Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 24;71(Pt 7):824–826. doi: 10.1107/S2056989015011482

Crystal structure of 2-(4-tert-butyl­phen­yl)-3-hydroxy-4H-chromen-4-one

Fuka Narita a, Akihiro Takura a, Takashi Fujihara b,*
PMCID: PMC4518945  PMID: 26279877

The title compound is relatively planar with the benzene ring being only slightly twisted with respect to the mean plane of the 4H-chromene-4-one moiety (r.m.s. deviation = 0.0191 Å) by 10.53 (8)°. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers with an Inline graphic(10) ring motif.

Keywords: crystal structure, flavonol, hydrogen bonding, fluorescent material

Abstract

Yellow–green fluorescent crystals of the title compound, C19H18O3, were obtained by the reaction of hy­droxy­aceto­phenone and 4-tert-butyl­benzaldehyde with hydrogen peroxide as oxidant. The plane of the benzene ring is slightly twisted to the mean plane of the 4H-chromene-4-one moiety (r.m.s. deviation = 0.0191 Å) by 10.53 (8)°. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers with an R 2 2(10) ring motif. The dimers are linked via C—H⋯π inter­actions, forming sheets parallel to (10-1).

Chemical context  

The flavonol 3-hy­droxy-2-phenyl-4H-chromen-4-one (com­mon name: 3-hy­droxy­flavone) and its derivatives are present in a wide variety of plants as phytochemical compounds (Havsteen, 1983; Aherne & O’Brien, 2002). They have been investigated for many years owing to their chemical, structural, biological and fluorescent properties (Smith et al., 1968; Sengupta & Kasha, 1979; Etter et al., 1986; Klymchenko & Demchenko, 2002; Pivovarenko et al., 2005; Choulier et al., 2010). The phenomenon of dual fluorescence due to excited states intra­molecular proton transfer (ESIPT) has attracted much attention (Dick, 1987), as compounds exhibiting such properties can be used as fluorescent probes for sensing and imaging. The fluorescence of flavonols has been shown to be related to the angle between the 4H-chromene-4-one moiety and the attached benzene ring (Klymchenko et al. 2003). The effect of the intra­molecular hydrogen bond of flavonols, with an OH group in position 3, for the stabilization of the mol­ecular conformation is also important and this has been confirmed by theoretical calculations reported in a computational study on flavonoids (Aparicio, 2010). As a part of our search for new luminescent materials, we report herein on the synthesis and crystal structure of the title compound, the 4-tert-butyl­phenyl derivative of 3-hy­droxy­flavone.graphic file with name e-71-00824-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is illustrated in Fig. 1. The bond lengths are similar to those reported for other flavonols (Yoo et al., 2014; Serdiuk et al., 2013; Hino et al., 2013, 2011; Wera, Pivovarenko et al., 2011; Wera, Serdiuk et al., 2011, Wera et al., 2010). The mean plane of the 4H-chromene-4-one moiety (O3/C1–C9; r.m.s. deviation = 0.0191 Å) is twisted by 10.53 (8)° with respect to the benzene ring (C10–C16). This relative planarity typical of the structural features of flavonols is reinforced by two intra­molecular (C11—H11⋯O3 and C15—H15⋯O2) short contacts (Table 1 and Fig. 1). These intra­molecular contacts lead to the mol­ecular planarity and increase the torsional barrier, improving the π-delocalization from the 4H-chromene-4-one moiety toward the benzene ring. The mol­ecule also contains an intra­molecular O—H⋯O hydrogen bond (Table 1 and Fig. 1) with an S(5) ring motif.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds and short contacts are shown as dashed lines.

Table 1. Hydrogen-bond geometry (, ).

Cg is the centroid of the C4C9 ring.

DHA DH HA D A DHA
O2H2O1 0.84 2.28 2.7262(14) 113
C11H11O3 0.95 2.32 2.6724(17) 101
C15H15O2 0.95 2.22 2.8508(18) 123
O2H2O1i 0.84 1.96 2.7104(14) 148
C7H7Cg ii 0.95 2.59 3.407(10) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Supra­molecular features  

In the crystal of the title compound, mol­ecules are linked via pairs of O—H⋯O hydrogen bonds, forming inversion dimers with an Inline graphic(10) ring motif (Table 1 and Fig. 2). The dimers are linked by C—H⋯π inter­actions between neighbouring mol­ecules, forming sheets parallel to (10Inline graphic); see Table 1 and Fig. 3.

Figure 2.

Figure 2

A view of the inversion dimer with an Inline graphic(10) ring motif. Dashed lines indicate hydrogen bonds. [Symmetry code: (i) −x + 1, −y + 1, −z + 2.]

Figure 3.

Figure 3

View of the crystal packing of the title compound. Dashed lines indicate the C—H⋯π inter­actions (ring centroids are shown as coloured spheres; see Table 1 for details). H atoms that do not participate in these inter­actions have been omitted for clarity.

Database survey  

A search of the Cambridge Structural Database (Version 5.36, February 2015; Groom & Allen, 2014) for 3-hydoxyflavone gave 15 hits. These include 3-hy­droxy­flavone itself (DUMFAS; Etter et al., 1986) and a number of para-substituted phenyl derivatives, such as the 4-amino­phenyl derivative (LUBBIV: Sun, 2015), two polymorphs of the 4-(di­methyl­amino)­phenyl derivative (BANJEH; BANJEH01: Hino et al., 2011) and two polymorphs of the 4-(di­ethyl­amino)­phenyl derivative (CEZDOC; CEZDOC01: Hino et al., 2013). Two polymorphs of the 4-hydroxphenyl derivative have also been reported (IJUCAS; Wera, Pivovarenko et al., 2011; IKAHIM: Wera, Serdiuk et al., 2011). Apart from 3-hy­droxy­flavone itself (DUMFAS) and the 4-amino­phenyl derivative (LUBBIV), in which the phenyl ring is inclined to the mean plane of the chromen-4-one moiety by 5.5 and 4.5°, respectively, this dihedral angle in the other compounds varies from 12.3 to 31.2°. Hence, in DUMFAS and LUBBIV there are also short intra­molecular C—H⋯O inter­actions, similar to those in the title compound. In the crystals of these two compounds, mol­ecules are also linked via O—H⋯O hydrogen bonds, but form chains. along [001] for DUMFAS and along [100] for LUBBIV, rather than inversion dimers as in the crystal of the title compound.

Synthesis and crystallization  

The title compound was prepared by a modification of the procedure described by Qin et al. (2008). 2-Hy­droxy­aceto­phenone (1 mmol) was added to a suspension of the 4-tert-butyl­benzaldehyde (1 mmol) in ethanol (2 ml) and aqueous NaOH (6 M, 1 ml). The mixture was stirred at room temperature overnight. Then dilute acetic acid (30%) was added to the reaction mixture with stirring until the mixture was acidic and was cooled with an ice bath. The mixture was stirred for an additional 30 min at 273 K, and the solid precipitate obtained was collected by filtration. Hydrogen peroxide (30%, 2.6 mmol) was then added to an ice-cold suspension of the precipitate in ethanol (5 ml) and aqueous NaOH (2 M, 1 ml). The mixture was allowed to warm to room temperature and stirred for 4 h. The mixture was then acidified with dilute HCl (5%, 7 ml), and the precipitate formed was collected by filtration. Recrystallization from methanol gave yellow–green fluorescing crystals. Plate-like crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution in di­chloro­methane. 1H NMR (400MHz, DMSO-d 6): δ 1.33 [s, 9H, C(CH3)3], 7.46 (t, 1H), 7.50 (d,2H), 7.79 (dd,2H), 8.13 (dt,3H), 9.50 (s,1H). 13C NMR (100MHz, DMSO-d 6) δ 31.4, 35.1, 118.8, 121.8, 125.1, 125.8, 128.0, 129.0, 134.1, 139.3, 146.0, 153.2, 155.0, 173.3. Fluorescent emission maxima (CH3Cl, λex = 365 nm): λem = 525 nm.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydroxyl and C-bound H atoms were included in calculated positions and treated as riding atoms: O—H = 0.84 Å, C—H = 0.95–0.98 Å with U iso(H) = 1.5U eq(C,O) for the methyl and hydroxyl H atoms and 1.2U eq(C) for other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C19H18O3
M r 294.33
Crystal system, space group Monoclinic, P21/n
Temperature (K) 200
a, b, c () 15.9735(19), 6.1467(7), 16.963(2)
() 113.730(1)
V (3) 1524.7(3)
Z 4
Radiation type Mo K
(mm1) 0.09
Crystal size (mm) 0.20 0.19 0.06
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker 2014)
T min, T max 0.849, 0.928
No. of measured, independent and observed [I > 2(I)] reflections 15995, 3231, 2820
R int 0.026
(sin /)max (1) 0.633
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.043, 0.127, 1.04
No. of reflections 3231
No. of parameters 203
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.29, 0.23

Computer programs: APEX2, SAINT and XPREP (Bruker 2014), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015011482/su5150sup1.cif

e-71-00824-sup1.cif (502.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015011482/su5150Isup2.hkl

e-71-00824-Isup2.hkl (177.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015011482/su5150Isup3.cml

CCDC reference: 1406583

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C19H18O3 F(000) = 624
Mr = 294.33 Dx = 1.282 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 15.9735 (19) Å Cell parameters from 7083 reflections
b = 6.1467 (7) Å θ = 2.6–28.2°
c = 16.963 (2) Å µ = 0.09 mm1
β = 113.730 (1)° T = 200 K
V = 1524.7 (3) Å3 Plate, yellow
Z = 4 0.20 × 0.19 × 0.06 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 3231 independent reflections
Radiation source: Bruker TXS fine-focus rotating anode 2820 reflections with I > 2σ(I)
Bruker Helios multilayer confocal mirror monochromator Rint = 0.026
Detector resolution: 8.333 pixels mm-1 θmax = 26.7°, θmin = 1.5°
φ and ω scans h = −20→20
Absorption correction: multi-scan (SADABS; Bruker 2014) k = −7→7
Tmin = 0.849, Tmax = 0.928 l = −21→21
15995 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0646P)2 + 0.6235P] where P = (Fo2 + 2Fc2)/3
3231 reflections (Δ/σ)max < 0.001
203 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 4.7085 (0.0060) x + 3.2010 (0.0016) y + 10.4295 (0.0043) z = 14.3715 (0.0031) * 0.0005 (0.0010) C1 * -0.0361 (0.0011) C2 * -0.0027 (0.0010) C3 * 0.0247 (0.0012) C4 * 0.0176 (0.0011) C5 * -0.0080 (0.0012) C6 * -0.0234 (0.0011) C7 * -0.0098 (0.0011) C8 * 0.0146 (0.0012) C9 * 0.0226 (0.0009) O3 Rms deviation of fitted atoms = 0.0191 6.5320 (0.0088) x + 2.3353 (0.0039) y + 10.0931 (0.0080) z = 15.2731 (0.0036) Angle to previous plane (with approximate esd) = 10.53 ( 0.08 ) * -0.0146 (0.0010) C10 * 0.0082 (0.0011) C11 * 0.0057 (0.0011) C12 * -0.0134 (0.0011) C13 * 0.0071 (0.0011) C14 * 0.0068 (0.0011) C15 Rms deviation of fitted atoms = 0.0099

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.71865 (9) 0.1616 (2) 1.00398 (8) 0.0265 (3)
C2 0.64236 (9) 0.2637 (2) 1.00356 (8) 0.0276 (3)
C3 0.59399 (9) 0.1820 (2) 1.05367 (8) 0.0281 (3)
C4 0.62989 (9) −0.0175 (2) 1.10134 (8) 0.0278 (3)
C5 0.58831 (10) −0.1190 (3) 1.15059 (9) 0.0346 (3)
H5 0.5365 −0.0539 1.1552 0.041*
C6 0.62214 (11) −0.3121 (3) 1.19211 (10) 0.0381 (3)
H6 0.5937 −0.3802 1.2252 0.046*
C7 0.69847 (10) −0.4080 (2) 1.18560 (9) 0.0351 (3)
H7 0.7214 −0.5416 1.2143 0.042*
C8 0.74088 (10) −0.3116 (2) 1.13819 (9) 0.0324 (3)
H8 0.7929 −0.3770 1.1341 0.039*
C9 0.70584 (9) −0.1159 (2) 1.09627 (8) 0.0271 (3)
C10 0.77563 (9) 0.2243 (2) 0.95792 (8) 0.0274 (3)
C11 0.83993 (10) 0.0782 (2) 0.95235 (9) 0.0340 (3)
H11 0.8481 −0.0587 0.9805 0.041*
C12 0.89195 (10) 0.1298 (3) 0.90651 (10) 0.0362 (3)
H12 0.9349 0.0266 0.9037 0.043*
C13 0.88329 (9) 0.3279 (2) 0.86439 (9) 0.0307 (3)
C14 0.82088 (11) 0.4750 (3) 0.87277 (11) 0.0398 (4)
H14 0.8143 0.6138 0.8463 0.048*
C15 0.76821 (10) 0.4262 (2) 0.91811 (10) 0.0372 (3)
H15 0.7265 0.5313 0.9222 0.045*
C16 0.94007 (10) 0.3875 (3) 0.81313 (9) 0.0347 (3)
C17 0.98436 (16) 0.1886 (3) 0.79140 (15) 0.0626 (6)
H17A 1.0163 0.2333 0.7554 0.094*
H17B 0.9370 0.0819 0.7602 0.094*
H17C 1.0282 0.1231 0.8447 0.094*
C18 1.01612 (14) 0.5414 (3) 0.86712 (15) 0.0606 (5)
H18A 0.9894 0.6719 0.8808 0.091*
H18B 1.0524 0.5828 0.8347 0.091*
H18C 1.0555 0.4686 0.9206 0.091*
C19 0.87973 (14) 0.4987 (5) 0.72920 (14) 0.0809 (8)
H19A 0.8553 0.6342 0.7420 0.121*
H19B 0.8290 0.4021 0.6958 0.121*
H19C 0.9160 0.5316 0.6958 0.121*
O1 0.52607 (7) 0.27779 (17) 1.05437 (7) 0.0367 (3)
O2 0.60997 (7) 0.44503 (17) 0.95608 (7) 0.0359 (3)
H2 0.5649 0.4923 0.9644 0.054*
O3 0.74981 (6) −0.02683 (15) 1.04986 (6) 0.0306 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0279 (6) 0.0263 (6) 0.0258 (6) 0.0013 (5) 0.0114 (5) 0.0006 (5)
C2 0.0276 (6) 0.0279 (7) 0.0272 (6) 0.0021 (5) 0.0108 (5) 0.0009 (5)
C3 0.0250 (6) 0.0311 (7) 0.0282 (6) −0.0002 (5) 0.0107 (5) −0.0031 (5)
C4 0.0279 (6) 0.0288 (7) 0.0268 (6) −0.0025 (5) 0.0112 (5) −0.0027 (5)
C5 0.0328 (7) 0.0386 (8) 0.0373 (7) −0.0024 (6) 0.0193 (6) −0.0004 (6)
C6 0.0441 (8) 0.0371 (8) 0.0385 (8) −0.0071 (6) 0.0222 (7) 0.0025 (6)
C7 0.0447 (8) 0.0273 (7) 0.0319 (7) −0.0016 (6) 0.0141 (6) 0.0016 (6)
C8 0.0372 (7) 0.0287 (7) 0.0326 (7) 0.0032 (6) 0.0154 (6) 0.0001 (5)
C9 0.0297 (6) 0.0283 (7) 0.0251 (6) −0.0017 (5) 0.0128 (5) −0.0017 (5)
C10 0.0270 (6) 0.0298 (7) 0.0265 (6) 0.0004 (5) 0.0120 (5) −0.0009 (5)
C11 0.0368 (7) 0.0314 (7) 0.0384 (7) 0.0077 (6) 0.0199 (6) 0.0082 (6)
C12 0.0359 (7) 0.0367 (8) 0.0432 (8) 0.0100 (6) 0.0235 (7) 0.0067 (6)
C13 0.0281 (6) 0.0354 (7) 0.0307 (7) −0.0009 (5) 0.0140 (5) 0.0006 (5)
C14 0.0456 (9) 0.0312 (8) 0.0525 (9) 0.0067 (6) 0.0300 (8) 0.0113 (7)
C15 0.0411 (8) 0.0300 (7) 0.0508 (9) 0.0080 (6) 0.0291 (7) 0.0060 (6)
C16 0.0321 (7) 0.0395 (8) 0.0376 (7) 0.0019 (6) 0.0195 (6) 0.0062 (6)
C17 0.0852 (14) 0.0522 (11) 0.0822 (14) 0.0007 (10) 0.0668 (13) −0.0014 (10)
C18 0.0534 (11) 0.0642 (12) 0.0782 (13) −0.0170 (9) 0.0411 (10) −0.0115 (10)
C19 0.0521 (11) 0.144 (2) 0.0597 (12) 0.0286 (13) 0.0358 (10) 0.0514 (14)
O1 0.0309 (5) 0.0397 (6) 0.0455 (6) 0.0085 (4) 0.0214 (5) 0.0056 (5)
O2 0.0327 (5) 0.0376 (6) 0.0433 (6) 0.0125 (4) 0.0215 (5) 0.0132 (5)
O3 0.0333 (5) 0.0289 (5) 0.0352 (5) 0.0068 (4) 0.0198 (4) 0.0062 (4)

Geometric parameters (Å, º)

C1—C2 1.3682 (18) C11—H11 0.9500
C1—O3 1.3723 (16) C12—C13 1.390 (2)
C1—C10 1.4695 (18) C12—H12 0.9500
C2—O2 1.3502 (16) C13—C14 1.395 (2)
C2—C3 1.4493 (18) C13—C16 1.5323 (18)
C3—O1 1.2386 (16) C14—C15 1.382 (2)
C3—C4 1.4537 (19) C14—H14 0.9500
C4—C9 1.3888 (19) C15—H15 0.9500
C4—C5 1.4056 (19) C16—C18 1.521 (2)
C5—C6 1.375 (2) C16—C19 1.523 (2)
C5—H5 0.9500 C16—C17 1.530 (2)
C6—C7 1.398 (2) C17—H17A 0.9800
C6—H6 0.9500 C17—H17B 0.9800
C7—C8 1.376 (2) C17—H17C 0.9800
C7—H7 0.9500 C18—H18A 0.9800
C8—C9 1.3952 (19) C18—H18B 0.9800
C8—H8 0.9500 C18—H18C 0.9800
C9—O3 1.3629 (16) C19—H19A 0.9800
C10—C15 1.395 (2) C19—H19B 0.9800
C10—C11 1.3956 (19) C19—H19C 0.9800
C11—C12 1.3840 (19) O2—H2 0.8400
C2—C1—O3 120.60 (12) C12—C13—C14 116.28 (13)
C2—C1—C10 128.16 (12) C12—C13—C16 122.81 (13)
O3—C1—C10 111.22 (11) C14—C13—C16 120.89 (13)
O2—C2—C1 120.56 (12) C15—C14—C13 122.42 (14)
O2—C2—C3 117.97 (11) C15—C14—H14 118.8
C1—C2—C3 121.47 (12) C13—C14—H14 118.8
O1—C3—C2 121.12 (13) C14—C15—C10 120.67 (13)
O1—C3—C4 123.13 (12) C14—C15—H15 119.7
C2—C3—C4 115.74 (11) C10—C15—H15 119.7
C9—C4—C5 118.49 (13) C18—C16—C19 109.58 (17)
C9—C4—C3 119.46 (12) C18—C16—C17 107.91 (15)
C5—C4—C3 122.02 (12) C19—C16—C17 108.29 (17)
C6—C5—C4 120.36 (13) C18—C16—C13 108.58 (13)
C6—C5—H5 119.8 C19—C16—C13 109.96 (12)
C4—C5—H5 119.8 C17—C16—C13 112.48 (13)
C5—C6—C7 119.94 (13) C16—C17—H17A 109.5
C5—C6—H6 120.0 C16—C17—H17B 109.5
C7—C6—H6 120.0 H17A—C17—H17B 109.5
C8—C7—C6 120.97 (14) C16—C17—H17C 109.5
C8—C7—H7 119.5 H17A—C17—H17C 109.5
C6—C7—H7 119.5 H17B—C17—H17C 109.5
C7—C8—C9 118.55 (13) C16—C18—H18A 109.5
C7—C8—H8 120.7 C16—C18—H18B 109.5
C9—C8—H8 120.7 H18A—C18—H18B 109.5
O3—C9—C4 121.80 (12) C16—C18—H18C 109.5
O3—C9—C8 116.51 (12) H18A—C18—H18C 109.5
C4—C9—C8 121.69 (12) H18B—C18—H18C 109.5
C15—C10—C11 117.45 (12) C16—C19—H19A 109.5
C15—C10—C1 122.70 (12) C16—C19—H19B 109.5
C11—C10—C1 119.84 (12) H19A—C19—H19B 109.5
C12—C11—C10 121.02 (13) C16—C19—H19C 109.5
C12—C11—H11 119.5 H19A—C19—H19C 109.5
C10—C11—H11 119.5 H19B—C19—H19C 109.5
C11—C12—C13 122.10 (13) C2—O2—H2 109.5
C11—C12—H12 119.0 C9—O3—C1 120.86 (10)
C13—C12—H12 119.0
O3—C1—C2—O2 −177.75 (11) O3—C1—C10—C15 −169.26 (13)
C10—C1—C2—O2 0.6 (2) C2—C1—C10—C11 −167.35 (14)
O3—C1—C2—C3 2.3 (2) O3—C1—C10—C11 11.16 (18)
C10—C1—C2—C3 −179.29 (12) C15—C10—C11—C12 −2.2 (2)
O2—C2—C3—O1 −1.4 (2) C1—C10—C11—C12 177.44 (13)
C1—C2—C3—O1 178.52 (13) C10—C11—C12—C13 0.3 (2)
O2—C2—C3—C4 178.03 (11) C11—C12—C13—C14 1.7 (2)
C1—C2—C3—C4 −2.04 (19) C11—C12—C13—C16 −179.81 (14)
O1—C3—C4—C9 179.28 (13) C12—C13—C14—C15 −1.8 (2)
C2—C3—C4—C9 −0.15 (18) C16—C13—C14—C15 179.63 (14)
O1—C3—C4—C5 1.4 (2) C13—C14—C15—C10 0.0 (3)
C2—C3—C4—C5 −178.04 (12) C11—C10—C15—C14 2.0 (2)
C9—C4—C5—C6 −0.4 (2) C1—C10—C15—C14 −177.57 (14)
C3—C4—C5—C6 177.48 (13) C12—C13—C16—C18 −102.50 (18)
C4—C5—C6—C7 0.2 (2) C14—C13—C16—C18 75.92 (19)
C5—C6—C7—C8 0.2 (2) C12—C13—C16—C19 137.61 (19)
C6—C7—C8—C9 −0.2 (2) C14—C13—C16—C19 −44.0 (2)
C5—C4—C9—O3 −179.91 (12) C12—C13—C16—C17 16.8 (2)
C3—C4—C9—O3 2.13 (19) C14—C13—C16—C17 −164.73 (16)
C5—C4—C9—C8 0.4 (2) C4—C9—O3—C1 −1.97 (19)
C3—C4—C9—C8 −177.60 (12) C8—C9—O3—C1 177.77 (11)
C7—C8—C9—O3 −179.77 (12) C2—C1—O3—C9 −0.30 (19)
C7—C8—C9—C4 0.0 (2) C10—C1—O3—C9 −178.94 (11)
C2—C1—C10—C15 12.2 (2)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C4–C9 ring.

D—H···A D—H H···A D···A D—H···A
O2—H2···O1 0.84 2.28 2.7262 (14) 113
C11—H11···O3 0.95 2.32 2.6724 (17) 101
C15—H15···O2 0.95 2.22 2.8508 (18) 123
O2—H2···O1i 0.84 1.96 2.7104 (14) 148
C7—H7···Cgii 0.95 2.59 3.407 (10) 144

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+3/2, y−1/2, −z+5/2.

References

  1. Aherne, S. A. & O’Brien, N. M. (2002). Nutrition, 18, 75–81. [DOI] [PubMed]
  2. Aparicio, S. (2010). Int. J. Mol. Sci. 11, 2017–2038. [DOI] [PMC free article] [PubMed]
  3. Bruker (2014). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Choulier, L., Shvadchak, V. V., Naidoo, A., Klymchenko, A. S., Mély, Y. & Altschuh, D. (2010). Anal. Biochem. 401, 188–195. [DOI] [PubMed]
  5. Dick, B. (1987). Ber. Bunsenges. Phys. Chem. 91, 1205–1209.
  6. Etter, M. C., Urbańczyk-Lipkowska, Z., Baer, S. & Barbara, P. F. (1986). J. Mol. Struct. 144, 155–167.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  9. Havsteen, B. (1983). Biochem. Pharmacol. 32, 1141–1148. [DOI] [PubMed]
  10. Hino, K., Nakajima, K., Kawahara, M., Furukawa, K. & Sekiya, H. (2013). Bull. Chem. Soc. Jpn, 86, 721–723.
  11. Hino, K., Nakajima, K., Kawahara, M., Kiyota, I. & Sekiya, H. (2011). Bull. Chem. Soc. Jpn, 84, 1234–1236.
  12. Klymchenko, A. S. & Demchenko, A. P. (2002). J. Am. Chem. Soc. 124, 12372–12379. [DOI] [PubMed]
  13. Klymchenko, A. S., Pivovarenko, V. G. & Demchenko, A. P. (2003). Spectrochim. Acta Part A, 59, 787–792. [DOI] [PubMed]
  14. Pivovarenko, V. G., Wróblewska, A. & Błażejowski, J. (2005). Anal. Chim. Acta, 545, 74–78.
  15. Qin, C. X., Chen, X., Hughes, R. A., Williams, S. J. & Woodman, O. L. (2008). J. Med. Chem. 51, 1874–1884. [DOI] [PubMed]
  16. Sengupta, P. K. & Kasha, M. (1979). Chem. Phys. Lett. 68, 382–385.
  17. Serdiuk, I. E., Wera, M., Roshal, A. D. & Błażejowski, J. (2013). Acta Cryst. E69, o895. [DOI] [PMC free article] [PubMed]
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  20. Smith, M. A., Neumann, R. M. & Webb, R. A. (1968). J. Heterocycl. Chem. 5, 425–426.
  21. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  22. Sun, X. (2015). Private communication (refcode LUBBIV). CCDC, Cambridge, England.
  23. Wera, M., Pivovarenko, V. G. & Błażejowski, J. (2011). Acta Cryst. E67, o264–o265. [DOI] [PMC free article] [PubMed]
  24. Wera, M., Serdiuk, I. E., Roshal, A. D. & Błażejowski, J. (2010). Acta Cryst. E66, o3122. [DOI] [PMC free article] [PubMed]
  25. Wera, M., Serdiuk, I. E., Roshal, A. D. & Błażejowski, J. (2011). Acta Cryst. E67, o440. [DOI] [PMC free article] [PubMed]
  26. Yoo, J. S., Lim, Y. & Koh, D. (2014). Acta Cryst. E70, o999–o1000. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015011482/su5150sup1.cif

e-71-00824-sup1.cif (502.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015011482/su5150Isup2.hkl

e-71-00824-Isup2.hkl (177.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015011482/su5150Isup3.cml

CCDC reference: 1406583

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES