.0811 0.6610 0.1637 0.032*
C46 −0.01241 (5) 0.61263 (6) 0.27733 (13) 0.0241 (3)
H46 −0.0127 0.5804 0.2060 0.029*
C43 −0.01289 (6) 0.70624 (6) 0.48626 (15) 0.0297 (3)
H43 −0.0132 0.7379 0.5586 0.036*
C42 0.02873 (5) 0.65901 (6) 0.50944 (14) 0.0270 (3)
H42 0.0572 0.6591 0.5968 0.032*
C41 0.02949 (5) 0.61109 (6) 0.40583 (13) 0.0229 (3)
C41' 0.07433 (5) 0.56078 (6) 0.42969 (12) 0.0219 (2)
C42' 0.13294 (5) 0.57601 (6) 0.47849 (13) 0.0232 (3)
H42' 0.1439 0.6189 0.4983 0.028*
C43' 0.17498 (5) 0.52946 (6) 0.49820 (13) 0.0243 (3)
H43' 0.2146 0.5407 0.5293 0.029*
C45' 0.10123 (5) 0.45009 (6) 0.42502 (13) 0.0246 (3)
H45' 0.0902 0.4071 0.4081 0.030*
C46' 0.05956 (5) 0.49710 (6) 0.40248 (13) 0.0238 (3)
H46' 0.0201 0.4860 0.3678 0.029*
C44' 0.15977 (5) 0.46576 (6) 0.47284 (12) 0.0235 (3)
C47' 0.20428 (5) 0.41762 (6) 0.49536 (13) 0.0273 (3)
C48' 0.24191 (6) 0.37986 (7) 0.51539 (15) 0.0350 (3)
H48' 0.2723 0.3494 0.5316 0.042*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C18 0.0334 (7) 0.0309 (7) 0.0326 (7) 0.0041 (6) 0.0103 (6) 0.0050 (6)
C17 0.0262 (6) 0.0268 (6) 0.0198 (6) −0.0057 (5) 0.0062 (5) −0.0005 (5)
C16 0.0370 (7) 0.0220 (6) 0.0173 (6) 0.0024 (5) 0.0065 (5) 0.0022 (5)
C15 0.0341 (7) 0.0238 (6) 0.0201 (6) 0.0014 (5) 0.0105 (5) −0.0016 (5)
C14 0.0213 (6) 0.0183 (5) 0.0217 (6) −0.0030 (4) 0.0029 (5) −0.0019 (4)
C13 0.0224 (6) 0.0276 (6) 0.0167 (6) −0.0015 (5) 0.0011 (4) 0.0023 (5)
C12 0.0215 (6) 0.0288 (6) 0.0165 (6) −0.0005 (5) 0.0049 (4) −0.0005 (5)
C11 0.0216 (6) 0.0191 (6) 0.0175 (6) −0.0044 (5) 0.0027 (4) −0.0024 (4)
C11' 0.0213 (6) 0.0200 (6) 0.0186 (6) −0.0041 (5) 0.0056 (4) 0.0019 (4)
C12' 0.0213 (6) 0.0251 (6) 0.0173 (6) −0.0016 (5) 0.0023 (4) −0.0001 (5)
C13' 0.0251 (6) 0.0231 (6) 0.0212 (6) −0.0023 (5) 0.0062 (5) −0.0031 (5)
C15' 0.0248 (6) 0.0234 (6) 0.0196 (6) −0.0051 (5) 0.0001 (5) 0.0040 (5)
C16' 0.0282 (6) 0.0212 (6) 0.0171 (6) −0.0036 (5) 0.0035 (5) −0.0008 (4)
C14' 0.0205 (6) 0.0199 (6) 0.0238 (6) −0.0033 (5) 0.0055 (5) 0.0040 (5)
C17' 0.0251 (6) 0.0244 (6) 0.0235 (6) −0.0072 (5) 0.0057 (5) 0.0016 (5)
C18' 0.0274 (7) 0.0271 (7) 0.0332 (7) −0.0001 (6) 0.0040 (5) 0.0067 (5)
C28 0.0371 (8) 0.0381 (8) 0.0313 (7) 0.0090 (6) 0.0027 (6) −0.0049 (6)
C27 0.0301 (7) 0.0304 (7) 0.0230 (6) −0.0038 (6) 0.0059 (5) −0.0044 (5)
C24 0.0226 (6) 0.0218 (6) 0.0255 (6) −0.0029 (5) 0.0060 (5) −0.0006 (5)
C25 0.0363 (7) 0.0318 (7) 0.0215 (6) 0.0038 (6) 0.0102 (5) −0.0031 (5)
C26 0.0340 (7) 0.0316 (7) 0.0186 (6) 0.0034 (6) 0.0052 (5) 0.0021 (5)
C23 0.0207 (6) 0.0264 (6) 0.0208 (6) −0.0054 (5) 0.0033 (5) −0.0003 (5)
C22 0.0215 (6) 0.0242 (6) 0.0201 (6) −0.0050 (5) 0.0056 (5) −0.0034 (5)
C21 0.0216 (6) 0.0214 (6) 0.0219 (6) −0.0058 (5) 0.0071 (5) 0.0005 (5)
C21' 0.0228 (6) 0.0224 (6) 0.0219 (6) −0.0054 (5) 0.0074 (5) 0.0018 (5)
C22' 0.0246 (6) 0.0253 (6) 0.0236 (6) −0.0029 (5) 0.0026 (5) −0.0011 (5)
C23' 0.0295 (7) 0.0240 (6) 0.0294 (7) −0.0028 (5) 0.0040 (5) −0.0046 (5)
C25' 0.0259 (6) 0.0271 (6) 0.0262 (6) −0.0045 (5) 0.0006 (5) 0.0016 (5)
C26' 0.0271 (6) 0.0230 (6) 0.0223 (6) −0.0048 (5) 0.0055 (5) −0.0021 (5)
C24' 0.0252 (6) 0.0215 (6) 0.0336 (7) −0.0021 (5) 0.0039 (5) 0.0005 (5)
C27' 0.0338 (7) 0.0306 (7) 0.0380 (8) −0.0095 (6) −0.0016 (6) −0.0062 (6)
C28' 0.0388 (8) 0.0274 (7) 0.0606 (10) 0.0002 (7) −0.0095 (7) −0.0131 (7)
C38 0.0267 (7) 0.0301 (7) 0.0433 (8) 0.0003 (6) 0.0065 (6) −0.0079 (6)
C37 0.0266 (6) 0.0254 (6) 0.0298 (7) −0.0073 (5) 0.0043 (5) −0.0049 (5)
C34 0.0206 (6) 0.0208 (6) 0.0265 (6) −0.0021 (5) 0.0011 (5) −0.0059 (5)
C35 0.0208 (6) 0.0262 (6) 0.0259 (6) −0.0041 (5) 0.0069 (5) −0.0061 (5)
C36 0.0231 (6) 0.0218 (6) 0.0208 (6) −0.0048 (5) 0.0043 (5) −0.0016 (5)
C33 0.0264 (6) 0.0231 (6) 0.0254 (6) −0.0023 (5) 0.0044 (5) 0.0013 (5)
C32 0.0215 (6) 0.0249 (6) 0.0232 (6) −0.0027 (5) 0.0068 (5) −0.0006 (5)
C31 0.0193 (5) 0.0210 (6) 0.0188 (6) −0.0041 (5) 0.0018 (4) −0.0043 (4)
C31' 0.0202 (6) 0.0246 (6) 0.0130 (5) −0.0022 (5) 0.0035 (4) −0.0009 (4)
C32' 0.0190 (5) 0.0259 (6) 0.0181 (6) −0.0037 (5) 0.0042 (4) −0.0005 (5)
C33' 0.0258 (6) 0.0224 (6) 0.0178 (6) −0.0028 (5) 0.0039 (5) 0.0003 (5)
C35' 0.0193 (6) 0.0300 (6) 0.0183 (6) −0.0026 (5) 0.0039 (4) −0.0004 (5)
C36' 0.0221 (6) 0.0220 (6) 0.0196 (6) −0.0045 (5) 0.0046 (5) −0.0004 (5)
C34' 0.0229 (6) 0.0267 (6) 0.0123 (5) 0.0017 (5) 0.0031 (4) −0.0004 (4)
C37' 0.0253 (6) 0.0303 (7) 0.0154 (6) −0.0024 (5) 0.0037 (5) −0.0008 (5)
C38' 0.0328 (7) 0.0335 (7) 0.0236 (6) 0.0073 (6) 0.0041 (5) 0.0007 (5)
C48 0.0328 (8) 0.0351 (8) 0.0517 (9) 0.0024 (6) 0.0056 (7) −0.0063 (7)
C47 0.0305 (7) 0.0281 (7) 0.0381 (8) −0.0055 (6) 0.0048 (6) −0.0034 (6)
C44 0.0239 (6) 0.0240 (6) 0.0346 (7) −0.0037 (5) 0.0075 (5) 0.0007 (5)
C45 0.0227 (6) 0.0272 (6) 0.0288 (7) −0.0063 (5) 0.0034 (5) 0.0004 (5)
C46 0.0237 (6) 0.0239 (6) 0.0256 (6) −0.0071 (5) 0.0071 (5) −0.0033 (5)
C43 0.0320 (7) 0.0257 (7) 0.0319 (7) −0.0025 (5) 0.0076 (6) −0.0062 (5)
C42 0.0289 (6) 0.0278 (6) 0.0233 (6) −0.0037 (5) 0.0028 (5) −0.0025 (5)
C41 0.0222 (6) 0.0226 (6) 0.0252 (6) −0.0062 (5) 0.0079 (5) 0.0001 (5)
C41' 0.0247 (6) 0.0260 (6) 0.0160 (5) −0.0046 (5) 0.0061 (5) −0.0013 (5)
C42' 0.0265 (6) 0.0242 (6) 0.0191 (6) −0.0052 (5) 0.0042 (5) −0.0019 (5)
C43' 0.0231 (6) 0.0323 (7) 0.0173 (6) −0.0058 (5) 0.0030 (5) −0.0017 (5)
C45' 0.0285 (6) 0.0242 (6) 0.0224 (6) −0.0048 (5) 0.0080 (5) −0.0025 (5)
C46' 0.0220 (6) 0.0271 (6) 0.0229 (6) −0.0045 (5) 0.0061 (5) −0.0024 (5)
C44' 0.0269 (6) 0.0291 (6) 0.0153 (6) 0.0006 (5) 0.0060 (5) −0.0006 (5)
C47' 0.0293 (7) 0.0333 (7) 0.0192 (6) −0.0042 (6) 0.0046 (5) −0.0034 (5)
C48' 0.0377 (8) 0.0360 (8) 0.0300 (7) 0.0065 (6) 0.0032 (6) −0.0031 (6)

Geometric parameters (Å, º)

C18—C17 1.1736 (18) C38—C37 1.1684 (18)
C18—H18 0.9500 C38—H38 0.9500
C17—C14 1.4454 (17) C37—C34 1.4450 (17)
C16—C15 1.3795 (17) C34—C35 1.3977 (17)
C16—C11 1.3977 (16) C34—C33 1.4018 (17)
C16—H16 0.9500 C35—C36 1.3823 (17)
C15—C14 1.3968 (17) C35—H35 0.9500
C15—H15 0.9500 C36—C31 1.4009 (16)
C14—C13 1.3974 (16) C36—H36 0.9500
C13—C12 1.3820 (17) C33—C32 1.3809 (17)
C13—H13 0.9500 C33—H33 0.9500
C12—C11 1.3955 (16) C32—C31 1.3976 (16)
C12—H12 0.9500 C32—H32 0.9500
C11—C11' 1.4821 (16) C31—C31' 1.4820 (16)
C11'—C16' 1.3988 (16) C31'—C32' 1.3953 (16)
C11'—C12' 1.4008 (16) C31'—C36' 1.4009 (15)
C12'—C13' 1.3806 (16) C32'—C33' 1.3854 (16)
C12'—H12' 0.9500 C32'—H32' 0.9500
C13'—C14' 1.4011 (17) C33'—C34' 1.3968 (16)
C13'—H13' 0.9500 C33'—H33' 0.9500
C15'—C16' 1.3839 (17) C35'—C36' 1.3783 (16)
C15'—C14' 1.3989 (17) C35'—C34' 1.3986 (16)
C15'—H15' 0.9500 C35'—H35' 0.9500
C16'—H16' 0.9500 C36'—H36' 0.9500
C14'—C17' 1.4459 (17) C34'—C37' 1.4452 (17)
C17'—C18' 1.1753 (18) C37'—C38' 1.1843 (18)
C18'—H18' 0.9500 C38'—H38' 0.9500
C28—C27 1.1810 (19) C48—C47 1.179 (2)
C28—H28 0.9500 C48—H48 0.9500
C27—C24 1.4394 (17) C47—C44 1.4413 (18)
C24—C25 1.3974 (17) C44—C43 1.3993 (18)
C24—C23 1.3979 (17) C44—C45 1.4008 (18)
C25—C26 1.3815 (18) C45—C46 1.3820 (17)
C25—H25 0.9500 C45—H45 0.9500
C26—C21 1.3963 (17) C46—C41 1.3984 (17)
C26—H26 0.9500 C46—H46 0.9500
C23—C22 1.3765 (17) C43—C42 1.3834 (18)
C23—H23 0.9500 C43—H43 0.9500
C22—C21 1.3988 (16) C42—C41 1.3997 (17)
C22—H22 0.9500 C42—H42 0.9500
C21—C21' 1.4803 (17) C41—C41' 1.4814 (17)
C21'—C22' 1.4019 (17) C41'—C46' 1.3998 (17)
C21'—C26' 1.4023 (17) C41'—C42' 1.4009 (16)
C22'—C23' 1.3803 (17) C42'—C43' 1.3793 (17)
C22'—H22' 0.9500 C42'—H42' 0.9500
C23'—C24' 1.3999 (18) C43'—C44' 1.4003 (17)
C23'—H23' 0.9500 C43'—H43' 0.9500
C25'—C26' 1.3790 (17) C45'—C46' 1.3806 (17)
C25'—C24' 1.3982 (18) C45'—C44' 1.4004 (17)
C25'—H25' 0.9500 C45'—H45' 0.9500
C26'—H26' 0.9500 C46'—H46' 0.9500
C24'—C27' 1.4507 (19) C44'—C47' 1.4433 (18)
C27'—C28' 1.130 (2) C47'—C48' 1.1776 (19)
C28'—H28' 0.9500 C48'—H48' 0.9500
C17—C18—H18 180.0 C37—C38—H38 180.0
C18—C17—C14 178.75 (13) C38—C37—C34 178.73 (14)
C15—C16—C11 121.21 (11) C35—C34—C33 118.87 (11)
C15—C16—H16 119.4 C35—C34—C37 120.93 (11)
C11—C16—H16 119.4 C33—C34—C37 120.19 (11)
C16—C15—C14 120.62 (11) C36—C35—C34 120.60 (11)
C16—C15—H15 119.7 C36—C35—H35 119.7
C14—C15—H15 119.7 C34—C35—H35 119.7
C15—C14—C13 118.56 (11) C35—C36—C31 120.68 (11)
C15—C14—C17 120.51 (11) C35—C36—H36 119.7
C13—C14—C17 120.93 (10) C31—C36—H36 119.7
C12—C13—C14 120.40 (11) C32—C33—C34 120.30 (11)
C12—C13—H13 119.8 C32—C33—H33 119.8
C14—C13—H13 119.8 C34—C33—H33 119.8
C13—C12—C11 121.36 (11) C33—C32—C31 121.03 (11)
C13—C12—H12 119.3 C33—C32—H32 119.5
C11—C12—H12 119.3 C31—C32—H32 119.5
C12—C11—C16 117.83 (11) C32—C31—C36 118.51 (11)
C12—C11—C11' 121.22 (10) C32—C31—C31' 120.38 (10)
C16—C11—C11' 120.92 (10) C36—C31—C31' 121.11 (10)
C16'—C11'—C12' 118.31 (11) C32'—C31'—C36' 118.30 (11)
C16'—C11'—C11 121.46 (10) C32'—C31'—C31 121.36 (10)
C12'—C11'—C11 120.22 (10) C36'—C31'—C31 120.34 (10)
C13'—C12'—C11' 120.95 (11) C33'—C32'—C31' 121.27 (11)
C13'—C12'—H12' 119.5 C33'—C32'—H32' 119.4
C11'—C12'—H12' 119.5 C31'—C32'—H32' 119.4
C12'—C13'—C14' 120.52 (11) C32'—C33'—C34' 120.02 (11)
C12'—C13'—H13' 119.7 C32'—C33'—H33' 120.0
C14'—C13'—H13' 119.7 C34'—C33'—H33' 120.0
C16'—C15'—C14' 120.40 (11) C36'—C35'—C34' 120.73 (11)
C16'—C15'—H15' 119.8 C36'—C35'—H35' 119.6
C14'—C15'—H15' 119.8 C34'—C35'—H35' 119.6
C15'—C16'—C11' 121.01 (11) C35'—C36'—C31' 120.72 (11)
C15'—C16'—H16' 119.5 C35'—C36'—H36' 119.6
C11'—C16'—H16' 119.5 C31'—C36'—H36' 119.6
C15'—C14'—C13' 118.81 (11) C33'—C34'—C35' 118.94 (11)
C15'—C14'—C17' 120.96 (11) C33'—C34'—C37' 121.18 (11)
C13'—C14'—C17' 120.22 (11) C35'—C34'—C37' 119.87 (10)
C18'—C17'—C14' 178.63 (13) C38'—C37'—C34' 178.12 (13)
C17'—C18'—H18' 180.0 C37'—C38'—H38' 180.0
C27—C28—H28 180.0 C47—C48—H48 180.0
C28—C27—C24 178.05 (14) C48—C47—C44 178.56 (15)
C25—C24—C23 118.29 (11) C43—C44—C45 118.61 (11)
C25—C24—C27 121.50 (11) C43—C44—C47 121.32 (12)
C23—C24—C27 120.21 (11) C45—C44—C47 120.08 (12)
C26—C25—C24 120.65 (11) C46—C45—C44 120.54 (12)
C26—C25—H25 119.7 C46—C45—H45 119.7
C24—C25—H25 119.7 C44—C45—H45 119.7
C25—C26—C21 121.40 (11) C45—C46—C41 121.01 (11)
C25—C26—H26 119.3 C45—C46—H46 119.5
C21—C26—H26 119.3 C41—C46—H46 119.5
C22—C23—C24 120.55 (11) C42—C43—C44 120.63 (12)
C22—C23—H23 119.7 C42—C43—H43 119.7
C24—C23—H23 119.7 C44—C43—H43 119.7
C23—C22—C21 121.67 (11) C43—C42—C41 120.86 (12)
C23—C22—H22 119.2 C43—C42—H42 119.6
C21—C22—H22 119.2 C41—C42—H42 119.6
C26—C21—C22 117.39 (11) C46—C41—C42 118.33 (11)
C26—C21—C21' 121.63 (11) C46—C41—C41' 120.66 (11)
C22—C21—C21' 120.98 (11) C42—C41—C41' 120.99 (11)
C22'—C21'—C26' 117.62 (11) C46'—C41'—C42' 118.25 (11)
C22'—C21'—C21 121.01 (11) C46'—C41'—C41 121.16 (10)
C26'—C21'—C21 121.37 (11) C42'—C41'—C41 120.58 (11)
C23'—C22'—C21' 121.39 (11) C43'—C42'—C41' 120.79 (11)
C23'—C22'—H22' 119.3 C43'—C42'—H42' 119.6
C21'—C22'—H22' 119.3 C41'—C42'—H42' 119.6
C22'—C23'—C24' 120.41 (12) C42'—C43'—C44' 120.62 (11)
C22'—C23'—H23' 119.8 C42'—C43'—H43' 119.7
C24'—C23'—H23' 119.8 C44'—C43'—H43' 119.7
C26'—C25'—C24' 120.59 (11) C46'—C45'—C44' 120.07 (11)
C26'—C25'—H25' 119.7 C46'—C45'—H45' 120.0
C24'—C25'—H25' 119.7 C44'—C45'—H45' 120.0
C25'—C26'—C21' 121.30 (11) C45'—C46'—C41' 121.30 (11)
C25'—C26'—H26' 119.4 C45'—C46'—H46' 119.3
C21'—C26'—H26' 119.4 C41'—C46'—H46' 119.3
C25'—C24'—C23' 118.66 (11) C43'—C44'—C45' 118.94 (11)
C25'—C24'—C27' 120.33 (12) C43'—C44'—C47' 119.87 (11)
C23'—C24'—C27' 121.01 (12) C45'—C44'—C47' 121.19 (11)
C28'—C27'—C24' 178.68 (15) C48'—C47'—C44' 177.80 (14)
C27'—C28'—H28' 180.0 C47'—C48'—H48' 180.0

Hydrogen-bond geometry (Å, º)

Cg1, Cg3, Cg4, Cg6 and Cg8 are the centroids of the C11–C16, C21–C26, C21'–C26', C31'–C36' and C41'–C46' rings, respectively.

D—H···A D—H H···A D···A D—H···A
C13—H13···Cg6i 0.95 2.73 3.4910 (13) 137
C15—H15···Cg6 0.95 2.70 3.4782 (13) 140
C16′—H16′···Cg1ii 0.95 2.92 3.5375 (12) 124
C23—H23···Cg8i 0.95 2.71 3.4809 (13) 139
C25—H25···Cg8 0.95 2.76 3.4976 (14) 136
C33′—H33′···Cg4iii 0.95 2.88 3.6153 (13) 135
C36—H36···Cg3iii 0.95 2.87 3.6112 (12) 135

Symmetry codes: (i) x, y, z−1; (ii) −x+1, −y+1, −z+1; (iii) x, y, z+1.

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Anderson, K. M. & Steed, J. W. (2007). CrystEngComm, 9, 328–330.
  4. Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Butler, P., Manning, A. R., McAdam, C. J. & Simpson, J. (2008). J. Organomet. Chem. 693, 381–392.
  6. Cuffe, L., Hudson, R. D. A., Gallagher, J., Jennings, S., McAdam, C. J., Connelly, R. B. T., Manning, A. R., Robinson, B. H. & Simpson, J. (2005). Organometallics, 24, 2051–2060.
  7. Desiraju, G. R. (2007). CrystEngComm, 9, 91–92.
  8. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp 169–175. New York: Oxford University Press Inc.
  9. Flood, A. H., McAdam, C. J., Gordon, K. C., Kjaergaard, H. G., Manning, A. R., Robinson, B. H. & Simpson, J. (2007). Polyhedron, 26, 448–455.
  10. Fukuzumi, S., Ohkubo, K. & Suenobu, T. (2014). Acc. Chem. Res. 47, 1455–1464. [DOI] [PubMed]
  11. Gao, L.-B., Kan, J., Fan, Y., Zhang, L.-Y., Liu, S.-H. & Chen, Z.-N. (2007). Inorg. Chem. 46, 5651–5664. [DOI] [PubMed]
  12. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  13. Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.
  14. Ibn Ghazala, S., Paul, F., Toupet, L., Roisnel, T., Hapiot, P. & Lapinte, C. (2006). J. Am. Chem. Soc. 128, 2463–2476. [DOI] [PubMed]
  15. Laliberté, D., Maris, T., Ryan, P. E. & Wuest, J. D. (2006). Cryst. Growth Des. 6, 1335–1340.
  16. Langley, P. J., Hulliger, J., Thaimattam, R. & Desiraju, G. R. (1998). New J. Chem. 22, 1307–1309.
  17. Liu, L., Liu, Z., Xu, W., Xu, H., Zhang, D. & Zhu, D. (2005). Tetrahedron, 61, 3813–3817.
  18. Liu, L., Poon, S.-Y. & Wong, W.-Y. (2005). J. Organomet. Chem. 690, 5036–5048.
  19. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  20. Mague, J. T., Foroozesh, M., Hopkins, N. E., Gan, L. L.-S. & Alworth, W. L. (1997). J. Chem. Crystallogr. 27, 183–189.
  21. McAdam, C. J., Morgan, J. L., Robinson, B. H., Simpson, J., Rieger, P. H. & Rieger, A. L. (2003). Organometallics, 22, 5126–5136.
  22. McAdam, C. J., Robinson, B. H., Simpson, J. & Tagg, T. (2010). Organometallics, 29, 2474–2483.
  23. McMullan, R. K., Kvick, Å. & Popelier, P. (1992). Acta Cryst. B48, 726–731.
  24. Muller, T., Seichter, W. & Weber, E. (2006). New J. Chem. 30, 751–758.
  25. Nichol, G. S. & Clegg, W. (2007). CrystEngComm, 9, 959–960.
  26. Nitsche, S. I., Weber, E., Seichter, W., Bathori, N., Beketov, K. M. & Roewer, G. (2003). Silicon Chem. 2, 55–71.
  27. O’Brien, Z. J., Karlen, S. D., Khan, S. & Garcia-Garibay, M. A. (2010). J. Org. Chem. 75, 2482–2491. [DOI] [PubMed]
  28. Rogozina, M. V., Ionkin, V. N. & Ivanov, A. I. (2013). J. Phys. Chem. A, 117, 4564–4573. [DOI] [PubMed]
  29. Saha, R., Qaium, M. A., Debnath, D., Younus, M., Chawdhury, N., Sultana, N., Kociok-Köhn, G., Ooi, L., Raithby, P. R. & Kijima, M. (2005). Dalton Trans. pp. 2760–2765. [DOI] [PubMed]
  30. Shanmugaraju, S., Joshi, S. A. & Mukherjee, P. S. (2011). Inorg. Chem. 50, 11736–11745. [DOI] [PubMed]
  31. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  32. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  33. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  34. Steed, K. M. & Steed, J. W. (2015). Chem. Rev. 115, 2895–2933. [DOI] [PubMed]
  35. Tagg, T., Kjaergaard, H. G., Lane, J. R., McAdam, C. J., Robinson, B. H. & Simpson, J. (2015). Organometallics, 34, 2662–2666.
  36. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  37. Zeng, X., Wang, C., Bryce, M. R., Batsanov, A. S., Sirichantaropass, S., García-Suárez, V. M., Lambert, C. J. & Sage, I. (2007). Eur. J. Org. Chem. pp. 5244–5249.
  38. Zeng, L.-Z., Wu, Y.-Y., Tian, G.-X. & Li, Z. (2013). Acta Cryst. E69, m607. [DOI] [PMC free article] [PubMed]
  39. Zhou, H., Maris, T. & Wuest, J. D. (2012). J. Phys. Chem. C, 116, 13052–13062.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015011494/hg5446sup1.cif

e-71-00816-sup1.cif (2.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015011494/hg5446Isup2.hkl

e-71-00816-Isup2.hkl (486.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015011494/hg5446Isup3.cml

CCDC reference: 1406589

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES