Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 24;71(Pt 7):o504–o505. doi: 10.1107/S2056989015011901

Crystal structure of 1,4-dieth­oxy-9,10-anthra­quinone

Chitoshi Kitamura a,*, Sining Li a, Munenori Takehara a, Yoshinori Inoue a, Katsuhiko Ono b, Takeshi Kawase c
PMCID: PMC4518951  PMID: 26279933

Abstract

The asymmetric unit of the title compound, C18H16O4, contains two crystallographically independent mol­ecules. The anthra­quinone ring systems are slightly bent with dihedral angles of 2.33 (8) and 13.31 (9)° between the two terminal benzene rings. In the crystal, the two independent mol­ecules adopt slipped-parallel π-overlap with an average inter­planar distance of 3.45 Å, forming a dimer; the centroid–centroid distances of the π–π inter­actions are 3.6659 (15)–3.8987 (15) Å. The mol­ecules are also linked by C—H⋯O inter­actions, forming a tape structure along the a-axis direction. The crystal packing is characterized by a dimer-herringbone pattern.

Keywords: crystal structure; 9,10-anthra­quinone; crystallographically independent mol­ecules; π–π inter­actions; C—H⋯O inter­actions

Related literature  

For synthesis of alk­oxy-substituted 9,10-anthra­quinones, see: Kitamura et al. (2004). For background information on substitution effects of alk­oxy-substituted 9,10-anthra­quinones, see; Ohta et al. (2012). For related structures of 1,4-diprop­oxy-9,10-anthra­quinone polymorphs, see: Kitamura et al. (2015).graphic file with name e-71-0o504-scheme1.jpg

Experimental  

Crystal data  

  • C18H16O4

  • M r = 296.31

  • Monoclinic, Inline graphic

  • a = 13.5514 (11) Å

  • b = 14.7204 (11) Å

  • c = 14.5905 (10) Å

  • β = 90.604 (3)°

  • V = 2910.4 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 223 K

  • 0.56 × 0.40 × 0.36 mm

Data collection  

  • Rigaku R-AXIS RAPID diffractometer

  • 27699 measured reflections

  • 6645 independent reflections

  • 3129 reflections with I > 2σ(I)

  • R int = 0.045

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.076

  • wR(F 2) = 0.273

  • S = 0.93

  • 6645 reflections

  • 397 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015011901/is5404sup1.cif

e-71-0o504-sup1.cif (37.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015011901/is5404Isup2.hkl

e-71-0o504-Isup2.hkl (364.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015011901/is5404Isup3.cml

. DOI: 10.1107/S2056989015011901/is5404fig1.tif

The asymmetric unit of the title compound, showing the atomic numbering and 40% probability displacement ellipsoids.

a . DOI: 10.1107/S2056989015011901/is5404fig2.tif

A packing diagram of the title compound viewed down the a axis, showing a dimer-herringbone pattern. Hydrogen atoms are omitted for clarity.

. DOI: 10.1107/S2056989015011901/is5404fig3.tif

A packing diagram of the title compound, showing C—H⋯O inter­actions (blue lines).

CCDC reference: 1008606

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C8AH8AO3B 0.94 2.48 3.234(3) 137
C8BH8BO3A 0.94 2.55 3.304(4) 137
C11AH11AO4B i 0.94 2.60 3.325(3) 135
C11BH11BO4A ii 0.94 2.46 3.199(4) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 15 K05482) from the JSPS.

supplementary crystallographic information

S1. Comment

9,10-Anthraquinone is an important framework as a dye. Various kinds of hydroxy-substituted anthraquinone dyes have been manufactured. However, there were little reports on alkoxy-substituted anthraquinone. In recent years, we presented the effects of the alkoxy substitution on the optical properties of 2,6-dialkoxy and 2,3,6,7-tetraalkoxy derivatives in solution as well as in the solid state (Ohta et al., 2012). Very recently, we have reported crystal structures of two polymorphs of 1,4-dipropoxy-9,10-anthraquinone, which contained red and yellow solids (Kitamura et al., 2015). The red crystal exhibited an anti-parallel arrangement along the stacking direction. On the other hand, the yellow crystal showed a slipped-parallel arrangement. To search the effect of alkyl chain length on molecular packing, we prepared the title compound, 1,4-diethoxy-9,10-anthraquinone, (I). In this paper, we present the crystal structure of (I).

The molecular structure of (I) is shown in Fig. 1. Two crystallographically independent molecules were found in the asymmetric unit, although the two molecules had almost the same molecular structure. There was a difference in planarity between the two molecules. Thus, the anthraquinone framework was slightly bent at the central quinone ring. For example, the dihedral angle between the two terminal benzene rings in the anthraquinone was 2.33 (8)° for one molecule and 13.31 (9)° for the other. The packing structure displays a dimer-herringbone pattern (Fig. 2), which is completely different from those of 1,4-dipropoxy-9,10-anthraquinone polymorphs (Kitamura et al., 2015). In the dimer part, the two molecules adopt slipped-parallel π-stack with an average interplanar distance of 3.45 Å, which would result in a yellow color in the solid state. The crystal structure is also stabilized by C—H···O interactions along the lateral direction of molecules (Fig. 3).

S2. Experimental

The title compound was prepared according to our previously reported method (Kitamura et al., 2004). A mixture of 1,4-hydrooxy-9,10-anthraquinone (2.20 g, 9.16 mmol), K2CO3 (2.51 g, 18.1 mmol), ethyl p-toluenesulfonate (5.02 g, 25.1 mmol) in o-dichlorobenzene (15 ml) was heated at reflux for 3 h under N2 gas. After cooling to room temperature, water (65 ml) was added to the reaction mixture. Then, the resulting solid was filtered off and washed with hexane to give the title compound (2.37 g, 87% yield) as a yellow solid. Single crystals suitable for X-ray analysis were obtained by slow evaporation from a CH2Cl2 solution (m.p. 172–175 °C). Elemental analysis for C18H16O4: C 72.96, H 5.44. Found: C 72.75, H 5.51. TOF-MS(EI): m/z Calcd C18H16O4: 296.1049. Found: 296.1074.

S3. Refinement

All the H atoms were positioned geometrically and refined using a riding model with C—H bonds of 0.94 Å, 0.98 Å, and 0.97 Å for aromatic, methylene and methyl groups, respectively, and Uiso(H) = 1.2Ueq(C) [Uiso(H) = 1.5Ueq(C) for methyl H atoms].

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing the atomic numbering and 40% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

A packing diagram of the title compound viewed down the a axis, showing a dimer-herringbone pattern. Hydrogen atoms are omitted for clarity.

Fig. 3.

Fig. 3.

A packing diagram of the title compound, showing C—H···O interactions (blue lines).

Crystal data

C18H16O4 F(000) = 1248
Mr = 296.31 Dx = 1.352 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 11158 reflections
a = 13.5514 (11) Å θ = 3–27.5°
b = 14.7204 (11) Å µ = 0.10 mm1
c = 14.5905 (10) Å T = 223 K
β = 90.604 (3)° Prism, orange
V = 2910.4 (4) Å3 0.56 × 0.40 × 0.36 mm
Z = 8

Data collection

Rigaku R-AXIS RAPID diffractometer 3129 reflections with I > 2σ(I)
Radiation source: fine-focus sealed x-ray tube Rint = 0.045
Graphite monochromator θmax = 27.5°, θmin = 3.0°
Detector resolution: 10 pixels mm-1 h = −17→17
ω scans k = −19→19
27699 measured reflections l = −16→18
6645 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full 0 constraints
R[F2 > 2σ(F2)] = 0.076 H-atom parameters constrained
wR(F2) = 0.273 w = 1/[σ2(Fo2) + (0.1824P)2] where P = (Fo2 + 2Fc2)/3
S = 0.93 (Δ/σ)max < 0.001
6645 reflections Δρmax = 0.27 e Å3
397 parameters Δρmin = −0.48 e Å3

Special details

Experimental. 1H-NMR: δ 1.56 (t, J = 7.0 Hz, 6H), 4.20 (q, J = 7.0 Hz, 4H), 7.32 (s, 2H), 7.69–7.72 (m, 2H), 8.17–8.19 (m, 2H); 13C-NMR: δ 14.9, 66.0, 122.1, 123.4, 126.4, 133.2, 134.2, 153.6, 183.3.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1A 0.3813 (2) 0.68438 (17) 0.35528 (16) 0.0548 (6)
C2A 0.3271 (2) 0.71337 (18) 0.27977 (17) 0.0611 (7)
H2A 0.3605 0.7327 0.2271 0.073*
C3A 0.2261 (2) 0.71464 (18) 0.27990 (16) 0.0596 (7)
H3A 0.1918 0.7347 0.2274 0.072*
C4A 0.1731 (2) 0.68680 (17) 0.35617 (16) 0.0546 (6)
C5A 0.22559 (19) 0.65664 (16) 0.43427 (16) 0.0518 (6)
C6A 0.1713 (2) 0.63214 (19) 0.51927 (18) 0.0611 (7)
C7A 0.22803 (19) 0.59444 (17) 0.59796 (15) 0.0527 (6)
C8A 0.1770 (2) 0.56507 (18) 0.67540 (17) 0.0632 (7)
H8A 0.1078 0.5678 0.6766 0.076*
C9A 0.2293 (2) 0.5320 (2) 0.75003 (17) 0.0707 (8)
H9A 0.1952 0.5121 0.8021 0.085*
C10A 0.3301 (2) 0.5279 (2) 0.74903 (18) 0.0726 (8)
H10A 0.3647 0.5057 0.8005 0.087*
C11A 0.3814 (2) 0.5564 (2) 0.67253 (18) 0.0681 (8)
H11A 0.4507 0.553 0.6717 0.082*
C12A 0.3296 (2) 0.59013 (18) 0.59665 (17) 0.0572 (6)
C13A 0.3855 (2) 0.6237 (2) 0.5163 (2) 0.0734 (9)
C14A 0.32994 (19) 0.65421 (16) 0.43355 (16) 0.0530 (6)
C15A 0.5325 (2) 0.7171 (2) 0.2792 (2) 0.0782 (9)
H15A 0.5119 0.7793 0.265 0.094*
H15B 0.5174 0.6787 0.226 0.094*
C16A 0.6399 (2) 0.7146 (2) 0.2998 (2) 0.0814 (9)
H16A 0.676 0.7365 0.2471 0.122*
H16B 0.6542 0.7531 0.3523 0.122*
H16C 0.6598 0.6527 0.3134 0.122*
C17A 0.0200 (2) 0.7234 (2) 0.28108 (18) 0.0672 (7)
H17A 0.0363 0.6897 0.2253 0.081*
H17B 0.0373 0.7874 0.2719 0.081*
C18A −0.0867 (2) 0.7146 (2) 0.3010 (2) 0.0787 (9)
H18A −0.1251 0.7386 0.25 0.118*
H18B −0.1029 0.651 0.3099 0.118*
H18C −0.1019 0.7483 0.3562 0.118*
O1A 0.48108 (14) 0.68464 (14) 0.35759 (12) 0.0673 (5)
O2A 0.07320 (14) 0.68735 (14) 0.35765 (12) 0.0670 (5)
O3A 0.08375 (17) 0.6462 (2) 0.52801 (15) 0.1020 (9)
O4A 0.47401 (18) 0.6270 (3) 0.5216 (2) 0.1549 (16)
C1B −0.31908 (18) 0.42295 (17) 0.93060 (15) 0.0515 (6)
C2B −0.2634 (2) 0.3807 (2) 0.99876 (16) 0.0600 (7)
H2B −0.296 0.3526 1.0478 0.072*
C3B −0.1627 (2) 0.37894 (19) 0.99648 (16) 0.0582 (7)
H3B −0.1276 0.3486 1.0432 0.07*
C4B −0.11091 (18) 0.42118 (16) 0.92621 (15) 0.0507 (6)
C5B −0.16423 (18) 0.46877 (16) 0.85830 (14) 0.0477 (6)
C6B −0.11215 (18) 0.51742 (17) 0.78342 (15) 0.0517 (6)
C7B −0.17014 (18) 0.54479 (16) 0.70136 (15) 0.0495 (6)
C8B −0.1216 (2) 0.57178 (19) 0.62221 (17) 0.0636 (7)
H8B −0.0523 0.5707 0.6203 0.076*
C9B −0.1754 (2) 0.6001 (2) 0.54668 (17) 0.0683 (8)
H9B −0.1426 0.6169 0.4928 0.082*
C10B −0.2760 (2) 0.6040 (2) 0.54962 (17) 0.0680 (8)
H10B −0.312 0.6241 0.498 0.082*
C11B −0.3252 (2) 0.57867 (18) 0.62810 (17) 0.0634 (7)
H11B −0.3944 0.5823 0.63 0.076*
C12B −0.27238 (18) 0.54778 (16) 0.70427 (15) 0.0499 (6)
C13B −0.32523 (18) 0.52046 (17) 0.78847 (15) 0.0520 (6)
C14B −0.26902 (17) 0.47017 (16) 0.86019 (14) 0.0474 (5)
C15B −0.4706 (2) 0.3711 (2) 0.99707 (18) 0.0672 (8)
H15C −0.462 0.4013 1.0565 0.081*
H15D −0.4444 0.3092 1.0022 0.081*
C16B −0.5768 (2) 0.3682 (2) 0.97143 (19) 0.0714 (8)
H16D −0.6129 0.3351 1.0178 0.107*
H16E −0.6022 0.4296 0.9669 0.107*
H16F −0.5847 0.3378 0.9128 0.107*
C17B 0.04137 (19) 0.36059 (19) 0.98395 (17) 0.0605 (7)
H17C 0.0159 0.2983 0.9816 0.073*
H17D 0.0335 0.3839 1.0464 0.073*
C18B 0.1478 (2) 0.3621 (2) 0.95790 (19) 0.0681 (7)
H18D 0.1855 0.3244 1.0001 0.102*
H18E 0.1546 0.3388 0.8961 0.102*
H18F 0.1722 0.424 0.9606 0.102*
O1B −0.41883 (13) 0.42021 (13) 0.92745 (11) 0.0609 (5)
O2B −0.01133 (12) 0.41697 (12) 0.91984 (11) 0.0586 (5)
O3B −0.02445 (14) 0.53591 (16) 0.78861 (12) 0.0763 (6)
O4B −0.41212 (14) 0.54036 (16) 0.79662 (13) 0.0792 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1A 0.0605 (17) 0.0546 (14) 0.0495 (13) −0.0036 (11) 0.0078 (11) −0.0019 (11)
C2A 0.0725 (19) 0.0649 (16) 0.0460 (13) −0.0059 (13) 0.0096 (12) 0.0024 (11)
C3A 0.0730 (19) 0.0623 (15) 0.0436 (13) −0.0014 (13) −0.0008 (12) 0.0022 (11)
C4A 0.0588 (17) 0.0563 (14) 0.0488 (13) −0.0021 (11) −0.0015 (11) 0.0009 (11)
C5A 0.0555 (15) 0.0521 (13) 0.0478 (13) 0.0009 (10) 0.0027 (11) 0.0039 (10)
C6A 0.0500 (16) 0.0738 (18) 0.0595 (15) 0.0006 (12) 0.0044 (12) 0.0125 (13)
C7A 0.0571 (16) 0.0554 (14) 0.0456 (13) −0.0020 (11) 0.0035 (11) 0.0040 (10)
C8A 0.0642 (18) 0.0737 (17) 0.0519 (14) −0.0018 (13) 0.0090 (12) 0.0057 (12)
C9A 0.085 (2) 0.0814 (19) 0.0452 (14) −0.0047 (16) 0.0060 (13) 0.0117 (13)
C10A 0.080 (2) 0.087 (2) 0.0507 (15) −0.0024 (16) −0.0112 (13) 0.0135 (14)
C11A 0.0623 (18) 0.0812 (19) 0.0605 (16) −0.0011 (13) −0.0049 (13) 0.0164 (14)
C12A 0.0600 (17) 0.0620 (15) 0.0497 (13) −0.0015 (12) −0.0007 (11) 0.0084 (11)
C13A 0.0499 (17) 0.102 (2) 0.0680 (17) −0.0035 (15) 0.0006 (13) 0.0333 (16)
C14A 0.0550 (15) 0.0549 (14) 0.0490 (13) −0.0013 (11) 0.0026 (11) 0.0048 (10)
C15A 0.072 (2) 0.100 (2) 0.0625 (17) −0.0060 (17) 0.0221 (15) 0.0049 (16)
C16A 0.068 (2) 0.099 (2) 0.078 (2) −0.0059 (17) 0.0214 (16) 0.0005 (17)
C17A 0.0692 (19) 0.0800 (19) 0.0522 (14) 0.0096 (14) −0.0100 (12) 0.0001 (13)
C18A 0.068 (2) 0.102 (2) 0.0660 (17) 0.0023 (16) −0.0154 (14) −0.0043 (16)
O1A 0.0570 (12) 0.0860 (13) 0.0593 (11) −0.0029 (9) 0.0144 (9) 0.0075 (9)
O2A 0.0574 (12) 0.0872 (13) 0.0563 (10) −0.0004 (9) −0.0067 (8) 0.0116 (9)
O3A 0.0555 (14) 0.165 (3) 0.0855 (15) 0.0170 (14) 0.0145 (11) 0.0563 (15)
O4A 0.0496 (16) 0.289 (4) 0.126 (2) −0.0097 (19) −0.0050 (14) 0.127 (3)
C1B 0.0491 (14) 0.0616 (14) 0.0440 (12) −0.0026 (11) 0.0030 (10) 0.0047 (10)
C2B 0.0609 (17) 0.0720 (17) 0.0473 (13) −0.0048 (13) 0.0066 (12) 0.0168 (12)
C3B 0.0557 (16) 0.0688 (16) 0.0500 (13) 0.0000 (12) −0.0007 (11) 0.0154 (12)
C4B 0.0514 (15) 0.0590 (14) 0.0416 (12) 0.0001 (11) −0.0002 (10) 0.0020 (10)
C5B 0.0534 (14) 0.0556 (13) 0.0342 (11) −0.0005 (10) 0.0029 (9) 0.0021 (9)
C6B 0.0455 (14) 0.0653 (15) 0.0442 (12) −0.0025 (11) 0.0026 (10) 0.0057 (11)
C7B 0.0543 (15) 0.0537 (13) 0.0407 (11) −0.0022 (10) 0.0020 (10) 0.0059 (10)
C8B 0.0624 (17) 0.0802 (18) 0.0483 (13) −0.0060 (14) 0.0066 (12) 0.0134 (12)
C9B 0.075 (2) 0.085 (2) 0.0451 (13) −0.0091 (15) 0.0059 (13) 0.0173 (13)
C10B 0.074 (2) 0.0826 (19) 0.0474 (14) −0.0010 (15) −0.0059 (13) 0.0200 (13)
C11B 0.0597 (17) 0.0770 (18) 0.0534 (14) 0.0034 (13) −0.0030 (12) 0.0164 (13)
C12B 0.0546 (15) 0.0539 (13) 0.0413 (12) 0.0013 (10) 0.0028 (10) 0.0056 (10)
C13B 0.0475 (14) 0.0630 (15) 0.0455 (12) 0.0023 (11) 0.0027 (10) 0.0063 (11)
C14B 0.0511 (14) 0.0551 (13) 0.0359 (11) 0.0002 (10) 0.0036 (9) 0.0007 (9)
C15B 0.0576 (18) 0.0847 (19) 0.0596 (16) −0.0086 (14) 0.0113 (13) 0.0203 (14)
C16B 0.0570 (18) 0.095 (2) 0.0620 (16) −0.0103 (15) 0.0097 (13) 0.0086 (15)
C17B 0.0567 (17) 0.0672 (16) 0.0572 (14) −0.0002 (12) −0.0105 (12) 0.0086 (12)
C18B 0.0550 (17) 0.0804 (19) 0.0688 (17) 0.0069 (14) −0.0070 (13) 0.0045 (14)
O1B 0.0471 (11) 0.0822 (13) 0.0535 (10) −0.0018 (8) 0.0076 (8) 0.0159 (8)
O2B 0.0478 (11) 0.0773 (12) 0.0508 (9) 0.0029 (8) −0.0036 (7) 0.0139 (8)
O3B 0.0512 (12) 0.1171 (17) 0.0605 (11) −0.0142 (11) −0.0020 (8) 0.0288 (11)
O4B 0.0525 (12) 0.1193 (17) 0.0659 (12) 0.0183 (11) 0.0086 (9) 0.0321 (11)

Geometric parameters (Å, º)

C1A—O1A 1.352 (3) C1B—O1B 1.353 (3)
C1A—C2A 1.385 (4) C1B—C2B 1.388 (3)
C1A—C14A 1.415 (3) C1B—C14B 1.419 (3)
C2A—C3A 1.368 (4) C2B—C3B 1.366 (3)
C2A—H2A 0.94 C2B—H2B 0.94
C3A—C4A 1.392 (3) C3B—C4B 1.395 (3)
C3A—H3A 0.94 C3B—H3B 0.94
C4A—O2A 1.354 (3) C4B—O2B 1.355 (3)
C4A—C5A 1.409 (3) C4B—C5B 1.407 (3)
C5A—C14A 1.415 (3) C5B—C14B 1.421 (3)
C5A—C6A 1.493 (3) C5B—C6B 1.490 (3)
C6A—O3A 1.212 (3) C6B—O3B 1.221 (3)
C6A—C7A 1.483 (3) C6B—C7B 1.481 (3)
C7A—C12A 1.378 (4) C7B—C12B 1.387 (3)
C7A—C8A 1.399 (3) C7B—C8B 1.393 (3)
C8A—C9A 1.381 (4) C8B—C9B 1.379 (4)
C8A—H8A 0.94 C8B—H8B 0.94
C9A—C10A 1.367 (4) C9B—C10B 1.366 (4)
C9A—H9A 0.94 C9B—H9B 0.94
C10A—C11A 1.386 (4) C10B—C11B 1.383 (4)
C10A—H10A 0.94 C10B—H10B 0.94
C11A—C12A 1.396 (4) C11B—C12B 1.392 (3)
C11A—H11A 0.94 C11B—H11B 0.94
C12A—C13A 1.488 (4) C12B—C13B 1.484 (3)
C13A—O4A 1.202 (3) C13B—O4B 1.220 (3)
C13A—C14A 1.485 (4) C13B—C14B 1.485 (3)
C15A—O1A 1.428 (3) C15B—O1B 1.436 (3)
C15A—C16A 1.484 (4) C15B—C16B 1.484 (4)
C15A—H15A 0.98 C15B—H15C 0.98
C15A—H15B 0.98 C15B—H15D 0.98
C16A—H16A 0.97 C16B—H16D 0.97
C16A—H16B 0.97 C16B—H16E 0.97
C16A—H16C 0.97 C16B—H16F 0.97
C17A—O2A 1.425 (3) C17B—O2B 1.435 (3)
C17A—C18A 1.485 (4) C17B—C18B 1.495 (4)
C17A—H17A 0.98 C17B—H17C 0.98
C17A—H17B 0.98 C17B—H17D 0.98
C18A—H18A 0.97 C18B—H18D 0.97
C18A—H18B 0.97 C18B—H18E 0.97
C18A—H18C 0.97 C18B—H18F 0.97
O1A—C1A—C2A 122.8 (2) O1B—C1B—C2B 123.1 (2)
O1A—C1A—C14A 118.8 (2) O1B—C1B—C14B 118.4 (2)
C2A—C1A—C14A 118.5 (3) C2B—C1B—C14B 118.5 (2)
C3A—C2A—C1A 121.7 (2) C3B—C2B—C1B 121.8 (2)
C3A—C2A—H2A 119.2 C3B—C2B—H2B 119.1
C1A—C2A—H2A 119.2 C1B—C2B—H2B 119.1
C2A—C3A—C4A 121.4 (2) C2B—C3B—C4B 121.4 (2)
C2A—C3A—H3A 119.3 C2B—C3B—H3B 119.3
C4A—C3A—H3A 119.3 C4B—C3B—H3B 119.3
O2A—C4A—C3A 122.3 (2) O2B—C4B—C3B 122.6 (2)
O2A—C4A—C5A 119.0 (2) O2B—C4B—C5B 118.6 (2)
C3A—C4A—C5A 118.6 (3) C3B—C4B—C5B 118.7 (2)
C4A—C5A—C14A 119.9 (2) C4B—C5B—C14B 120.0 (2)
C4A—C5A—C6A 119.9 (2) C4B—C5B—C6B 120.8 (2)
C14A—C5A—C6A 120.1 (2) C14B—C5B—C6B 119.24 (19)
O3A—C6A—C7A 118.9 (2) O3B—C6B—C7B 119.8 (2)
O3A—C6A—C5A 122.5 (2) O3B—C6B—C5B 122.0 (2)
C7A—C6A—C5A 118.5 (2) C7B—C6B—C5B 118.2 (2)
C12A—C7A—C8A 119.9 (2) C12B—C7B—C8B 119.8 (2)
C12A—C7A—C6A 121.1 (2) C12B—C7B—C6B 120.4 (2)
C8A—C7A—C6A 119.0 (2) C8B—C7B—C6B 119.8 (2)
C9A—C8A—C7A 119.5 (3) C9B—C8B—C7B 119.9 (3)
C9A—C8A—H8A 120.3 C9B—C8B—H8B 120
C7A—C8A—H8A 120.3 C7B—C8B—H8B 120
C10A—C9A—C8A 120.7 (3) C10B—C9B—C8B 120.4 (2)
C10A—C9A—H9A 119.6 C10B—C9B—H9B 119.8
C8A—C9A—H9A 119.6 C8B—C9B—H9B 119.8
C9A—C10A—C11A 120.3 (3) C9B—C10B—C11B 120.3 (2)
C9A—C10A—H10A 119.8 C9B—C10B—H10B 119.8
C11A—C10A—H10A 119.8 C11B—C10B—H10B 119.8
C10A—C11A—C12A 119.6 (3) C10B—C11B—C12B 120.0 (3)
C10A—C11A—H11A 120.2 C10B—C11B—H11B 120
C12A—C11A—H11A 120.2 C12B—C11B—H11B 120
C7A—C12A—C11A 120.0 (2) C7B—C12B—C11B 119.4 (2)
C7A—C12A—C13A 120.8 (2) C7B—C12B—C13B 120.5 (2)
C11A—C12A—C13A 119.2 (3) C11B—C12B—C13B 120.0 (2)
O4A—C13A—C14A 122.5 (3) O4B—C13B—C12B 119.3 (2)
O4A—C13A—C12A 118.6 (3) O4B—C13B—C14B 122.6 (2)
C14A—C13A—C12A 118.9 (2) C12B—C13B—C14B 118.0 (2)
C5A—C14A—C1A 119.9 (2) C1B—C14B—C5B 119.5 (2)
C5A—C14A—C13A 120.0 (2) C1B—C14B—C13B 120.6 (2)
C1A—C14A—C13A 120.0 (2) C5B—C14B—C13B 119.9 (2)
O1A—C15A—C16A 108.4 (3) O1B—C15B—C16B 108.4 (2)
O1A—C15A—H15A 110 O1B—C15B—H15C 110
C16A—C15A—H15A 110 C16B—C15B—H15C 110
O1A—C15A—H15B 110 O1B—C15B—H15D 110
C16A—C15A—H15B 110 C16B—C15B—H15D 110
H15A—C15A—H15B 108.4 H15C—C15B—H15D 108.4
C15A—C16A—H16A 109.5 C15B—C16B—H16D 109.5
C15A—C16A—H16B 109.5 C15B—C16B—H16E 109.5
H16A—C16A—H16B 109.5 H16D—C16B—H16E 109.5
C15A—C16A—H16C 109.5 C15B—C16B—H16F 109.5
H16A—C16A—H16C 109.5 H16D—C16B—H16F 109.5
H16B—C16A—H16C 109.5 H16E—C16B—H16F 109.5
O2A—C17A—C18A 107.4 (2) O2B—C17B—C18B 107.5 (2)
O2A—C17A—H17A 110.2 O2B—C17B—H17C 110.2
C18A—C17A—H17A 110.2 C18B—C17B—H17C 110.2
O2A—C17A—H17B 110.2 O2B—C17B—H17D 110.2
C18A—C17A—H17B 110.2 C18B—C17B—H17D 110.2
H17A—C17A—H17B 108.5 H17C—C17B—H17D 108.5
C17A—C18A—H18A 109.5 C17B—C18B—H18D 109.5
C17A—C18A—H18B 109.5 C17B—C18B—H18E 109.5
H18A—C18A—H18B 109.5 H18D—C18B—H18E 109.5
C17A—C18A—H18C 109.5 C17B—C18B—H18F 109.5
H18A—C18A—H18C 109.5 H18D—C18B—H18F 109.5
H18B—C18A—H18C 109.5 H18E—C18B—H18F 109.5
C1A—O1A—C15A 118.5 (2) C1B—O1B—C15B 119.11 (19)
C4A—O2A—C17A 119.1 (2) C4B—O2B—C17B 118.09 (19)
O1A—C1A—C2A—C3A −178.3 (2) O1B—C1B—C2B—C3B 175.1 (2)
C14A—C1A—C2A—C3A 1.0 (4) C14B—C1B—C2B—C3B −4.0 (4)
C1A—C2A—C3A—C4A 0.0 (4) C1B—C2B—C3B—C4B 1.3 (4)
C2A—C3A—C4A—O2A −179.9 (2) C2B—C3B—C4B—O2B −176.9 (2)
C2A—C3A—C4A—C5A −0.2 (4) C2B—C3B—C4B—C5B 2.0 (4)
O2A—C4A—C5A—C14A 179.0 (2) O2B—C4B—C5B—C14B 176.5 (2)
C3A—C4A—C5A—C14A −0.7 (4) C3B—C4B—C5B—C14B −2.4 (3)
O2A—C4A—C5A—C6A −4.3 (4) O2B—C4B—C5B—C6B −3.0 (3)
C3A—C4A—C5A—C6A 176.0 (2) C3B—C4B—C5B—C6B 178.1 (2)
C4A—C5A—C6A—O3A −8.2 (4) C4B—C5B—C6B—O3B −17.1 (4)
C14A—C5A—C6A—O3A 168.5 (3) C14B—C5B—C6B—O3B 163.4 (2)
C4A—C5A—C6A—C7A 175.7 (2) C4B—C5B—C6B—C7B 163.8 (2)
C14A—C5A—C6A—C7A −7.6 (4) C14B—C5B—C6B—C7B −15.7 (3)
O3A—C6A—C7A—C12A −170.0 (3) O3B—C6B—C7B—C12B −161.9 (2)
C5A—C6A—C7A—C12A 6.3 (4) C5B—C6B—C7B—C12B 17.2 (3)
O3A—C6A—C7A—C8A 8.4 (4) O3B—C6B—C7B—C8B 15.1 (4)
C5A—C6A—C7A—C8A −175.4 (2) C5B—C6B—C7B—C8B −165.8 (2)
C12A—C7A—C8A—C9A 0.1 (4) C12B—C7B—C8B—C9B −0.9 (4)
C6A—C7A—C8A—C9A −178.3 (2) C6B—C7B—C8B—C9B −177.9 (2)
C7A—C8A—C9A—C10A 0.1 (4) C7B—C8B—C9B—C10B 1.6 (4)
C8A—C9A—C10A—C11A −0.5 (5) C8B—C9B—C10B—C11B −0.7 (5)
C9A—C10A—C11A—C12A 0.6 (5) C9B—C10B—C11B—C12B −0.9 (4)
C8A—C7A—C12A—C11A 0.1 (4) C8B—C7B—C12B—C11B −0.6 (4)
C6A—C7A—C12A—C11A 178.4 (3) C6B—C7B—C12B—C11B 176.3 (2)
C8A—C7A—C12A—C13A −178.0 (3) C8B—C7B—C12B—C13B −179.2 (2)
C6A—C7A—C12A—C13A 0.3 (4) C6B—C7B—C12B—C13B −2.2 (3)
C10A—C11A—C12A—C7A −0.4 (4) C10B—C11B—C12B—C7B 1.5 (4)
C10A—C11A—C12A—C13A 177.7 (3) C10B—C11B—C12B—C13B −179.9 (3)
C7A—C12A—C13A—O4A 172.8 (4) C7B—C12B—C13B—O4B 165.4 (2)
C11A—C12A—C13A—O4A −5.4 (5) C11B—C12B—C13B—O4B −13.1 (4)
C7A—C12A—C13A—C14A −5.6 (4) C7B—C12B—C13B—C14B −14.1 (3)
C11A—C12A—C13A—C14A 176.2 (3) C11B—C12B—C13B—C14B 167.4 (2)
C4A—C5A—C14A—C1A 1.7 (4) O1B—C1B—C14B—C5B −175.6 (2)
C6A—C5A—C14A—C1A −175.0 (2) C2B—C1B—C14B—C5B 3.5 (3)
C4A—C5A—C14A—C13A 179.1 (3) O1B—C1B—C14B—C13B 4.0 (3)
C6A—C5A—C14A—C13A 2.4 (4) C2B—C1B—C14B—C13B −176.8 (2)
O1A—C1A—C14A—C5A 177.5 (2) C4B—C5B—C14B—C1B −0.3 (3)
C2A—C1A—C14A—C5A −1.8 (4) C6B—C5B—C14B—C1B 179.2 (2)
O1A—C1A—C14A—C13A 0.1 (4) C4B—C5B—C14B—C13B 180.0 (2)
C2A—C1A—C14A—C13A −179.2 (3) C6B—C5B—C14B—C13B −0.5 (3)
O4A—C13A—C14A—C5A −174.2 (4) O4B—C13B—C14B—C1B 16.2 (4)
C12A—C13A—C14A—C5A 4.1 (4) C12B—C13B—C14B—C1B −164.3 (2)
O4A—C13A—C14A—C1A 3.2 (5) O4B—C13B—C14B—C5B −164.1 (2)
C12A—C13A—C14A—C1A −178.4 (2) C12B—C13B—C14B—C5B 15.4 (3)
C2A—C1A—O1A—C15A 0.7 (4) C2B—C1B—O1B—C15B −0.4 (4)
C14A—C1A—O1A—C15A −178.6 (2) C14B—C1B—O1B—C15B 178.7 (2)
C16A—C15A—O1A—C1A 177.4 (2) C16B—C15B—O1B—C1B −172.6 (2)
C3A—C4A—O2A—C17A −4.4 (4) C3B—C4B—O2B—C17B 5.2 (3)
C5A—C4A—O2A—C17A 175.9 (2) C5B—C4B—O2B—C17B −173.7 (2)
C18A—C17A—O2A—C4A 179.5 (2) C18B—C17B—O2B—C4B 175.7 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8A—H8A···O3B 0.94 2.48 3.234 (3) 137
C8B—H8B···O3A 0.94 2.55 3.304 (4) 137
C11A—H11A···O4Bi 0.94 2.60 3.325 (3) 135
C11B—H11B···O4Aii 0.94 2.46 3.199 (4) 135

Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: IS5404).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Kitamura, C., Hasegawa, M., Ishikawa, H., Fujimoto, J., Ouchi, M. & Yoneda, A. (2004). Bull. Chem. Soc. Jpn, 77, 1385–1393.
  4. Kitamura, C., Li, S., Takehara, M., Inoue, Y., Ono, K., Kawase, T. & Fujimoto, K. J. (2015). Bull. Chem. Soc. Jpn, 88, 713–715.
  5. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  6. Ohta, A., Hattori, K., Kusumoto, Y., Kawase, T., Kobayashi, T., Naito, H. & Kitamura, C. (2012). Chem. Lett. 41, 674–676.
  7. Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
  8. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015011901/is5404sup1.cif

e-71-0o504-sup1.cif (37.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015011901/is5404Isup2.hkl

e-71-0o504-Isup2.hkl (364.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015011901/is5404Isup3.cml

. DOI: 10.1107/S2056989015011901/is5404fig1.tif

The asymmetric unit of the title compound, showing the atomic numbering and 40% probability displacement ellipsoids.

a . DOI: 10.1107/S2056989015011901/is5404fig2.tif

A packing diagram of the title compound viewed down the a axis, showing a dimer-herringbone pattern. Hydrogen atoms are omitted for clarity.

. DOI: 10.1107/S2056989015011901/is5404fig3.tif

A packing diagram of the title compound, showing C—H⋯O inter­actions (blue lines).

CCDC reference: 1008606

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES