Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 27;71(Pt 7):o506–o507. doi: 10.1107/S2056989015011822

Crystal structure of 1,2-bis­(2,6-di­methyl­phen­yl)-3-phenyl­guanidine

Hongfei Han a,*, Zhiqiang Guo b, Xuehong Wei a
PMCID: PMC4518950  PMID: 26279934

Abstract

In the title compound, C23H25N3, the dihedral angles between the planes of the benzene ring and the two substituent di­methyl­phenyl rings are 60.94 (7)° and 88.08 (7)°, and the dihedral angle between the planes of the two di­methyl­phenyl rings is 58.01 (7)°. In the crystal, weak C—H⋯N inter­actions exist between adjacent mol­ecules. One of the di­methyl­phenyl rings has a small amount of π–π overlap with the phenyl ring of an adjacent mol­ecule [centroid-to-centroid distance = 3.9631 (12) Å].

Keywords: crystal structure, guanidines, hydrogen bonding, π–π overlap

Related literature  

For similar structures of various related compounds, see: Boeré et al. (2000); Brazeau et al. (2012); Ghosh et al. (2008); Han & Huynh (2009); Chlupatý & Padělková (2014); Yildirim et al. (2007); Zhang et al. (2009). For applications of guanidines, see: Berlinck (2002); Heys et al. (2000); Laeckmann et al. (2002); Kelley et al. (2001); Moroni et al. (2001).graphic file with name e-71-0o506-scheme1.jpg

Experimental  

Crystal data  

  • C23H25N3

  • M r = 343.46

  • Orthorhombic, Inline graphic

  • a = 19.003 (7) Å

  • b = 7.924 (3) Å

  • c = 13.056 (5) Å

  • V = 1966.0 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 194 K

  • 0.35 × 0.33 × 0.30 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.976, T max = 0.980

  • 10737 measured reflections

  • 3547 independent reflections

  • 2649 reflections with I > 2σ(I)

  • R int = 0.038

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.104

  • S = 1.02

  • 3547 reflections

  • 239 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015011822/pk2556sup1.cif

e-71-0o506-sup1.cif (26.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015011822/pk2556Isup2.hkl

e-71-0o506-Isup2.hkl (173.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015011822/pk2556Isup3.cml

. DOI: 10.1107/S2056989015011822/pk2556fig1.tif

The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

CCDC reference: 1407910

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C4H4N2i 0.95 2.61 3.457(3) 148

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial support from the National Natural Science Foundation of China (No. 21272142), the Special Fund for Agro-Scientific Research in the Public Inter­est (No. 201303106), and the Patent Promotion Program of Shanxi Province (No. 141006) are gratefully acknowledged.

supplementary crystallographic information

S1. Structural commentary

Guanidines are important compounds due to their possible application in medicine, biology and chemistry (Berlinck et al., 2002; Heys et al., 2000). In particular, they have received increasing inter­est as medicinal agents with anti­tumour, anti-hypertensive, anti­glaucoma and cardiotonic activities (Laeckmann et al., 2002; Kelley et al., 2001; Moroni et al., 2001). In search of guanidinato metal complexes and their catalytic behaviors, we synthesized a new substituted guanidine by insertion of phenyl­amine with a symmetric carbodi­imine, the crystal structure of which is presented here. In addition to two examples of phenyl-substituted benzimidazol amines (Ghosh et al., 2008; Yildirim et al., 2007), the title compound is structurally similar to the known compounds, 1-cyclo­hexyl-2,3-di­phenyl­guanidine (Zhang et al., 2009), 1-(2,6-diiso­propyl­phenyl)-2,3-dimesitylguanidine (Brazeau et al., 2012), N,N',N''-tris­(2,6-di­methyl­phenyl)­guanidine (Han & Huynh, 2009), 2-[2,6-Bis(propan-2-yl)phenyl]-1,3-di­cyclo­hexyl­guanidine (Chlupatý & Padělková, 2014) and N,N',N''-tris­(2,6-di-iso­propyl­phenyl)­guanidine (Boere et al., 2000).

The molecular structure of the title compound is illustrated in Fig. 1. The C9—N2 bond in the guanidine unit is 1.266 (2) Å, and is characteristic for a C═N imine double bond. The bond lengths of C9—N1 and C9—N3 are 1.365 (2) and 1.376 (2) Å, showing single bond character (Allen et al., 1987). The N—C9—N angles are 124.15 (18)° (N1—C9—N2), 121.58 (17)° (N2—C9—N3) and 114.26 (17)° (N1—C9—N3), indicating a deviation of the CN3 plane from an ideal trigonal planar geometry. The dihedral angles between the planes of the benzene ring and the two substituent di­methyl­phenyl rings are 60.94 (7) and 88.08 (7)°, and the dihedral angle between the planes of the two di­methyl­phenyl rings is 58.01 (7)°. In the crystal, in addition to van der Waals inter­actions, weak C—H···N and N—H···C inter­actions exist between adjacent molecules. One of the di­methyl­phenyl rings has a small amount of π···π overlap with the phenyl ring of an adjacent (1-x, 2-y, 0.5+z) molecule [centroid-to-centroid distance = 3.9631 (12) Å].

S2. Synthesis and crystallization

To a stirred solution of phenyl­amine (1.863 g, 20 mmol) in hexane was added N,N'-di­methyl­phenyl carbodi­imine (5.007 g, 20 mmol), followed by the addition of the tri­methyl­aluminum (2.5 M, 0.40 mL, 1 mmol). After stirring for 2 h, the white precipitate was collected by suction filtration and recrystallized from hexane-di­ethyl­ether (1:1) solution to obtain colorless crystals of 1,2-bis­(2,6-di­methyl­phenyl)-3-phenyl­guanidine (yield: 90%). Anal. Calc. for C23H25N3: C, 80.43; H, 7.34; N, 12.23. Found: C, 80.32; H, 7.25; N, 12.31%. 1H NMR (300 MHz, CDCl3, 25 °C) δ p.p.m. 2.35 (d, 12H, CH3), 5.06 (s, 1H, NH), 5.56 (s, 1H, NH), 6.91 (s, 2H, PhH), 7.00 (s, 2H, PhH), 7.14 (s, 4H, PhH), 7.28 (s, 1H, PhH) , 7.58 (s, 2H, PhH).

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The N—H hydrogen atoms were located in a difference Fourier map and constrained (N—H = 0.87 Å). The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 - 0.98 Å with Uiso (H) = 1.2 or 1.5Ueq (CMe).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Crystal data

C23H25N3 F(000) = 736
Mr = 343.46 Dx = 1.160 Mg m3
Orthorhombic, Pca21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 2316 reflections
a = 19.003 (7) Å θ = 2.8–23.5°
b = 7.924 (3) Å µ = 0.07 mm1
c = 13.056 (5) Å T = 194 K
V = 1966.0 (13) Å3 Block, colourless
Z = 4 0.35 × 0.33 × 0.30 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3547 independent reflections
Radiation source: fine-focus sealed tube 2649 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.038
φ and ω scans θmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −23→23
Tmin = 0.976, Tmax = 0.980 k = −9→5
10737 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0564P)2] where P = (Fo2 + 2Fc2)/3
3547 reflections (Δ/σ)max = 0.001
239 parameters Δρmax = 0.14 e Å3
1 restraint Δρmin = −0.14 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.51390 (8) 0.8726 (2) 0.22933 (14) 0.0499 (4)
H1 0.5001 0.8129 0.2815 0.060*
N2 0.39761 (8) 0.9417 (2) 0.19326 (13) 0.0470 (4)
N3 0.48706 (8) 1.0319 (2) 0.08715 (13) 0.0494 (5)
H3 0.5300 1.0109 0.0680 0.059*
C1 0.58760 (9) 0.8820 (3) 0.21187 (15) 0.0414 (5)
C2 0.62483 (11) 1.0196 (3) 0.24776 (18) 0.0535 (6)
C3 0.69708 (12) 1.0198 (4) 0.2354 (2) 0.0693 (7)
H3A 0.7238 1.1136 0.2586 0.083*
C4 0.73035 (12) 0.8867 (4) 0.1904 (2) 0.0695 (7)
H4 0.7801 0.8879 0.1840 0.083*
C5 0.69327 (12) 0.7521 (4) 0.15447 (18) 0.0612 (6)
H5 0.7173 0.6614 0.1223 0.073*
C6 0.62094 (10) 0.7464 (3) 0.16442 (17) 0.0482 (5)
C7 0.58943 (16) 1.1640 (3) 0.3014 (2) 0.0825 (8)
H7A 0.5631 1.1213 0.3605 0.124*
H7B 0.5570 1.2202 0.2539 0.124*
H7C 0.6250 1.2448 0.3247 0.124*
C8 0.57928 (15) 0.5980 (3) 0.1261 (2) 0.0732 (7)
H8A 0.5423 0.6375 0.0796 0.110*
H8B 0.5578 0.5392 0.1843 0.110*
H8C 0.6106 0.5204 0.0894 0.110*
C9 0.46259 (9) 0.9480 (3) 0.17228 (15) 0.0392 (4)
C10 0.37336 (10) 0.8594 (3) 0.28195 (16) 0.0470 (5)
C11 0.36221 (11) 0.9503 (4) 0.37126 (18) 0.0592 (7)
C12 0.32944 (14) 0.8739 (5) 0.4525 (2) 0.0830 (9)
H12 0.3214 0.9366 0.5133 0.100*
C13 0.30812 (15) 0.7093 (6) 0.4476 (3) 0.0950 (12)
H13 0.2852 0.6584 0.5044 0.114*
C14 0.32015 (14) 0.6189 (4) 0.3606 (3) 0.0918 (11)
H14 0.3059 0.5041 0.3580 0.110*
C15 0.35250 (11) 0.6897 (3) 0.2757 (2) 0.0628 (7)
C16 0.38379 (16) 1.1319 (4) 0.3781 (2) 0.0814 (9)
H16A 0.3731 1.1888 0.3133 0.122*
H16B 0.4344 1.1389 0.3916 0.122*
H16C 0.3580 1.1868 0.4338 0.122*
C17 0.36204 (16) 0.5931 (4) 0.1775 (3) 0.0942 (10)
H17A 0.3381 0.6526 0.1217 0.141*
H17B 0.3419 0.4799 0.1850 0.141*
H17C 0.4123 0.5839 0.1619 0.141*
C18 0.44829 (10) 1.1495 (3) 0.02788 (14) 0.0437 (5)
C19 0.37790 (11) 1.1326 (3) 0.00775 (16) 0.0546 (6)
H19 0.3529 1.0372 0.0326 0.065*
C20 0.34337 (13) 1.2550 (3) −0.04892 (17) 0.0641 (7)
H20 0.2943 1.2446 −0.0611 0.077*
C21 0.37888 (15) 1.3896 (3) −0.0873 (2) 0.0685 (7)
H21 0.3546 1.4731 −0.1258 0.082*
C22 0.44980 (15) 1.4048 (3) −0.07045 (19) 0.0666 (7)
H22 0.4749 1.4976 −0.0985 0.080*
C23 0.48466 (11) 1.2853 (3) −0.01269 (16) 0.0533 (5)
H23 0.5338 1.2964 −0.0007 0.064*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0348 (8) 0.0591 (10) 0.0557 (10) 0.0034 (8) 0.0009 (8) 0.0171 (9)
N2 0.0339 (9) 0.0611 (11) 0.0460 (10) 0.0061 (8) 0.0012 (7) 0.0097 (9)
N3 0.0358 (9) 0.0664 (12) 0.0461 (9) 0.0083 (8) 0.0054 (7) 0.0140 (10)
C1 0.0336 (10) 0.0483 (11) 0.0424 (11) −0.0002 (9) −0.0060 (8) 0.0072 (10)
C2 0.0533 (12) 0.0528 (13) 0.0543 (13) −0.0053 (11) −0.0068 (11) 0.0059 (11)
C3 0.0564 (14) 0.0834 (19) 0.0682 (15) −0.0248 (14) −0.0165 (13) 0.0080 (15)
C4 0.0356 (11) 0.111 (2) 0.0622 (15) −0.0066 (13) −0.0028 (11) 0.0113 (17)
C5 0.0477 (13) 0.0820 (18) 0.0540 (13) 0.0115 (12) 0.0023 (10) −0.0007 (13)
C6 0.0432 (11) 0.0551 (13) 0.0461 (11) 0.0001 (10) −0.0039 (10) 0.0016 (11)
C7 0.0967 (19) 0.0517 (14) 0.099 (2) 0.0000 (14) −0.0121 (17) −0.0118 (17)
C8 0.0800 (18) 0.0600 (17) 0.0795 (17) −0.0056 (14) −0.0001 (14) −0.0135 (14)
C9 0.0368 (10) 0.0428 (11) 0.0379 (10) 0.0029 (9) −0.0032 (9) −0.0003 (9)
C10 0.0295 (9) 0.0615 (14) 0.0498 (12) 0.0091 (10) 0.0007 (9) 0.0086 (11)
C11 0.0449 (13) 0.0842 (18) 0.0483 (13) 0.0202 (13) 0.0008 (10) 0.0096 (13)
C12 0.0684 (18) 0.127 (3) 0.0534 (15) 0.0326 (18) 0.0107 (13) 0.0181 (18)
C13 0.0656 (17) 0.129 (3) 0.091 (2) 0.0279 (19) 0.0308 (16) 0.058 (2)
C14 0.0606 (16) 0.078 (2) 0.137 (3) 0.0074 (15) 0.0213 (18) 0.044 (2)
C15 0.0420 (12) 0.0628 (15) 0.0837 (17) 0.0046 (11) 0.0078 (12) 0.0096 (15)
C16 0.088 (2) 0.085 (2) 0.0710 (17) 0.0123 (17) −0.0064 (15) −0.0176 (17)
C17 0.0784 (18) 0.0710 (18) 0.133 (3) −0.0084 (15) 0.015 (2) −0.023 (2)
C18 0.0450 (11) 0.0506 (13) 0.0355 (10) 0.0058 (9) 0.0019 (9) 0.0008 (10)
C19 0.0453 (12) 0.0729 (17) 0.0455 (12) 0.0040 (11) −0.0026 (9) 0.0083 (12)
C20 0.0533 (13) 0.0902 (19) 0.0487 (12) 0.0137 (13) −0.0040 (11) 0.0067 (14)
C21 0.0819 (18) 0.0696 (18) 0.0541 (14) 0.0251 (15) −0.0055 (13) 0.0062 (14)
C22 0.090 (2) 0.0497 (15) 0.0606 (15) 0.0046 (13) −0.0032 (13) 0.0051 (13)
C23 0.0574 (13) 0.0517 (13) 0.0509 (12) −0.0007 (11) −0.0028 (11) −0.0014 (12)

Geometric parameters (Å, º)

N1—C9 1.365 (2) C11—C12 1.370 (4)
N1—C1 1.421 (2) C11—C16 1.499 (4)
N1—H1 0.8700 C12—C13 1.368 (5)
N2—C9 1.266 (2) C12—H12 0.9500
N2—C10 1.407 (3) C13—C14 1.363 (5)
N3—C9 1.376 (2) C13—H13 0.9500
N3—C18 1.418 (3) C14—C15 1.386 (4)
N3—H3 0.8699 C14—H14 0.9500
C1—C2 1.381 (3) C15—C17 1.503 (4)
C1—C6 1.393 (3) C16—H16A 0.9800
C2—C3 1.382 (3) C16—H16B 0.9800
C2—C7 1.501 (4) C16—H16C 0.9800
C3—C4 1.363 (4) C17—H17A 0.9800
C3—H3A 0.9500 C17—H17B 0.9800
C4—C5 1.362 (3) C17—H17C 0.9800
C4—H4 0.9500 C18—C19 1.370 (3)
C5—C6 1.381 (3) C18—C23 1.385 (3)
C5—H5 0.9500 C19—C20 1.385 (3)
C6—C8 1.503 (3) C19—H19 0.9500
C7—H7A 0.9800 C20—C21 1.358 (3)
C7—H7B 0.9800 C20—H20 0.9500
C7—H7C 0.9800 C21—C22 1.371 (4)
C8—H8A 0.9800 C21—H21 0.9500
C8—H8B 0.9800 C22—C23 1.380 (3)
C8—H8C 0.9800 C22—H22 0.9500
C10—C11 1.387 (3) C23—H23 0.9500
C10—C15 1.405 (3)
C9—N1—C1 126.42 (17) C12—C11—C16 120.2 (3)
C9—N1—H1 116.8 C10—C11—C16 120.5 (2)
C1—N1—H1 116.8 C13—C12—C11 121.3 (3)
C9—N2—C10 121.07 (16) C13—C12—H12 119.3
C9—N3—C18 125.64 (16) C11—C12—H12 119.3
C9—N3—H3 117.2 C14—C13—C12 119.3 (3)
C18—N3—H3 117.2 C14—C13—H13 120.3
C2—C1—C6 121.78 (17) C12—C13—H13 120.3
C2—C1—N1 119.46 (19) C13—C14—C15 121.9 (3)
C6—C1—N1 118.63 (17) C13—C14—H14 119.0
C1—C2—C3 118.0 (2) C15—C14—H14 119.0
C1—C2—C7 122.0 (2) C14—C15—C10 117.8 (3)
C3—C2—C7 119.9 (2) C14—C15—C17 122.0 (3)
C4—C3—C2 120.7 (2) C10—C15—C17 120.2 (2)
C4—C3—H3A 119.7 C11—C16—H16A 109.5
C2—C3—H3A 119.7 C11—C16—H16B 109.5
C5—C4—C3 121.0 (2) H16A—C16—H16B 109.5
C5—C4—H4 119.5 C11—C16—H16C 109.5
C3—C4—H4 119.5 H16A—C16—H16C 109.5
C4—C5—C6 120.5 (2) H16B—C16—H16C 109.5
C4—C5—H5 119.7 C15—C17—H17A 109.5
C6—C5—H5 119.7 C15—C17—H17B 109.5
C5—C6—C1 118.0 (2) H17A—C17—H17B 109.5
C5—C6—C8 121.2 (2) C15—C17—H17C 109.5
C1—C6—C8 120.80 (18) H17A—C17—H17C 109.5
C2—C7—H7A 109.5 H17B—C17—H17C 109.5
C2—C7—H7B 109.5 C19—C18—C23 119.3 (2)
H7A—C7—H7B 109.5 C19—C18—N3 123.2 (2)
C2—C7—H7C 109.5 C23—C18—N3 117.43 (18)
H7A—C7—H7C 109.5 C18—C19—C20 119.8 (2)
H7B—C7—H7C 109.5 C18—C19—H19 120.1
C6—C8—H8A 109.5 C20—C19—H19 120.1
C6—C8—H8B 109.5 C21—C20—C19 120.8 (2)
H8A—C8—H8B 109.5 C21—C20—H20 119.6
C6—C8—H8C 109.5 C19—C20—H20 119.6
H8A—C8—H8C 109.5 C20—C21—C22 119.9 (2)
H8B—C8—H8C 109.5 C20—C21—H21 120.1
N2—C9—N1 124.15 (18) C22—C21—H21 120.1
N2—C9—N3 121.58 (17) C21—C22—C23 120.0 (2)
N1—C9—N3 114.26 (16) C21—C22—H22 120.0
C11—C10—C15 120.2 (2) C23—C22—H22 120.0
C11—C10—N2 120.1 (2) C22—C23—C18 120.2 (2)
C15—C10—N2 119.2 (2) C22—C23—H23 119.9
C12—C11—C10 119.4 (3) C18—C23—H23 119.9
C9—N1—C1—C2 82.9 (3) C15—C10—C11—C12 −1.3 (3)
C9—N1—C1—C6 −101.1 (2) N2—C10—C11—C12 170.91 (19)
C6—C1—C2—C3 0.0 (3) C15—C10—C11—C16 −179.4 (2)
N1—C1—C2—C3 175.9 (2) N2—C10—C11—C16 −7.3 (3)
C6—C1—C2—C7 −178.4 (2) C10—C11—C12—C13 0.7 (4)
N1—C1—C2—C7 −2.5 (3) C16—C11—C12—C13 178.9 (3)
C1—C2—C3—C4 −0.9 (4) C11—C12—C13—C14 0.5 (4)
C7—C2—C3—C4 177.5 (2) C12—C13—C14—C15 −1.0 (5)
C2—C3—C4—C5 1.4 (4) C13—C14—C15—C10 0.4 (4)
C3—C4—C5—C6 −1.0 (4) C13—C14—C15—C17 −176.4 (3)
C4—C5—C6—C1 0.1 (3) C11—C10—C15—C14 0.7 (3)
C4—C5—C6—C8 −179.4 (2) N2—C10—C15—C14 −171.5 (2)
C2—C1—C6—C5 0.4 (3) C11—C10—C15—C17 177.6 (2)
N1—C1—C6—C5 −175.5 (2) N2—C10—C15—C17 5.4 (3)
C2—C1—C6—C8 179.9 (2) C9—N3—C18—C19 −37.2 (3)
N1—C1—C6—C8 4.0 (3) C9—N3—C18—C23 144.1 (2)
C10—N2—C9—N1 2.6 (3) C23—C18—C19—C20 −2.8 (3)
C10—N2—C9—N3 −178.32 (19) N3—C18—C19—C20 178.5 (2)
C1—N1—C9—N2 −177.0 (2) C18—C19—C20—C21 1.8 (3)
C1—N1—C9—N3 3.9 (3) C19—C20—C21—C22 0.3 (4)
C18—N3—C9—N2 15.3 (3) C20—C21—C22—C23 −1.4 (4)
C18—N3—C9—N1 −165.6 (2) C21—C22—C23—C18 0.4 (4)
C9—N2—C10—C11 94.0 (2) C19—C18—C23—C22 1.8 (3)
C9—N2—C10—C15 −93.7 (2) N3—C18—C23—C22 −179.54 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4···N2i 0.95 2.61 3.457 (3) 148

Symmetry code: (i) x+1/2, −y+2, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: PK2556).

References

  1. Berlinck, R. G. S. (2002). Nat. Prod. Rep. 19, 617–649. [DOI] [PubMed]
  2. Boeré, R. E., Boeré, R. T., Masuda, J. & Wolmershäuser, G. (2000). Can. J. Chem. 78, 1613–1619.
  3. Brazeau, A. L., Hänninen, M. M., Tuononen, H. M., Jones, N. D. & Ragogna, P. J. (2012). J. Am. Chem. Soc. 134, 5398–5414. [DOI] [PubMed]
  4. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chlupatý, T. & Padělková, Z. (2014). Acta Cryst E70, o785. [DOI] [PMC free article] [PubMed]
  6. Ghosh, H., Yella, R., Nath, J. & Patel, B. K. (2008). Eur. J. Org. Chem. pp, 6189–6196.
  7. Han, Y. & Huynh, H. V. (2009). Dalton Trans., pp. 2201–2209. [DOI] [PubMed]
  8. Heys, L., Moore, C. G. & Murphy, P. J. (2000). Chem. Soc. Rev. 29, 57–67.
  9. Kelley, M. T., Bürckstümmer, T., Wenzel-Seifert, K., Dove, S., Buschauer, A. & Seifert, R. (2001). Mol. Pharmacol. 60, 1210–1225. [DOI] [PubMed]
  10. Laeckmann, D., Rogister, F., Dejardin, J.-V., Prosperi-Meys, C., Géczy, J., Delarge, J. & Masereel, B. (2002). Bioorg. Med. Chem. 10, 1793–1804. [DOI] [PubMed]
  11. Moroni, M., Koksch, B., Osipov, S. N., Crucianelli, M., Frigerio, M., Bravo, P. & Burger, K. (2001). J. Org. Chem. 66, 130–133. [DOI] [PubMed]
  12. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  15. Yıldırım, S. Ö., Akkurt, M., Servi, S., Şekerci, M. & Heinemann, F. W. (2007). Acta Cryst. E63, o2130–o2132.
  16. Zhang, W.-X., Li, D., Wang, Z. & Xi, Z. (2009). Organometallics, 28, 882–887.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015011822/pk2556sup1.cif

e-71-0o506-sup1.cif (26.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015011822/pk2556Isup2.hkl

e-71-0o506-Isup2.hkl (173.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015011822/pk2556Isup3.cml

. DOI: 10.1107/S2056989015011822/pk2556fig1.tif

The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

CCDC reference: 1407910

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES