Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 30;71(Pt 7):870–874. doi: 10.1107/S2056989015012086

The crystal structure of 4′-{4-[(2,2,5,5-tetra­methyl-N-oxyl-3-pyrrolin-3-yl)ethyn­yl]phen­yl}-2,2′:6′,2′′-terpyridine

Andreas Meyer a, Jennifer Wiecek a, Gregor Schnakenburg b, Olav Schiemann a,*
PMCID: PMC4518943  PMID: 26279889

The crystal structure of a nitroxide-substituted terpyridine mol­ecule is presented and discussed.

Keywords: crystal structure, terpyridine, nitrox­ide, nitrox­yl, C—H⋯π interactions, π–π interactions, C—H⋯O hydrogen bonding

Abstract

The terpyridine group of the title compound, C31H27N4O, assumes an all-transoid conformation and is essentially planar with the dihedral angles between the mean planes of the central pyridine and the two outer rings amounting to 3.87 (5) and 1.98 (5)°. The pyrroline-N-oxyl group commonly seen in such nitroxyls is found in the title structure and the mean plane of the pyrroline ring subtends a dihedral angle of 88.44 (7)° to the mean plane of the central pyridine ring. The intra­molecular separation between the nitrogen atom of the central pyridine unit of the terpyridine group and the nitroxyl group is 14.120 (2) Å. In the crystal, the mol­ecules are arranged in layers stacked along [001]. Slipped face-to-face π–π inter­actions between the pyridine rings are observed along this direction with the shortest centroid–centroid distances amounting to 3.700 (1) and 3.781 (1) Å. Furthermore, edge-on C—H⋯π inter­actions between the phenyl­ene rings of neighbouring mol­ecules are observed along this direction. A two-dimensional C—H⋯O hydrogen-bonded network is formed within the (010) plane. The shortest O⋯O separation between neighbouring mol­ecules is 5.412 (3) Å.

Chemical context  

The title compound, (1), was synthesized as a ligand for 3d metal ions as part of a pulsed EPR study on metal–nitroxyl model systems. The mol­ecule contains a paramagnetic nitroxyl group and a terpyridine group. Nitroxyls have been the subject of magnetic studies in which exchange inter­actions have been detected (see, for example, Rajca et al., 2006; Fritscher et al., 2002). Furthermore, nitroxyls are used as spin labels for structural investigations of biological macromolecules (Reginsson & Schiemann, 2011). The structures of terpyridines have been investigated by Fallahpour et al. (1999), Eryazici et al. (2006), Bessel et al. (1992) and Grave et al. (2003) to name a few examples. The terpyridine moiety is known to form complexes with various metals. Numerous studies on metal complexes of terpyridine have been conducted, examples include those by Hogg & Wilkins (1962), Constable et al. (1999), Narr et al. (2002) and Folgado et al. (1990).graphic file with name e-71-00870-scheme1.jpg

Structural commentary  

The structure of the title compound (1) is shown in Fig. 1. The terpyridine group of (1) assumes an all-transoid conformation and is essentially planar with angles between the mean planes of the central pyridine (N1, C1–C5, r.m.s deviation from the mean plane = 0.006 Å) and the two outer rings amounting to 3.87 (5)° (N4, C27–C31, r.m.s. deviation from the mean plane = 0.003 Å) and 1.98 (5)° (N2, C6–C10, r.m.s deviation from the mean plane = 0.006 Å), respectively. The pyrroline-N-oxyl unit commonly found for such nitroxyls is seen in the structure and its mean plane (N3, C19–C22, r.m.s deviation from the mean plane = 0.006 Å) subtends a dihedral angle of 88.44 (7)° to the mean plane of the central pyridine ring (for similar structural motifs, see Margraf et al., 2009 and Schuetz et al., 2010). The subunits are linked by a 4-ethinylene­phenyl­ene group. The mean plane of the phenyl­ene group (C11–C16, r.m.s deviation from the mean plane < 0.001 Å) is tilted with respect to both the central pyridine ring [dihedral angle of 51.36 (5)°] and the pyrroline-N-oxyl [dihedral angle of 37.62 (7)°]. The angles C18—C17—C14 [177.35 (19)°] and C17—C18—C19 [175.64 (18)°] are slightly lower than the 180° expected for a strictly linear shape of the mol­ecular backbone. Two short intra­molecular hydrogen–nitro­gen distances are observed between the two meta-protons of the central pyridine subunit and the nitro­gen atoms of the external pyridine rings (Table 1). Murguly et al. (1999) propose weak intra­molecular hydrogen bonds for these atoms. The intra­molecular separation between the terpyridine group and the nitroxyl amounts to 14.120 (2) Å (measured between O1 and N1).

Figure 1.

Figure 1

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.

Table 1. Hydrogen-bond geometry (, ).

Cg is the centroid of the C11C16 ring.

DHA DH HA D A DHA
C2H2N2 0.95 2.50 2.815(2) 99
C4H4N4 0.95 2.46 2.778(2) 100
C8H8O1i 0.95 2.59 3.529(2) 170
C16H16Cg ii 0.95 2.81 3.669(2) 151
C22H22O1iii 0.95 2.55 3.485(2) 170

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Supra­molecular features  

The packing within the crystal structure is shown in Figs. 2–4 . The mol­ecules are stacked in layers along [001] (Fig. 2.) The oxygen atom of the nitroxyl group forms weak hydrogen bonds to the protons of the para-C—H group and the pyrroline C—H group of neighbouring mol­ecules (Table 1). These hydrogen bonds span a two-dimensional network within the (010) plane (Figs. 3 and 4). π–π inter­actions are observed along [001] between the terpyridine subunits of neighbouring mol­ecules (Figs. 3 and 5). These terpyridine subunits are arranged in a slipped face-to-face alignment (Janiak, 2000) with the shortest inter­molecular distances between the pyridine rings amounting to 3.700 (1) Å (measured from the centroid of N2, C6–C10 to the centroid of N4, C27–C31) and 3.781 (1) Å (centroid of N1, C1–C5 to the centroid of N4, C27–C31, see Fig. 5). Furthermore, the phenyl­ene rings of neighbouring mol­ecules show an edge-on C—H⋯π inter­action along the same axis (Table 1 and Fig. 5). The nitroxyl groups are arranged in an alternating manner pointing in opposite directions. The shortest oxygen–oxygen separation between neighbouring mol­ecules amounts to 5.412 (3) Å. The oxygen–oxygen distance is an important factor determining the strength of through space exchange inter­actions of nitroxyls (Rajca et al. 2006).

Figure 2.

Figure 2

Crystal packing of the title compound viewed along the b axis. Weak C—H⋯O hydrogen bonds are shown as dashed lines

Figure 3.

Figure 3

Crystal packing of the title compound viewed along the c axis.

Figure 4.

Figure 4

Crystal packing of the title compound viewed along the a axis.

Figure 5.

Figure 5

Closest distances between pyridine rings and edge-on C—H⋯π contact.

Database survey  

The Cambridge Structural Database (CSD, Version 5.36; Groom & Allen, 2014) has been queried to find other terpyridine or 2,2,5,5-tetra­methyl-N-oxyl-3-pyrroline derivatives. The terpyridine query revealed 3473 entries in the CSD if metal complexes of terpyridine were included. For purely organic terpyridine compounds, the number of hits was reduced to 348. Only 33 results for 2,2,5,5-tetra­methyl-N-oxyl-3-pyrroline derivatives were found in the CSD. A combined query for structures which include both terpyridine and 2,2,5,5-tetra­methyl-N-oxyl-3-pyrroline derivatives did not result in any hit. However, the authors are aware of at least one published crystal structure of a compound which contains both structural motifs (Ackermann et al., 2015).

Synthesis and crystallization  

The title compound (1) is formed from 3-ethinyl-2,2,5,5-tetra­methyl-3-pyrroline-N-oxyl and 4′-(4-bromo­phen­yl)-2,2′:6′,2′′-terpyridine using a Sonogashira–Hagihara cross-coupling reaction, as shown in Fig. 6. 222 mg (0.57 mmol) of 4′-(4-bromo­phen­yl)-2,2′:6′,2′′-terpyridine, 100 mg (0.61 mmol) of 3-ethinyl-2,2,5,5-tetra­methyl-3-pyrroline-N-oxyl, 20 mg (0.076 mmol) of PPh3 and 40 mg (0.035 mmol) of Pd(PPh3)4 were dissolved in 17 ml of i-Pr2NH and stirred at 313 K, yielding a yellow solution which turned orange over the course of 5 min. Additionally, an orange precipitate was formed simultaneously. After 5.5 h, 2 ml of di­methyl­formamide were added to the orange suspension. The stirring at 313 K was continued for 16 h, after which time the solvents were removed under reduced pressure. The orange residues were suspended in a mixture of di­chloro­methane and cyclo­hexane (1:2) and subsequently subjected to column chromatography using aluminum oxide as stationary phase. A mixture of di­chloro­methane and cyclo­hexane was used as eluent. The volumetric ratio of both solvents was changed stepwise during the purification (from 1:8 to 8:1). The desired product was obtained in a yellow fraction and could be isolated by removing the eluents under reduced pressure (yield 80%). The crystallization of (1) was achieved by slow evaporation of a solution of (1) in a 1:1 mixture of aceto­nitrile and di­chloro­methane. 4′-(4-Bromo­phen­yl)-2,2′:6′,2′′-terpyridine was purchased from TCI Europe. 3-Ethinyl-2,2,5,5-tetra­methyl-3-pyrroline-N-oxyl was synthesized as described by Schiemann et al. (2007).

Figure 6.

Figure 6

Scheme illustrating the synthesis of (1).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with 0.98 Å with U iso(H) = 1.5U eq(C) for methyl H atoms and C—H = 0.95 Å and U iso(H) = 1.2U eq(C) for all other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C31H27N4O
M r 471.56
Crystal system, space group Monoclinic, P21/c
Temperature (K) 123
a, b, c () 18.5666(8), 20.2009(9), 6.7749(2)
() 92.743(3)
V (3) 2538.10(17)
Z 4
Radiation type Mo K
(mm1) 0.08
Crystal size (mm) 0.34 0.12 0.08
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (Blessing, 1995)
T min, T max 0.883, 1.078
No. of measured, independent and observed [I > 2(I)] reflections 35758, 6691, 3221
R int 0.118
(sin /)max (1) 0.685
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.049, 0.122, 0.89
No. of reflections 6691
No. of parameters 329
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.19, 0.23

Computer programs: DENZO and SCALEPACK (Otwinowski Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015012086/lh5769sup1.cif

e-71-00870-sup1.cif (637.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015012086/lh5769Isup2.hkl

e-71-00870-Isup2.hkl (366.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015012086/lh5769Isup3.cdx

CCDC reference: 1408457

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professor Dr A. C. Filippou for providing X-ray infrastructure. OS thanks the DFG for funding via SFB 813.

supplementary crystallographic information

Crystal data

C31H27N4O F(000) = 996
Mr = 471.56 Dx = 1.234 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 18.5666 (8) Å Cell parameters from 9616 reflections
b = 20.2009 (9) Å θ = 1.0–29.1°
c = 6.7749 (2) Å µ = 0.08 mm1
β = 92.743 (3)° T = 123 K
V = 2538.10 (17) Å3 Needle, clear yellow
Z = 4 0.34 × 0.12 × 0.08 mm

Data collection

Nonius KappaCCD diffractometer 6691 independent reflections
Radiation source: sealed tube 3221 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.118
Detector resolution: 8 pixels mm-1 θmax = 29.2°, θmin = 3.0°
fine slicing ω and φ scans h = −25→24
Absorption correction: multi-scan (Blessing, 1995) k = −24→27
Tmin = 0.883, Tmax = 1.078 l = −9→6
35758 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.052P)2] where P = (Fo2 + 2Fc2)/3
S = 0.89 (Δ/σ)max < 0.001
6691 reflections Δρmax = 0.19 e Å3
329 parameters Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.58556 (7) 0.39166 (8) 0.02921 (17) 0.0449 (4)
N1 −0.08706 (7) 0.29387 (7) 0.87301 (18) 0.0235 (3)
N2 −0.09424 (7) 0.47223 (8) 0.87295 (19) 0.0264 (4)
N3 0.55647 (8) 0.38695 (8) 0.1947 (2) 0.0332 (4)
N4 −0.01906 (7) 0.12743 (7) 0.83306 (19) 0.0262 (3)
C1 −0.06315 (9) 0.35653 (9) 0.8599 (2) 0.0221 (4)
C2 0.00840 (9) 0.37160 (9) 0.8258 (2) 0.0228 (4)
H2 0.0234 0.4164 0.8158 0.027*
C3 0.05751 (9) 0.32063 (9) 0.8067 (2) 0.0224 (4)
C4 0.03323 (9) 0.25616 (9) 0.8239 (2) 0.0236 (4)
H4 0.0658 0.2202 0.8149 0.028*
C5 −0.03946 (9) 0.24445 (9) 0.8545 (2) 0.0223 (4)
C6 −0.11788 (9) 0.40962 (9) 0.8820 (2) 0.0244 (4)
C7 −0.19006 (9) 0.39411 (9) 0.9094 (2) 0.0280 (4)
H7 −0.2054 0.3493 0.9130 0.034*
C8 −0.23880 (10) 0.44516 (10) 0.9310 (2) 0.0316 (5)
H8 −0.2882 0.4359 0.9494 0.038*
C9 −0.21466 (10) 0.50989 (10) 0.9254 (2) 0.0319 (5)
H9 −0.2467 0.5459 0.9426 0.038*
C10 −0.14220 (10) 0.52080 (9) 0.8941 (2) 0.0292 (4)
H10 −0.1258 0.5653 0.8872 0.035*
C11 0.13389 (9) 0.33241 (9) 0.7586 (2) 0.0228 (4)
C12 0.14938 (9) 0.37194 (9) 0.5973 (2) 0.0260 (4)
H12 0.1113 0.3937 0.5245 0.031*
C13 0.21936 (9) 0.37982 (9) 0.5426 (2) 0.0273 (4)
H13 0.2290 0.4069 0.4323 0.033*
C14 0.27657 (9) 0.34827 (9) 0.6476 (2) 0.0244 (4)
C15 0.26114 (9) 0.30872 (9) 0.8088 (2) 0.0273 (4)
H15 0.2992 0.2870 0.8818 0.033*
C16 0.19076 (9) 0.30096 (9) 0.8632 (2) 0.0273 (4)
H16 0.1810 0.2738 0.9733 0.033*
C17 0.34837 (10) 0.35565 (9) 0.5825 (2) 0.0275 (4)
C18 0.40740 (9) 0.36297 (9) 0.5209 (2) 0.0294 (4)
C19 0.47510 (9) 0.37261 (9) 0.4332 (2) 0.0267 (4)
C20 0.47826 (9) 0.37532 (10) 0.2098 (2) 0.0294 (4)
C21 0.59915 (9) 0.38953 (10) 0.3860 (2) 0.0305 (4)
C22 0.53960 (9) 0.38011 (10) 0.5256 (3) 0.0308 (4)
H22 0.5471 0.3796 0.6653 0.037*
C23 0.45763 (11) 0.30952 (11) 0.1131 (3) 0.0445 (6)
H23A 0.4643 0.3122 −0.0293 0.067*
H23B 0.4070 0.2997 0.1357 0.067*
H23C 0.4883 0.2743 0.1706 0.067*
C24 0.43549 (11) 0.43246 (11) 0.1165 (3) 0.0444 (6)
H24A 0.4511 0.4741 0.1791 0.067*
H24B 0.3840 0.4257 0.1354 0.067*
H24C 0.4438 0.4344 −0.0252 0.067*
C25 0.63565 (10) 0.45658 (10) 0.4093 (3) 0.0374 (5)
H25A 0.6686 0.4631 0.3023 0.056*
H25B 0.6628 0.4584 0.5368 0.056*
H25C 0.5990 0.4915 0.4039 0.056*
C26 0.65362 (10) 0.33278 (11) 0.3968 (3) 0.0421 (5)
H26A 0.6280 0.2904 0.3849 0.063*
H26B 0.6812 0.3344 0.5236 0.063*
H26C 0.6866 0.3371 0.2887 0.063*
C27 −0.06712 (9) 0.17596 (9) 0.8639 (2) 0.0230 (4)
C28 −0.13860 (9) 0.16253 (9) 0.9022 (2) 0.0268 (4)
H28 −0.1714 0.1976 0.9238 0.032*
C29 −0.16099 (10) 0.09759 (9) 0.9083 (2) 0.0295 (4)
H29 −0.2095 0.0873 0.9348 0.035*
C30 −0.11244 (10) 0.04767 (9) 0.8756 (2) 0.0295 (4)
H30 −0.1268 0.0025 0.8789 0.035*
C31 −0.04244 (10) 0.06489 (9) 0.8381 (2) 0.0290 (4)
H31 −0.0091 0.0304 0.8145 0.035*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0353 (8) 0.0713 (12) 0.0294 (7) −0.0087 (7) 0.0138 (6) −0.0024 (7)
N1 0.0240 (8) 0.0271 (9) 0.0196 (7) 0.0008 (7) 0.0026 (6) −0.0010 (6)
N2 0.0257 (9) 0.0283 (10) 0.0253 (7) 0.0025 (7) 0.0029 (6) 0.0004 (6)
N3 0.0245 (9) 0.0507 (12) 0.0250 (8) −0.0073 (8) 0.0075 (6) −0.0021 (7)
N4 0.0273 (8) 0.0282 (10) 0.0231 (7) −0.0011 (7) 0.0018 (6) −0.0003 (6)
C1 0.0209 (10) 0.0277 (11) 0.0179 (8) −0.0020 (8) 0.0016 (6) 0.0002 (7)
C2 0.0224 (9) 0.0242 (10) 0.0219 (8) −0.0020 (8) 0.0033 (6) 0.0002 (7)
C3 0.0188 (9) 0.0301 (11) 0.0183 (8) −0.0022 (8) 0.0025 (6) 0.0000 (7)
C4 0.0218 (10) 0.0274 (11) 0.0221 (8) 0.0017 (8) 0.0043 (7) 0.0012 (7)
C5 0.0218 (9) 0.0284 (11) 0.0171 (7) −0.0018 (8) 0.0032 (6) 0.0008 (7)
C6 0.0234 (10) 0.0314 (11) 0.0187 (8) 0.0007 (8) 0.0029 (7) 0.0003 (7)
C7 0.0239 (10) 0.0345 (12) 0.0259 (9) −0.0004 (9) 0.0041 (7) 0.0001 (8)
C8 0.0225 (10) 0.0445 (14) 0.0282 (9) 0.0035 (9) 0.0055 (7) 0.0023 (8)
C9 0.0287 (11) 0.0387 (13) 0.0285 (9) 0.0104 (9) 0.0040 (7) 0.0033 (8)
C10 0.0329 (11) 0.0287 (11) 0.0261 (9) 0.0028 (9) 0.0018 (7) 0.0013 (8)
C11 0.0207 (9) 0.0234 (10) 0.0243 (8) −0.0003 (8) 0.0026 (7) −0.0023 (7)
C12 0.0234 (10) 0.0253 (11) 0.0293 (9) 0.0017 (8) 0.0020 (7) 0.0017 (7)
C13 0.0241 (10) 0.0316 (11) 0.0267 (9) −0.0001 (8) 0.0053 (7) 0.0062 (8)
C14 0.0204 (9) 0.0255 (11) 0.0277 (9) −0.0011 (8) 0.0060 (7) −0.0007 (7)
C15 0.0213 (10) 0.0310 (11) 0.0297 (9) 0.0007 (8) 0.0011 (7) 0.0040 (8)
C16 0.0244 (10) 0.0314 (11) 0.0263 (9) −0.0024 (8) 0.0035 (7) 0.0049 (8)
C17 0.0261 (11) 0.0279 (11) 0.0288 (9) −0.0010 (8) 0.0035 (8) 0.0025 (7)
C18 0.0257 (11) 0.0320 (12) 0.0306 (9) −0.0015 (9) 0.0031 (8) 0.0027 (8)
C19 0.0216 (10) 0.0292 (11) 0.0302 (9) −0.0006 (8) 0.0085 (7) 0.0005 (8)
C20 0.0206 (10) 0.0379 (12) 0.0300 (9) −0.0058 (9) 0.0042 (7) 0.0007 (8)
C21 0.0208 (10) 0.0406 (13) 0.0304 (9) −0.0031 (9) 0.0039 (7) −0.0028 (8)
C22 0.0236 (10) 0.0409 (13) 0.0281 (9) −0.0031 (9) 0.0047 (7) −0.0003 (8)
C23 0.0447 (13) 0.0543 (15) 0.0347 (11) −0.0176 (11) 0.0054 (9) −0.0079 (10)
C24 0.0350 (12) 0.0571 (16) 0.0414 (11) 0.0052 (11) 0.0050 (9) 0.0139 (10)
C25 0.0267 (11) 0.0446 (14) 0.0416 (11) −0.0060 (9) 0.0078 (8) −0.0031 (9)
C26 0.0297 (11) 0.0444 (14) 0.0526 (13) 0.0000 (10) 0.0070 (9) 0.0015 (10)
C27 0.0229 (10) 0.0299 (11) 0.0164 (8) 0.0001 (8) 0.0006 (6) 0.0003 (7)
C28 0.0234 (10) 0.0322 (12) 0.0248 (9) −0.0010 (9) 0.0023 (7) 0.0017 (8)
C29 0.0245 (10) 0.0365 (12) 0.0276 (9) −0.0069 (9) 0.0024 (7) 0.0021 (8)
C30 0.0336 (11) 0.0279 (11) 0.0270 (9) −0.0070 (9) 0.0007 (7) 0.0022 (8)
C31 0.0327 (11) 0.0270 (11) 0.0273 (9) −0.0020 (9) 0.0011 (7) −0.0019 (8)

Geometric parameters (Å, º)

O1—N3 1.2712 (17) C15—H15 0.9500
N1—C1 1.346 (2) C15—C16 1.383 (2)
N1—C5 1.343 (2) C16—H16 0.9500
N2—C6 1.341 (2) C17—C18 1.200 (2)
N2—C10 1.337 (2) C18—C19 1.429 (2)
N3—C20 1.479 (2) C19—C20 1.519 (2)
N3—C21 1.487 (2) C19—C22 1.333 (2)
N4—C27 1.349 (2) C20—C23 1.523 (3)
N4—C31 1.337 (2) C20—C24 1.521 (3)
C1—C2 1.393 (2) C21—C22 1.501 (2)
C1—C6 1.490 (2) C21—C25 1.519 (3)
C2—H2 0.9500 C21—C26 1.528 (3)
C2—C3 1.386 (2) C22—H22 0.9500
C3—C4 1.385 (2) C23—H23A 0.9800
C3—C11 1.489 (2) C23—H23B 0.9800
C4—H4 0.9500 C23—H23C 0.9800
C4—C5 1.396 (2) C24—H24A 0.9800
C5—C27 1.478 (2) C24—H24B 0.9800
C6—C7 1.397 (2) C24—H24C 0.9800
C7—H7 0.9500 C25—H25A 0.9800
C7—C8 1.384 (2) C25—H25B 0.9800
C8—H8 0.9500 C25—H25C 0.9800
C8—C9 1.383 (3) C26—H26A 0.9800
C9—H9 0.9500 C26—H26B 0.9800
C9—C10 1.389 (2) C26—H26C 0.9800
C10—H10 0.9500 C27—C28 1.391 (2)
C11—C12 1.395 (2) C28—H28 0.9500
C11—C16 1.396 (2) C28—C29 1.377 (2)
C12—H12 0.9500 C29—H29 0.9500
C12—C13 1.377 (2) C29—C30 1.377 (3)
C13—H13 0.9500 C30—H30 0.9500
C13—C14 1.403 (2) C30—C31 1.381 (2)
C14—C15 1.394 (2) C31—H31 0.9500
C14—C17 1.432 (2)
C5—N1—C1 118.19 (14) C22—C19—C18 127.46 (16)
C10—N2—C6 117.76 (15) C22—C19—C20 112.80 (15)
O1—N3—C20 122.18 (13) N3—C20—C19 99.16 (13)
O1—N3—C21 122.33 (13) N3—C20—C23 109.66 (15)
C20—N3—C21 115.43 (12) N3—C20—C24 110.21 (15)
C31—N4—C27 117.70 (15) C19—C20—C23 112.11 (16)
N1—C1—C2 122.47 (16) C19—C20—C24 113.40 (16)
N1—C1—C6 116.22 (15) C24—C20—C23 111.60 (16)
C2—C1—C6 121.31 (16) N3—C21—C22 99.62 (13)
C1—C2—H2 120.3 N3—C21—C25 109.78 (15)
C3—C2—C1 119.35 (16) N3—C21—C26 109.83 (15)
C3—C2—H2 120.3 C22—C21—C25 112.68 (15)
C2—C3—C11 122.65 (16) C22—C21—C26 112.36 (16)
C4—C3—C2 118.22 (15) C25—C21—C26 111.89 (15)
C4—C3—C11 119.06 (15) C19—C22—C21 112.98 (15)
C3—C4—H4 120.2 C19—C22—H22 123.5
C3—C4—C5 119.52 (17) C21—C22—H22 123.5
C5—C4—H4 120.2 C20—C23—H23A 109.5
N1—C5—C4 122.23 (16) C20—C23—H23B 109.5
N1—C5—C27 117.40 (15) C20—C23—H23C 109.5
C4—C5—C27 120.36 (16) H23A—C23—H23B 109.5
N2—C6—C1 116.62 (15) H23A—C23—H23C 109.5
N2—C6—C7 122.39 (16) H23B—C23—H23C 109.5
C7—C6—C1 120.99 (17) C20—C24—H24A 109.5
C6—C7—H7 120.6 C20—C24—H24B 109.5
C8—C7—C6 118.88 (18) C20—C24—H24C 109.5
C8—C7—H7 120.6 H24A—C24—H24B 109.5
C7—C8—H8 120.4 H24A—C24—H24C 109.5
C9—C8—C7 119.14 (17) H24B—C24—H24C 109.5
C9—C8—H8 120.4 C21—C25—H25A 109.5
C8—C9—H9 120.9 C21—C25—H25B 109.5
C8—C9—C10 118.13 (17) C21—C25—H25C 109.5
C10—C9—H9 120.9 H25A—C25—H25B 109.5
N2—C10—C9 123.68 (18) H25A—C25—H25C 109.5
N2—C10—H10 118.2 H25B—C25—H25C 109.5
C9—C10—H10 118.2 C21—C26—H26A 109.5
C12—C11—C3 119.82 (15) C21—C26—H26B 109.5
C12—C11—C16 118.62 (15) C21—C26—H26C 109.5
C16—C11—C3 121.41 (15) H26A—C26—H26B 109.5
C11—C12—H12 119.7 H26A—C26—H26C 109.5
C13—C12—C11 120.64 (16) H26B—C26—H26C 109.5
C13—C12—H12 119.7 N4—C27—C5 116.10 (15)
C12—C13—H13 119.6 N4—C27—C28 122.10 (17)
C12—C13—C14 120.79 (16) C28—C27—C5 121.80 (16)
C14—C13—H13 119.6 C27—C28—H28 120.5
C13—C14—C17 119.32 (15) C29—C28—C27 118.90 (17)
C15—C14—C13 118.61 (15) C29—C28—H28 120.5
C15—C14—C17 122.03 (16) C28—C29—H29 120.3
C14—C15—H15 119.8 C28—C29—C30 119.45 (17)
C16—C15—C14 120.38 (16) C30—C29—H29 120.3
C16—C15—H15 119.8 C29—C30—H30 120.9
C11—C16—H16 119.5 C29—C30—C31 118.29 (18)
C15—C16—C11 120.96 (16) C31—C30—H30 120.9
C15—C16—H16 119.5 N4—C31—C30 123.55 (17)
C18—C17—C14 177.35 (19) N4—C31—H31 118.2
C17—C18—C19 175.64 (18) C30—C31—H31 118.2
C18—C19—C20 119.74 (15)
O1—N3—C20—C19 178.70 (16) C6—C7—C8—C9 −0.2 (2)
O1—N3—C20—C23 61.1 (2) C7—C8—C9—C10 1.3 (2)
O1—N3—C20—C24 −62.1 (2) C8—C9—C10—N2 −1.4 (2)
O1—N3—C21—C22 −178.63 (17) C10—N2—C6—C1 −179.46 (13)
O1—N3—C21—C25 62.9 (2) C10—N2—C6—C7 1.0 (2)
O1—N3—C21—C26 −60.5 (2) C11—C3—C4—C5 −175.31 (13)
N1—C1—C2—C3 −0.7 (2) C11—C12—C13—C14 0.0 (3)
N1—C1—C6—N2 178.75 (13) C12—C11—C16—C15 0.1 (3)
N1—C1—C6—C7 −1.7 (2) C12—C13—C14—C15 0.0 (3)
N1—C5—C27—N4 176.14 (13) C12—C13—C14—C17 177.81 (16)
N1—C5—C27—C28 −3.8 (2) C13—C14—C15—C16 0.0 (3)
N2—C6—C7—C8 −1.0 (2) C14—C15—C16—C11 −0.1 (3)
N3—C21—C22—C19 0.7 (2) C16—C11—C12—C13 −0.1 (3)
N4—C27—C28—C29 −0.1 (2) C17—C14—C15—C16 −177.74 (17)
C1—N1—C5—C4 0.5 (2) C18—C19—C20—N3 178.91 (16)
C1—N1—C5—C27 −178.37 (13) C18—C19—C20—C23 −65.4 (2)
C1—C2—C3—C4 −0.5 (2) C18—C19—C20—C24 62.1 (2)
C1—C2—C3—C11 176.34 (14) C18—C19—C22—C21 −179.71 (19)
C1—C6—C7—C8 179.43 (14) C20—N3—C21—C22 −1.4 (2)
C2—C1—C6—N2 −1.8 (2) C20—N3—C21—C25 −119.89 (17)
C2—C1—C6—C7 177.78 (15) C20—N3—C21—C26 116.68 (17)
C2—C3—C4—C5 1.6 (2) C20—C19—C22—C21 0.1 (2)
C2—C3—C11—C12 −51.0 (2) C21—N3—C20—C19 1.5 (2)
C2—C3—C11—C16 133.51 (18) C21—N3—C20—C23 −116.05 (17)
C3—C4—C5—N1 −1.7 (2) C21—N3—C20—C24 120.71 (17)
C3—C4—C5—C27 177.14 (13) C22—C19—C20—N3 −1.0 (2)
C3—C11—C12—C13 −175.65 (16) C22—C19—C20—C23 114.73 (18)
C3—C11—C16—C15 175.58 (16) C22—C19—C20—C24 −117.78 (18)
C4—C3—C11—C12 125.74 (17) C25—C21—C22—C19 117.02 (18)
C4—C3—C11—C16 −49.7 (2) C26—C21—C22—C19 −115.47 (18)
C4—C5—C27—N4 −2.7 (2) C27—N4—C31—C30 −0.9 (2)
C4—C5—C27—C28 177.36 (14) C27—C28—C29—C30 −0.3 (2)
C5—N1—C1—C2 0.7 (2) C28—C29—C30—C31 0.1 (2)
C5—N1—C1—C6 −179.79 (13) C29—C30—C31—N4 0.5 (2)
C5—C27—C28—C29 179.78 (14) C31—N4—C27—C5 −179.19 (13)
C6—N2—C10—C9 0.3 (2) C31—N4—C27—C28 0.7 (2)
C6—C1—C2—C3 179.82 (13)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C11–C16 ring.

D—H···A D—H H···A D···A D—H···A
C2—H2···N2 0.95 2.50 2.815 (2) 99
C4—H4···N4 0.95 2.46 2.778 (2) 100
C8—H8···O1i 0.95 2.59 3.529 (2) 170
C16—H16···Cgii 0.95 2.81 3.669 (2) 151
C22—H22···O1iii 0.95 2.55 3.485 (2) 170

Symmetry codes: (i) x−1, y, z+1; (ii) x, −y+1/2, z+1/2; (iii) x, y, z+1.

References

  1. Ackermann, K., Giannoulis, A., Cordes, D. B., Slawin, A. M. Z. & Bode, B. E. (2015). Chem. Commun. 51, 5257–5260. [DOI] [PubMed]
  2. Bessel, C. A., See, R. F., Jameson, D. L., Churchill, M. R. & Takeuchi, K. J. (1992). J. Chem. Soc. Dalton Trans. pp. 3223–3228.
  3. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  4. Constable, E. C., Baum, G., Bill, E., Dyson, R., van Eldik, R., Fenske, D., Kaderli, D., Morris, D., Neubrand, A., Neuburger, M., Smith, D. R., Wieghardt, K., Zehnder, M. & Zuberbühler, A. D. (1999). Chem. Eur. J. 5, 498–508.
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Eryazici, I., Moorefield, C. N., Durmus, S. & Newkome, G. R. (2006). J. Org. Chem. 71, 1009–1014. [DOI] [PubMed]
  7. Fallahpour, R.-A., Neuburger, M. & Zehnder, M. (1999). Polyhedron, 18, 2445–2454.
  8. Folgado, J. V., Henke, W., Allmann, R., Stratemeier, H., Beltrán-Porter, D., Rojo, T. & Reinen, D. (1990). Inorg. Chem. 29, 2035–2042.
  9. Fritscher, J., Beyer, M. & Schiemann, O. (2002). Chem. Phys. Lett. 364, 393–401.
  10. Grave, C., Lentz, D., Schäfer, A., Samorì, P., Rabe, P. J., Franke, P. & Schlüter, A. D. (2003). J. Am. Chem. Soc. 125, 6907–6918. [DOI] [PubMed]
  11. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  12. Hogg, R. & Wilkins, R. G. (1962). J. Chem. Soc. pp. 341–350.
  13. Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.
  14. Margraf, D., Schuetz, D., Prisner, T. F. & Bats, J. W. (2009). Acta Cryst. E65, o1784. [DOI] [PMC free article] [PubMed]
  15. Murguly, E., Norsten, T. B. & Branda, N. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 2789–2794.
  16. Narr, E., Godt, A. & Jeschke, G. (2002). Angew. Chem. Int. Ed. 41, 3907–3910. [DOI] [PubMed]
  17. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  18. Rajca, A., Mukherjee, S., Pink, M. & Rajca, S. (2006). J. Am. Chem. Soc. 128, 13497–13507. [DOI] [PMC free article] [PubMed]
  19. Reginsson, G. W. & Schiemann, O. (2011). Biochem. Soc. Trans. 39, 128–139. [DOI] [PubMed]
  20. Schiemann, O., Piton, N., Plackmeyer, J., Bode, B. E., Prisner, T. F. & Engels, J. W. (2007). Nat. Protoc. 2, 904–923. [DOI] [PubMed]
  21. Schuetz, D., Margraf, D., Prisner, T. F. & Bats, J. W. (2010). Acta Cryst. E66, o729–o730. [DOI] [PMC free article] [PubMed]
  22. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  23. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015012086/lh5769sup1.cif

e-71-00870-sup1.cif (637.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015012086/lh5769Isup2.hkl

e-71-00870-Isup2.hkl (366.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015012086/lh5769Isup3.cdx

CCDC reference: 1408457

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES