Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 3;71(Pt 7):737–740. doi: 10.1107/S2056989015010257

Crystal structure of the co-crystalline adduct 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (TATD)–4-chloro-3,5-di­methyl­phenol (1/1)

Augusto Rivera a,*, Jicli José Rojas a, Jaime Ríos-Motta a, Michael Bolte b
PMCID: PMC4518940  PMID: 26279855

In the crystal of the title co-crystalline adduct, the 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (TATD) and 4-chloro-3,5-di­methyl­phenol are linked by inter­molecular O—H⋯N hydrogen bonds and C—H⋯π inter­actions.

Keywords: crystal structure, co-crystalline adducts, TATD, hydrogen bonding, C—H⋯π inter­actions

Abstract

In the crystal of the title co-crystalline adduct, C8H16N4·C8H9ClO, (I), prepared by solid-state reaction, the mol­ecules are linked by inter­molecular O—H⋯N hydrogen bonds, forming a D motif. The aza­adamantane structure in (I) is slightly distorted, with N—CH2—CH2—N torsion angles of 10.4 (3) and −9.0 (3)°. These values differ slightly from the corresponding torsion angles in the free aminal cage (0.0°) and in related co-crystalline adducts, which are not far from a planar geometry and consistent with a D 2d mol­ecular symmetry in the tetra­aza­tri­cyclo structure. The structures also differ in that there is a slight elongation of the N—C bond lengths about the N atom that accepts the hydrogen bond in (I) compared with the other N—C bond lengths. In the crystal, the two mol­ecules are not only linked by a classical O—H⋯N hydrogen bond but are further connected by weak C—H⋯π inter­actions, forming a two-dimensional supra­molecular network parallel to the bc plane.

Chemical context  

In our continuing investigations on the reactivity of cyclic aminals of the adamantane type with phenols, we have found that 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (TATD) shows an inter­esting reactivity with 4-chloro-3,5-di­methyl­phenol under different conditions. Reaction between TATD with 4-chloro-3,5-di­methyl­phenol in solution yields symmetrical bis-benzoxazines (Rivera et al., 2005), but under heating in an oil bath (Rivera & Quevedo, 2013) or microwave-assisted solvent-free conditions, symmetrical N,N’-disubstituted imidazolidines (Rivera, Nerio & Bolte, 2015) are obtained. Therefore, we became inter­ested in exploring the reactivity of TATD with phenols under solvent-free conditions at room temperature. In the course of our investigations, we obtained the mol­ecular salt 8,10,12-tri­aza-1-azonia­tetra­cyclo[8.3.1.18,12.02,7]penta­decane 4-nitro­phenolate 4-nitro­phenol by grinding (2R,7R)-1,8,10,12-tetra­aza­tetra­cyclo­[8.3.1.18,12.02,7]penta­decane with 4-nitro­phenol (Rivera, Uribe, Ríos-Motta et al., 2015) and the 1:2 adduct 1,3,6,8-tetra­aza­tri­cyclo[4.4.1.13,8]dodecane (TATD)-4-bromo­phenol (Rivera, Uribe, Rojas et al., 2015) by grinding at room temperature.graphic file with name e-71-00737-scheme1.jpg

Herein, we describe the synthesis of the title co-crystalline adduct 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (TATD)–4-chloro-3,5-di­methyl­phenol under solvent-free conditions by simply grinding together the components at room temperature.

Structural commentary  

The crystal structure of the title compound, (I), has confirmed the presence of a 1:1 co-crystalline adduct. A view of this adduct is shown in Fig. 1. The asymmetric unit of the title compound contains a 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (TATD) and a 4-chloro-3,5-di­methyl­phenol mol­ecule linked via an O—H⋯N hydrogen bond, forming a D motif (Bernstein et al., 1995). As in the 1:2 adduct with 4-bromo­phenol (Rivera, Uribe, Rojas et al., 2015) and the 1:1 adduct with hydro­quinone (Rivera et al., 2007), the inter­molecular O—H⋯N hydrogen bond in (I) also leads to a stable supra­molecular structure, but comparison of the title compound with the above-mentioned related structures shows that the three adducts differ in the O⋯N hydrogen-bond distances [2.752 (2) Å in (I), 2.705 (5) Å in the 1:2 adduct and 2.767 (2) Å in the co-crystalline adduct with hydro­quinone], which is in agreement with the differences in the pKa values between the species involved in the hydrogen bond (Majerz et al., 1997): 4-chloro-3,5-di­methyl­phenol (pKa = 9.76); p-bromo­phenol (pKa = 9.37) and hydro­quinone (pKa = 9.85) (Lide, 2003).

Figure 1.

Figure 1

Perspective view of the title compound, with displacement ellipsoids drawn at the 50% probability level. The hydrogen bond is drawn as a dashed line.

To a first approximation, the geometric parameters of the title mol­ecule agree well with those reported for similar structures (Rivera et al., 2007; Rivera, Uribe, Rojas et al., 2015) and are within normal ranges (Allen et al., 1987), but compared to the free aminal cage structure (Rivera et al., 2014) which belongs to the D2d point group, two small differences are noted. The aza­adamantane structure in (I) is slightly distorted, with N—CH2—CH2—N torsion angles of 10.4 (3)° (N1—C1—C2—N2) and −9.0 (3)° (N3—C7—C8—N4). These values differ slightly from the values of the corresponding torsion angles in the free aminal cage (0.0°; Rivera et al., 2014), and the related co-crystalline adducts [2.4 (7)° (Rivera, Uribe, Rojas et al., 2015) and −0.62° (Rivera et al., 2007)] which shows that each N—C—C—N group is not far from a planar geometry and consistent with a D2d mol­ecular symmetry in the tetra­aza­tri­cyclo structure. Furthermore, the structures also differ in the slight elongation of the N1—C bond lengths of the nitro­gen atom that accepts the hydrogen bond, [1.470 (2) and 1.480 (2) Å], compared to the the other N—C bond lengths (Table 1).

Table 1. Selected geometric parameters (, ).

N1C1 1.470(2) N3C7 1.455(2)
N1C5 1.470(2) N3C4 1.458(2)
N1C3 1.480(2) N4C5 1.444(2)
N2C2 1.449(3) N4C6 1.456(2)
N2C6 1.454(3) N4C8 1.457(3)
N2C4 1.462(2) Cl1C14 1.7534(16)
N3C3 1.446(2) O11C11 1.356(2)
       
N1C1C2N2 10.4(3) N3C7C8N4 9.0(3)

Supra­molecular features  

The two different mol­ecules in (I) are connected by a classical O—H⋯N hydrogen bond. The crystal packing is further stabilized by weak inter­molecular C—H⋯π inter­actions, linking the mol­ecules into two-dimensional sheets in the bc plane (Table 2 and Fig. 2). Furthermore, there are short N⋯Cl contacts [N4⋯Cl1i 3.1680 (15) Å; symmetry operator: (i) x, −y, z − Inline graphic] linking the mol­ecules into zigzag chains running along the c-axis direction (Fig. 3).

Table 2. Hydrogen-bond geometry (, ).

Cg8 is the centroid of the C11C16 ring.

DHA DH HA D A DHA
O11H11N1 0.85(4) 1.92(4) 2.752(2) 165(3)
C3H3A Cg8i 0.99 2.89 3.837(2) 160
C8H8A Cg8ii 0.99 2.88 3.814(2) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

Packing diagram of the title compound. Only H atoms involved in hydrogen bonding are shown. Hydrogen bonds are drawn as dashed lines.

Figure 3.

Figure 3

Partial packing diagram of the title compound, viewed along the b axis. Only H atoms involved in hydrogen bonding are shown. Hydrogen bonds are drawn as dashed lines and the short Cl⋯N contacts are shown as dotted lines. Atoms with suffix A are generated by the symmetry operator (x, −y, z − Inline graphic) and atoms with suffix B are generated by the symmetry operator (x, −y, z + Inline graphic).

Database survey  

The geometric parameters of 4-chloro-3,5-di­methyl­phenol in (I) (Table 1) agree well with those of found in the crystal structure containing only this mol­ecule (Cox, 1995), which crystallized with two mol­ecules in the asymmetric unit [C—O = 1.387 (3) and 1.378 (3) Å; C—Cl = 1.752 (2) and 1.749 (2) Å; C—Cmeth­yl = 1.502 (3), 1.500 (3), 1.514 (3) and 1.505 (3) Å]. For 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane, two comparable structures were retrieved from the CSD (Groom & Allen, 2014). A least-squares fit of the structure that contains only 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (Rivera et al., 2014) gives an r.m.s. deviation of 0.048 Å with 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane of (I) and a least-squares fit of 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane co-crystallized with hydro­quinone (Rivera et al., 2007) gives an r.m.s. deviation of 0.051 Å with 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane of (I). Thus, it can be concluded that the conformational freedom of 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane is rather limited.

Synthesis and crystallization  

A mixture of 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.3,8]dodecane (TATD) (168 mg, 1 mmol) and 4-chloro-3,5-di­methyl­phenol (157 mg, 1 mmol) was ground using a mortar and pestle, at room temperature for 15 min., as required to complete the reaction (TLC). The mixture was then dissolved in methanol. Crystals suitable for X-ray diffraction were obtained from a methanol solution upon slow evaporation of the solvent at room temperature.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were located in difference electron-density maps. The hydroxyl H atom was refined freely, while C-bound H atoms were fixed geometrically (C—H = 0.95, 0.98 or 0.99 Å) and refined using a riding model, with U iso(H) values set at 1.2U eq (1.5 for methyl groups) of the parent atom. The methyl groups were allowed to rotate but not to tip.

Table 3. Experimental details.

Crystal data
Chemical formula C8H16N4C8H9ClO
M r 324.85
Crystal system, space group Monoclinic, C2/c
Temperature (K) 173
a, b, c () 25.6048(18), 7.5295(7), 18.2317(13)
() 111.080(5)
V (3) 3279.7(5)
Z 8
Radiation type Mo K
(mm1) 0.24
Crystal size (mm) 0.27 0.26 0.22
 
Data collection
Diffractometer Stoe IPDS II two-circle
Absorption correction Multi-scan (X-RED32; Stoe Cie, 2001)
T min, T max 0.738, 1.000
No. of measured, independent and observed [I > 2(I)] reflections 14414, 3066, 2512
R int 0.083
(sin /)max (1) 0.608
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.040, 0.107, 1.02
No. of reflections 3066
No. of parameters 205
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.26, 0.25

Computer programs: X-AREA (Stoe Cie, 2001), SHELXS97 and XP in SHELXTL-Plus (Sheldrick, 2008) and SHELXL2014 (Sheldrick, 2015).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015010257/zs2335sup1.cif

e-71-00737-sup1.cif (509.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010257/zs2335Isup2.hkl

e-71-00737-Isup2.hkl (168.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015010257/zs2335Isup3.cml

CCDC reference: 1403518

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the financial support provided to us by the Dirección de Investigación, Sede Bogotá (DIB) at the Universidad Nacional de Colombia. JJR thanks COLCIENCIAS for a fellowship.

supplementary crystallographic information

Crystal data

C8H16N4·C8H9ClO F(000) = 1392
Mr = 324.85 Dx = 1.316 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 25.6048 (18) Å Cell parameters from 12525 reflections
b = 7.5295 (7) Å θ = 3.4–25.8°
c = 18.2317 (13) Å µ = 0.24 mm1
β = 111.080 (5)° T = 173 K
V = 3279.7 (5) Å3 Block, colourless
Z = 8 0.27 × 0.26 × 0.22 mm

Data collection

Stoe IPDS II two-circle diffractometer 2512 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray source Rint = 0.083
ω scans θmax = 25.6°, θmin = 3.4°
Absorption correction: multi-scan (X-RED32; Stoe & Cie, 2001) h = −30→30
Tmin = 0.738, Tmax = 1.000 k = −9→9
14414 measured reflections l = −19→22
3066 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0635P)2 + 0.5777P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
3066 reflections Δρmax = 0.26 e Å3
205 parameters Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.37029 (5) 0.56339 (18) 0.36779 (8) 0.0224 (3)
N2 0.30414 (6) 0.8359 (2) 0.26828 (9) 0.0297 (3)
N3 0.40890 (6) 0.84503 (19) 0.33226 (9) 0.0260 (3)
N4 0.35050 (6) 0.58696 (19) 0.22295 (9) 0.0299 (3)
C1 0.31697 (7) 0.6087 (2) 0.37648 (11) 0.0313 (4)
H1A 0.3246 0.6345 0.4326 0.038*
H1B 0.2924 0.5030 0.3623 0.038*
C2 0.28501 (8) 0.7651 (3) 0.32812 (14) 0.0438 (5)
H2A 0.2455 0.7287 0.3022 0.053*
H2B 0.2857 0.8627 0.3649 0.053*
C3 0.41163 (7) 0.7098 (2) 0.38985 (10) 0.0267 (4)
H3A 0.4084 0.7700 0.4363 0.032*
H3B 0.4494 0.6559 0.4068 0.032*
C4 0.35575 (8) 0.9394 (2) 0.29998 (12) 0.0333 (4)
H4A 0.3578 1.0180 0.2575 0.040*
H4B 0.3524 1.0170 0.3419 0.040*
C5 0.36300 (7) 0.4777 (2) 0.29227 (11) 0.0285 (4)
H5A 0.3977 0.4111 0.2989 0.034*
H5B 0.3325 0.3894 0.2818 0.034*
C6 0.30356 (8) 0.7083 (3) 0.20810 (12) 0.0376 (5)
H6A 0.2997 0.7761 0.1599 0.045*
H6B 0.2693 0.6355 0.1961 0.045*
C7 0.43347 (9) 0.7933 (3) 0.27484 (12) 0.0386 (5)
H7A 0.4705 0.7391 0.3032 0.046*
H7B 0.4399 0.9020 0.2487 0.046*
C8 0.39926 (10) 0.6640 (3) 0.21162 (13) 0.0430 (5)
H8A 0.3865 0.7265 0.1604 0.052*
H8B 0.4241 0.5661 0.2084 0.052*
Cl1 0.35337 (2) −0.26689 (6) 0.61168 (3) 0.03412 (16)
O11 0.43692 (5) 0.32897 (19) 0.47753 (9) 0.0390 (4)
H11 0.4116 (15) 0.396 (5) 0.447 (2) 0.084 (10)*
C11 0.41519 (7) 0.1923 (2) 0.50578 (10) 0.0257 (4)
C12 0.45255 (7) 0.0659 (2) 0.55103 (10) 0.0261 (4)
H12 0.4913 0.0774 0.5597 0.031*
C13 0.43430 (7) −0.0768 (2) 0.58371 (10) 0.0250 (4)
C14 0.37708 (7) −0.0899 (2) 0.56943 (10) 0.0237 (3)
C15 0.33830 (7) 0.0318 (2) 0.52312 (10) 0.0229 (3)
C16 0.35825 (7) 0.1742 (2) 0.49162 (10) 0.0245 (4)
H16 0.3327 0.2597 0.4601 0.029*
C17 0.27635 (7) 0.0110 (2) 0.50600 (12) 0.0311 (4)
H17A 0.2638 −0.1047 0.4813 0.047*
H17B 0.2559 0.1057 0.4704 0.047*
H17C 0.2692 0.0185 0.5552 0.047*
C18 0.47576 (8) −0.2148 (3) 0.63056 (13) 0.0388 (5)
H18A 0.4719 −0.2311 0.6817 0.058*
H18B 0.5139 −0.1753 0.6384 0.058*
H18C 0.4684 −0.3277 0.6019 0.058*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0202 (6) 0.0238 (7) 0.0228 (7) −0.0040 (5) 0.0074 (5) 0.0018 (5)
N2 0.0289 (7) 0.0269 (7) 0.0311 (8) 0.0034 (6) 0.0080 (6) 0.0026 (6)
N3 0.0285 (7) 0.0250 (7) 0.0264 (8) −0.0061 (6) 0.0122 (6) −0.0009 (6)
N4 0.0394 (8) 0.0270 (7) 0.0227 (8) −0.0012 (6) 0.0104 (6) −0.0047 (6)
C1 0.0261 (8) 0.0386 (10) 0.0328 (10) −0.0012 (7) 0.0152 (8) 0.0041 (8)
C2 0.0350 (10) 0.0483 (11) 0.0558 (14) 0.0129 (9) 0.0259 (10) 0.0134 (10)
C3 0.0243 (8) 0.0289 (8) 0.0233 (9) −0.0075 (6) 0.0042 (7) 0.0006 (7)
C4 0.0402 (10) 0.0206 (8) 0.0367 (11) 0.0003 (7) 0.0108 (8) 0.0009 (7)
C5 0.0331 (9) 0.0206 (8) 0.0309 (10) −0.0020 (6) 0.0106 (7) −0.0034 (7)
C6 0.0410 (10) 0.0353 (10) 0.0247 (10) 0.0032 (8) −0.0024 (8) −0.0014 (8)
C7 0.0408 (10) 0.0466 (11) 0.0376 (11) −0.0112 (8) 0.0252 (9) −0.0016 (9)
C8 0.0609 (13) 0.0429 (11) 0.0379 (12) −0.0081 (10) 0.0333 (11) −0.0079 (9)
Cl1 0.0372 (2) 0.0318 (2) 0.0342 (3) −0.00899 (18) 0.01382 (19) 0.00941 (18)
O11 0.0250 (6) 0.0406 (8) 0.0481 (9) −0.0075 (6) 0.0090 (6) 0.0216 (7)
C11 0.0256 (8) 0.0271 (8) 0.0240 (9) −0.0081 (7) 0.0084 (7) 0.0023 (7)
C12 0.0194 (7) 0.0308 (9) 0.0256 (9) −0.0054 (6) 0.0049 (6) 0.0012 (7)
C13 0.0267 (8) 0.0260 (8) 0.0197 (8) −0.0027 (6) 0.0051 (7) 0.0003 (6)
C14 0.0298 (8) 0.0231 (8) 0.0189 (8) −0.0077 (6) 0.0096 (7) −0.0009 (6)
C15 0.0251 (8) 0.0253 (8) 0.0201 (8) −0.0051 (6) 0.0102 (6) −0.0028 (6)
C16 0.0240 (8) 0.0256 (8) 0.0220 (8) −0.0011 (6) 0.0062 (7) 0.0033 (7)
C17 0.0255 (9) 0.0332 (9) 0.0373 (11) −0.0038 (7) 0.0145 (7) 0.0008 (8)
C18 0.0325 (9) 0.0385 (10) 0.0387 (11) 0.0028 (8) 0.0047 (8) 0.0122 (9)

Geometric parameters (Å, º)

N1—C1 1.470 (2) C7—C8 1.522 (3)
N1—C5 1.470 (2) C7—H7A 0.9900
N1—C3 1.480 (2) C7—H7B 0.9900
N2—C2 1.449 (3) C8—H8A 0.9900
N2—C6 1.454 (3) C8—H8B 0.9900
N2—C4 1.462 (2) Cl1—C14 1.7534 (16)
N3—C3 1.446 (2) O11—C11 1.356 (2)
N3—C7 1.455 (2) O11—H11 0.85 (4)
N3—C4 1.458 (2) C11—C12 1.391 (2)
N4—C5 1.444 (2) C11—C16 1.393 (2)
N4—C6 1.456 (2) C12—C13 1.388 (2)
N4—C8 1.457 (3) C12—H12 0.9500
C1—C2 1.521 (3) C13—C14 1.396 (2)
C1—H1A 0.9900 C13—C18 1.512 (2)
C1—H1B 0.9900 C14—C15 1.391 (2)
C2—H2A 0.9900 C15—C16 1.397 (2)
C2—H2B 0.9900 C15—C17 1.511 (2)
C3—H3A 0.9900 C16—H16 0.9500
C3—H3B 0.9900 C17—H17A 0.9800
C4—H4A 0.9900 C17—H17B 0.9800
C4—H4B 0.9900 C17—H17C 0.9800
C5—H5A 0.9900 C18—H18A 0.9800
C5—H5B 0.9900 C18—H18B 0.9800
C6—H6A 0.9900 C18—H18C 0.9800
C6—H6B 0.9900
C1—N1—C5 113.12 (13) N4—C6—H6B 107.5
C1—N1—C3 113.50 (13) H6A—C6—H6B 107.0
C5—N1—C3 114.75 (13) N3—C7—C8 115.84 (15)
C2—N2—C6 114.25 (16) N3—C7—H7A 108.3
C2—N2—C4 113.62 (17) C8—C7—H7A 108.3
C6—N2—C4 114.37 (16) N3—C7—H7B 108.3
C3—N3—C7 114.43 (15) C8—C7—H7B 108.3
C3—N3—C4 115.49 (14) H7A—C7—H7B 107.4
C7—N3—C4 114.98 (16) N4—C8—C7 115.87 (15)
C5—N4—C6 115.37 (15) N4—C8—H8A 108.3
C5—N4—C8 114.79 (15) C7—C8—H8A 108.3
C6—N4—C8 114.58 (16) N4—C8—H8B 108.3
N1—C1—C2 116.37 (15) C7—C8—H8B 108.3
N1—C1—H1A 108.2 H8A—C8—H8B 107.4
C2—C1—H1A 108.2 C11—O11—H11 112 (2)
N1—C1—H1B 108.2 O11—C11—C12 117.13 (15)
C2—C1—H1B 108.2 O11—C11—C16 123.30 (16)
H1A—C1—H1B 107.3 C12—C11—C16 119.58 (15)
N2—C2—C1 117.66 (15) C13—C12—C11 121.22 (15)
N2—C2—H2A 107.9 C13—C12—H12 119.4
C1—C2—H2A 107.9 C11—C12—H12 119.4
N2—C2—H2B 107.9 C12—C13—C14 117.86 (15)
C1—C2—H2B 107.9 C12—C13—C18 119.89 (15)
H2A—C2—H2B 107.2 C14—C13—C18 122.22 (15)
N3—C3—N1 118.95 (14) C15—C14—C13 122.59 (15)
N3—C3—H3A 107.6 C15—C14—Cl1 118.87 (12)
N1—C3—H3A 107.6 C13—C14—Cl1 118.54 (13)
N3—C3—H3B 107.6 C14—C15—C16 117.92 (14)
N1—C3—H3B 107.6 C14—C15—C17 121.63 (15)
H3A—C3—H3B 107.0 C16—C15—C17 120.45 (15)
N3—C4—N2 118.66 (14) C11—C16—C15 120.81 (15)
N3—C4—H4A 107.6 C11—C16—H16 119.6
N2—C4—H4A 107.6 C15—C16—H16 119.6
N3—C4—H4B 107.6 C15—C17—H17A 109.5
N2—C4—H4B 107.6 C15—C17—H17B 109.5
H4A—C4—H4B 107.1 H17A—C17—H17B 109.5
N4—C5—N1 118.91 (13) C15—C17—H17C 109.5
N4—C5—H5A 107.6 H17A—C17—H17C 109.5
N1—C5—H5A 107.6 H17B—C17—H17C 109.5
N4—C5—H5B 107.6 C13—C18—H18A 109.5
N1—C5—H5B 107.6 C13—C18—H18B 109.5
H5A—C5—H5B 107.0 H18A—C18—H18B 109.5
N2—C6—N4 119.39 (15) C13—C18—H18C 109.5
N2—C6—H6A 107.5 H18A—C18—H18C 109.5
N4—C6—H6A 107.5 H18B—C18—H18C 109.5
N2—C6—H6B 107.5
C5—N1—C1—C2 −73.2 (2) C3—N3—C7—C8 74.7 (2)
C3—N1—C1—C2 59.8 (2) C4—N3—C7—C8 −62.5 (2)
C6—N2—C2—C1 59.7 (2) C5—N4—C8—C7 −63.3 (2)
C4—N2—C2—C1 −74.0 (2) C6—N4—C8—C7 73.6 (2)
N1—C1—C2—N2 10.4 (3) N3—C7—C8—N4 −9.0 (3)
C7—N3—C3—N1 −79.67 (19) O11—C11—C12—C13 178.74 (17)
C4—N3—C3—N1 57.2 (2) C16—C11—C12—C13 −1.2 (3)
C1—N1—C3—N3 −84.10 (19) C11—C12—C13—C14 0.3 (3)
C5—N1—C3—N3 48.1 (2) C11—C12—C13—C18 178.17 (17)
C3—N3—C4—N2 −51.5 (2) C12—C13—C14—C15 1.1 (3)
C7—N3—C4—N2 85.2 (2) C18—C13—C14—C15 −176.72 (17)
C2—N2—C4—N3 78.8 (2) C12—C13—C14—Cl1 −178.85 (13)
C6—N2—C4—N3 −54.8 (2) C18—C13—C14—Cl1 3.3 (2)
C6—N4—C5—N1 −51.7 (2) C13—C14—C15—C16 −1.5 (2)
C8—N4—C5—N1 84.85 (19) Cl1—C14—C15—C16 178.46 (13)
C1—N1—C5—N4 79.28 (19) C13—C14—C15—C17 177.67 (16)
C3—N1—C5—N4 −53.1 (2) Cl1—C14—C15—C17 −2.4 (2)
C2—N2—C6—N4 −83.3 (2) O11—C11—C16—C15 −179.15 (17)
C4—N2—C6—N4 50.0 (2) C12—C11—C16—C15 0.8 (3)
C5—N4—C6—N2 56.6 (2) C14—C15—C16—C11 0.5 (3)
C8—N4—C6—N2 −80.1 (2) C17—C15—C16—C11 −178.67 (17)

Hydrogen-bond geometry (Å, º)

Cg8 is the centroid of the C11–C16 ring.

D—H···A D—H H···A D···A D—H···A
O11—H11···N1 0.85 (4) 1.92 (4) 2.752 (2) 165 (3)
C3—H3A···Cg8i 0.99 2.89 3.837 (2) 160
C8—H8A···Cg8ii 0.99 2.88 3.814 (2) 157

Symmetry codes: (i) x, y+1, z; (ii) x, −y+1, z−1/2.

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Cox, P. J. (1995). Acta Cryst. C51, 1361–1364.
  4. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  5. Lide, D. R. (2003). CRC Handbook of Chemistry and Physics. Boca Raton, Florida: CRC Press.
  6. Majerz, I., Malarski, Z. & Sobczyk, L. (1997). Chem. Phys. Lett. 274, 361–364.
  7. Rivera, A., Nerio, L. S. & Bolte, M. (2015). Acta Cryst. E71, 312–314. [DOI] [PMC free article] [PubMed]
  8. Rivera, A. & Quevedo, R. (2013). Tetrahedron Lett. 54, 1416–1420.
  9. Rivera, A., Ríos-Motta, J. & Bolte, M. (2014). Acta Cryst. E70, o266. [DOI] [PMC free article] [PubMed]
  10. Rivera, A., Ríos-Motta, J., Hernández-Barragán, A. & Joseph-Nathan, P. (2007). J. Mol. Struct. 831, 180–186.
  11. Rivera, A., Ríos-Motta, J., Quevedo, R. & Joseph-Nathan, P. (2005). Rev. Colomb. Quim 34, 105-115.
  12. Rivera, A., Uribe, J. M., Ríos-Motta, J., Osorio, H. J. & Bolte, M. (2015). Acta Cryst. C71, 284–288. [DOI] [PubMed]
  13. Rivera, A., Uribe, J. M., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015). Acta Cryst. E71, 463–465. [DOI] [PMC free article] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  16. Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015010257/zs2335sup1.cif

e-71-00737-sup1.cif (509.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010257/zs2335Isup2.hkl

e-71-00737-Isup2.hkl (168.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015010257/zs2335Isup3.cml

CCDC reference: 1403518

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES