Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 27;71(Pt 7):852–856. doi: 10.1107/S2056989015011767

Crystal structures of 4-chloro­pyridine-2-carbo­nitrile and 6-chloro­pyridine-2-carbo­nitrile exhibit different inter­molecular π-stacking, C—H⋯Nnitrile and C—H⋯Npyridine inter­actions

Matthew J Montgomery a, Thomas J O’Connor a, Joseph M Tanski a,*
PMCID: PMC4518955  PMID: 26279884

The crystal structures of two chloro­cyano­pyridines, namely 4-chloro­pyridine-2-carbo­nitrile and 6-chloro­pyridine-2-carbo­nitrile, exhibit unique inter­molecular C—H⋯Nnitrile, C—H⋯Npyridine and offset face-to-face π-stacking inter­actions.

Keywords: crystal structure, chloro­cyano­pyridine, π-stacking, C—H⋯N inter­actions

Abstract

The two title compounds are isomers of C6H3ClN2 containing a pyridine ring, a nitrile group, and a chloro substituent. The mol­ecules of each compound pack together in the solid state with offset face-to-face π-stacking, and inter­molecular C—H⋯Nnitrile and C—H⋯Npyridine inter­actions. 4-Chloro­pyridine-2-carbo­nitrile, (I), exhibits pairwise centrosymmetric head-to-head C—H⋯Nnitrile and C—H⋯Npyridine inter­actions, forming one-dimensional chains, which are π-stacked in an offset face-to-face fashion. The inter­molecular packing of the isomeric 6-chloro­pyridine-2-carbo­nitrile, (II), which differs only in the position of the chloro substituent on the pyridine ring, exhibits head-to-tail C—H⋯Nnitrile and C—H⋯Npyridine inter­actions, forming two-dimensional sheets which are π-stacked in an offset face-to-face fashion. In contrast to (I), the offset face-to-face π-stacking in (II) is formed between mol­ecules with alternating orientations of the chloro and nitrile substituents.

Chemical context  

Chloro­pyridine­carbo­nitriles are members of a class of compounds containing the ubiquitous six-membered nitro­gen-containing heterocycle pyridine. The pyridine heterocycle features prominently in many valuable synthetic compounds (Bull et al., 2012). While several of the ten possible isomers of chloro­pyridine­carbo­nitrile are commercially available, none of their crystal structures have been reported in the literature, although the structure of 2-chloro­pyridine-4-carbo­nitrile has been deposited in the Cambridge Structural Database (Version 5.31, June 2015 with updates; Groom & Allen, 2014) as a private communication (refcode LOBVIJ). The title compounds represent two isomers of chloro­pyridine-2-carbo­nitrile, namely 4-chloro­pyridine-2-carbo­nitrile, (I), and 6-chloro­pyridine-2-carbo­nitrile, (II). In both cases, the intra­molecular packing exhibits weak inter­molecular C—H⋯N inter­actions, which are well documented (Desiraju & Steiner, 1999), as well as aromatic π-stacking inter­actions (Hunter & Saunders, 1990; Lueckheide et al., 2013).graphic file with name e-71-00852-scheme1.jpg

4-Chloro­pyridine-2-carbo­nitrile, (I), may be synthesized by the cyanation of 4-chloro­pyridine N-oxide with tri­methyl­silanecarbo­nitrile (TMSCN) (Sakamoto et al., 1985). More recently, it has been shown that (I) can be prepared in a one-step process from 4-nitro­pyridine N-oxide with ethyl chloro­formate and TMSCN (Veerareddy et al., 2011). (I) has found use as a building block for a family of chiral catalysts (Busto et al., 2005).

6-Chloro­pyridine-2-carbo­nitrile, (II), may be synthesized by the vapor-phase chlorination of 2-cyano­pyridine (Ruetman & Taplin, 1971), or by the cyanation of 2-chloro­pyridine N-oxide hydro­chloride with sodium cyanide (Tsukamoto et al., 2009). This compound has found applications in the preparation of biologically active or pharmaceutical compounds, such as heteroaromatic carb­oxy­lic acids (Kiener et al., 1996) and 2-aryl­amino-substituted pyridinyl nitriles (Guo et al., 2013).

Structural commentary  

4-Chloro­pyridine-2-carbo­nitrile, (I) (Fig. 1), and 6-chloro­pyridine-2-carbo­nitrile, (II) (Fig. 2), exhibit similar metrical parameters. The nitrile bond length C1—N2 of 1.156 (3) Å in (I) and 1.138 (2) Å in (II) are similar to those seen in the related structure 2-chloro­pyridine-4-carbo­nitrile, with the nitrile C≡N distance is 1.141 Å (CSD refcode LOBVIJ). The nitrile bond lengths in 2- and 3-cyano­pyridine [1.145 (2) and 1.150 (1) Å, respectively; Kubiak et al., 2002] and 4-cyano­pyridine [1.137 (8) Å; Laing et al., 1971] are also similar to those found in the title compounds. The aromatic chlorine bond lengths, viz. C4—Cl and C6—Cl of 1.740 (3) Å in (I) and 1.740 (1) Å in (II), are similar to those seen in the related structures 2-chloro­pyridine-4-carbo­nitrile (1.732 Å; CSD refcode LOBVIJ), 2- and 3-chloro­pyridine hydro­chloride (1.710 and 1.727 Å, respectively; Freytag & Jones, 2001), and 4-chloro­pyridine hydro­chloride (1.730 Å; Freytag et al., 1999).

Figure 1.

Figure 1

A view of 4-chloro­pyridine-2-carbo­nitrile, (I), with the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

Figure 2.

Figure 2

A view of 6-chloro­pyridine-2-carbo­nitrile, (II), with the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

Both (I) and (II) are almost planar, with r.m.s. deviations from the mean planes of all non-H atoms of 0.0077 and 0.0161 Å, respectively. As may be expected, the heterocyclic rings are slightly wedge shaped as the pyridine C—N bond are shorter than the C—C bonds in each aromatic ring. In (I), the ring C2—N1 and C6—N1 bond lengths of 1.361 (3) and 1.350 (3) Å are similar to those found in (II) of 1.349 (1) and 1.322 (1) Å. The average ring C—C bond lengths are 1.403 (2) Å in (I) and 1.391 (5) Å in (II). The lengths are comparable to those found in the parent compound, pyridine, with C—N of 1.34 Å and C—C of 1.38 Å (Mootz & Wussow, 1981), and in the related structure 2-chloro­pyridine-4-carbo­nitrile, with C—N bond lengths of 1.328 and 1.340 Å, and an average C—C bond length of 1.377 (7) Å (CSD refcode LOBVIJ).

Supra­molecular features  

The mol­ecules of each of the title compounds pack together in the solid state with π-stacking, and inter­molecular C—H⋯Nnitrile and C—H⋯Npyridine inter­actions, however, the packing motifs are unique, and also different than those found in the related structure 2-chloro­pyridine-4-carbo­nitrile (CSD refcode LOBVIJ). For a discussion of weak C—H⋯X inter­actions, see Desiraju & Steiner (1999).

The mol­ecules of (I) pack together in the solid state via alternating centrosymmetric head-to-head inter­molecular C—H⋯Nnitrile and C—H⋯Npyridine inter­actions to form a one-dimensional zigzag chain (Fig. 3 and Table 1). The chains further pack together through offset face-to-face π-stacking (Fig. 4). This π-stacking is characterized by a centroid-to-centroid distance of 3.813 (5) Å, a plane-to-centroid distance of 3.454 (4) Å, and a ring offset or ring-slippage distance of 1.615 (3) Å (Hunter & Saunders, 1990; Lueckheide et al., 2013). The π-stacking in (I) is similar to that found in the related unpublished structure 2-chloro­pyridine-4-carbo­nitrile (CSD refcode LOBVIJ).

Figure 3.

Figure 3

A view of the inter­molecular C—H⋯Nnitrile and C—H⋯Npyridine contacts (dashed lines) in 4-chloro­pyridine-2-carbo­nitrile, (I), that form a one-dimensional chain. [Symmetry codes: (i) −x − 1, −y + 1, −z; (ii) −x, −y + 1, −z + 1.]

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯N2i 0.95 2.64 3.462 (5) 146
C6—H6A⋯N1ii 0.95 2.75 3.493 (5) 136

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 4.

Figure 4

A view of the offset face-to-face π-stacking in 4-chloro­pyridine-2-carbo­nitrile, (I), with the thick dashed line indicating a centroid-to-centroid inter­action. [Symmetry code: (i) x + 1, y, z.]

In contrast to (I), the mol­ecules of (II) pack together via head-to-tail C—H⋯Nnitrile and C—H⋯Npyridine inter­actions to form two-dimensional sheets that are parallel to the (001) plane (Fig. 5 and Table 2). As in (I), the parallel planes of the mol­ecules engage in offset face-to-face π-stacking between the two-dimensional sheets, which is characterized by a ring centroid-to-centroid distance of 3.7204 (7) Å, a centroid-to-plane distance of 3.41 (1) Å, and a ring-offset slippage of 1.48 (2) Å (Fig. 6). However, in constrast to (I), the π-stacking in (II) is formed between mol­ecules with alternating orientations of the chloro and nitrile substituents with a plane-to-plane angle of 0.23 (5)°. For a more thorough description of π-stacking, see Hunter & Saunders (1990) and Lueckheide et al. (2013).

Figure 5.

Figure 5

A view of the inter­molecular C—H⋯Nnitrile and C—H⋯Npyridine contacts (dashed lines) in 6-chloro­pyridine-2-carbo­nitrile, (I), that form a two-dimensional sheet. [Symmetry codes: (i) x − 1, y, z; (ii) −x + Inline graphic, y − Inline graphic, −z + Inline graphic.]

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯N1i 0.95 2.49 3.4099 (15) 164
C5—H5A⋯N2ii 0.95 2.70 3.5651 (17) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 6.

Figure 6

A view of the alternating offset face-to-face π-stacking in 6-chloro­pyridine-2-carbo­nitrile, (II), with the thick dashed line indicating a centroid-to-centroid inter­action. [Symmetry code: (i) x + Inline graphic, −y + Inline graphic, z + Inline graphic.]

Notably, there are no significant Cl⋯Cl contacts in (I) or (II), in contrast to 2-chloro­pyridine-4-carbo­nitrile (CSD refcode LOBVIJ), which exhibits a Cl⋯Cl contact distance of 3.371 Å that is shorter than the sum of the van der Waals radius of chlorine (3.5 Å; Bondi, 1964). For more information on halide–halide contacts, see Pedireddi et al. (1994) and Jelsch et al. (2015).

Synthesis and crystallization  

4-Chloro­pyridine-2-carbo­nitrile (97%) and 6-chloro­pyridine-2-carbo­nitrile (96%) were purchased from Aldrich Chemical Company, USA. 4-Chloro­pyridine-2-carbo­nitrile was recrystallized from 95% ethanol.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms on C atoms were included in calculated positions and refined using a riding model, with C—H = 0.95 Å and U iso(H) = 1.2U eq(C) of the aryl C atoms.

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C6H3ClN2 C6H3ClN2
M r 138.55 138.55
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 125 125
a, b, c (Å) 3.813 (5), 14.047 (19), 11.356 (15) 6.1739 (15), 15.238 (4), 7.0123 (18)
β (°) 96.806 (19) 112.492 (4)
V3) 604.0 (14) 609.5 (3)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.52 0.52
Crystal size (mm) 0.25 × 0.10 × 0.04 0.20 × 0.15 × 0.03
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013) Multi-scan (SADABS; Bruker, 2013)
T min, T max 0.67, 0.98 0.82, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 12191, 1852, 1498 15460, 1868, 1657
R int 0.063 0.031
(sin θ/λ)max−1) 0.715 0.717
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.050, 0.135, 1.12 0.028, 0.082, 1.09
No. of reflections 1852 1868
No. of parameters 82 82
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.53, −0.37 0.48, −0.19

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXS2014 and SHELXTL2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989015011767/rz5161sup1.cif

e-71-00852-sup1.cif (829.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015011767/rz5161Isup2.hkl

e-71-00852-Isup2.hkl (149KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989015011767/rz5161IIsup3.hkl

e-71-00852-IIsup3.hkl (150.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015011767/rz5161Isup4.cml

Supporting information file. DOI: 10.1107/S2056989015011767/rz5161IIsup5.cml

CCDC references: 1407613, 1407612

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (grant No. 0521237 to JMT).

supplementary crystallographic information

(I) 4-Chloropyridine-2-carbonitrile. Crystal data

C6H3ClN2 F(000) = 280
Mr = 138.55 Dx = 1.524 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 3.813 (5) Å Cell parameters from 3637 reflections
b = 14.047 (19) Å θ = 2.9–30.3°
c = 11.356 (15) Å µ = 0.52 mm1
β = 96.806 (19)° T = 125 K
V = 604.0 (14) Å3 Plate, colourless
Z = 4 0.25 × 0.10 × 0.04 mm

(I) 4-Chloropyridine-2-carbonitrile. Data collection

Bruker APEXII CCD diffractometer 1852 independent reflections
Radiation source: fine-focus sealed tube 1498 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.063
Detector resolution: 8.3333 pixels mm-1 θmax = 30.6°, θmin = 2.3°
φ and ω scans h = −5→5
Absorption correction: multi-scan (SADABS; Bruker, 2013) k = −20→19
Tmin = 0.67, Tmax = 0.98 l = −16→16
12191 measured reflections

(I) 4-Chloropyridine-2-carbonitrile. Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050 H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0646P)2 + 0.4268P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max < 0.001
1852 reflections Δρmax = 0.53 e Å3
82 parameters Δρmin = −0.37 e Å3

(I) 4-Chloropyridine-2-carbonitrile. Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

(I) 4-Chloropyridine-2-carbonitrile. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl 0.27576 (14) 0.79489 (4) 0.15624 (5) 0.02207 (17)
N1 0.0055 (5) 0.52050 (12) 0.33977 (16) 0.0197 (4)
N2 −0.4067 (5) 0.39592 (13) 0.09730 (18) 0.0253 (4)
C1 −0.2642 (5) 0.45592 (15) 0.15388 (19) 0.0204 (4)
C2 −0.0811 (5) 0.53460 (14) 0.22134 (18) 0.0173 (4)
C3 −0.0084 (5) 0.61731 (14) 0.15971 (18) 0.0177 (4)
H3A −0.0758 0.6235 0.0768 0.021*
C4 0.1688 (5) 0.69050 (13) 0.22646 (18) 0.0163 (4)
C5 0.2634 (5) 0.67930 (15) 0.34888 (18) 0.0192 (4)
H5A 0.383 0.7283 0.3953 0.023*
C6 0.1748 (6) 0.59298 (15) 0.40037 (19) 0.0207 (4)
H6A 0.2382 0.5851 0.4832 0.025*

(I) 4-Chloropyridine-2-carbonitrile. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl 0.0217 (3) 0.0212 (3) 0.0227 (3) −0.00411 (18) 0.00040 (18) 0.00357 (18)
N1 0.0200 (8) 0.0197 (8) 0.0191 (9) 0.0004 (6) 0.0016 (7) 0.0014 (7)
N2 0.0261 (9) 0.0245 (9) 0.0247 (10) −0.0046 (7) 0.0003 (8) −0.0011 (7)
C1 0.0176 (9) 0.0218 (9) 0.0216 (10) 0.0002 (7) 0.0019 (8) 0.0027 (8)
C2 0.0141 (8) 0.0180 (9) 0.0199 (10) 0.0012 (7) 0.0021 (7) −0.0016 (7)
C3 0.0161 (9) 0.0217 (9) 0.0153 (9) −0.0004 (7) 0.0020 (7) −0.0001 (7)
C4 0.0144 (8) 0.0169 (8) 0.0180 (9) 0.0012 (7) 0.0032 (7) 0.0018 (7)
C5 0.0185 (9) 0.0201 (9) 0.0185 (10) 0.0003 (7) 0.0002 (8) −0.0024 (7)
C6 0.0236 (10) 0.0230 (10) 0.0152 (9) 0.0012 (8) 0.0020 (8) −0.0004 (7)

(I) 4-Chloropyridine-2-carbonitrile. Geometric parameters (Å, º)

Cl—C4 1.740 (3) C3—C4 1.402 (3)
N1—C6 1.350 (3) C3—H3A 0.95
N1—C2 1.361 (3) C4—C5 1.403 (3)
N2—C1 1.156 (3) C5—C6 1.405 (3)
C1—C2 1.473 (3) C5—H5A 0.95
C2—C3 1.401 (3) C6—H6A 0.95
C6—N1—C2 116.07 (19) C3—C4—Cl 119.61 (18)
N2—C1—C2 177.6 (2) C5—C4—Cl 120.11 (16)
N1—C2—C3 125.12 (19) C4—C5—C6 117.58 (19)
N1—C2—C1 116.70 (19) C4—C5—H5A 121.2
C3—C2—C1 118.2 (2) C6—C5—H5A 121.2
C2—C3—C4 116.7 (2) N1—C6—C5 124.3 (2)
C2—C3—H3A 121.7 N1—C6—H6A 117.9
C4—C3—H3A 121.7 C5—C6—H6A 117.9
C3—C4—C5 120.27 (19)
C6—N1—C2—C3 −0.1 (3) C2—C3—C4—Cl 178.93 (15)
C6—N1—C2—C1 179.66 (19) C3—C4—C5—C6 0.1 (3)
N1—C2—C3—C4 0.3 (3) Cl—C4—C5—C6 −179.07 (16)
C1—C2—C3—C4 −179.48 (18) C2—N1—C6—C5 −0.1 (3)
C2—C3—C4—C5 −0.3 (3) C4—C5—C6—N1 0.1 (3)

(I) 4-Chloropyridine-2-carbonitrile. Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3A···N2i 0.95 2.64 3.462 (5) 146
C6—H6A···N1ii 0.95 2.75 3.493 (5) 136

Symmetry codes: (i) −x−1, −y+1, −z; (ii) −x, −y+1, −z+1.

(II) 6-Chloropyridine-2-carbonitrile. Crystal data

C6H3ClN2 F(000) = 280
Mr = 138.55 Dx = 1.510 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 6.1739 (15) Å Cell parameters from 9960 reflections
b = 15.238 (4) Å θ = 2.7–30.5°
c = 7.0123 (18) Å µ = 0.52 mm1
β = 112.492 (4)° T = 125 K
V = 609.5 (3) Å3 Plate, colourless
Z = 4 0.20 × 0.15 × 0.03 mm

(II) 6-Chloropyridine-2-carbonitrile. Data collection

Bruker APEXII CCD diffractometer 1868 independent reflections
Radiation source: fine-focus sealed tube 1657 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
Detector resolution: 8.3333 pixels mm-1 θmax = 30.6°, θmin = 2.7°
φ and ω scans h = −8→8
Absorption correction: multi-scan (SADABS; Bruker, 2013) k = −21→21
Tmin = 0.82, Tmax = 0.98 l = −10→9
15460 measured reflections

(II) 6-Chloropyridine-2-carbonitrile. Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028 H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0424P)2 + 0.1697P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.001
1868 reflections Δρmax = 0.48 e Å3
82 parameters Δρmin = −0.19 e Å3

(II) 6-Chloropyridine-2-carbonitrile. Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

(II) 6-Chloropyridine-2-carbonitrile. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl 1.01050 (5) 0.09596 (2) 0.82065 (4) 0.02803 (10)
N1 0.98012 (14) 0.26545 (6) 0.82258 (13) 0.01720 (17)
N2 1.10287 (19) 0.47889 (7) 0.79286 (18) 0.0351 (2)
C1 1.00059 (18) 0.41966 (8) 0.81170 (17) 0.0232 (2)
C2 0.87412 (16) 0.34169 (7) 0.83298 (15) 0.01728 (19)
C3 0.66223 (17) 0.34787 (7) 0.85770 (15) 0.0198 (2)
H3A 0.5958 0.4032 0.8664 0.024*
C4 0.55044 (17) 0.26976 (8) 0.86928 (16) 0.0210 (2)
H4A 0.4041 0.271 0.8846 0.025*
C5 0.65405 (17) 0.19009 (7) 0.85828 (15) 0.0205 (2)
H5A 0.5818 0.1359 0.8659 0.025*
C6 0.86897 (17) 0.19295 (7) 0.83550 (15) 0.01759 (19)

(II) 6-Chloropyridine-2-carbonitrile. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl 0.03124 (16) 0.02096 (15) 0.03084 (16) 0.00422 (9) 0.01070 (11) −0.00400 (9)
N1 0.0135 (3) 0.0212 (4) 0.0168 (4) −0.0004 (3) 0.0058 (3) −0.0014 (3)
N2 0.0343 (5) 0.0294 (5) 0.0430 (6) −0.0068 (4) 0.0164 (5) 0.0013 (4)
C1 0.0207 (5) 0.0237 (5) 0.0250 (5) 0.0006 (4) 0.0085 (4) −0.0006 (4)
C2 0.0148 (4) 0.0199 (4) 0.0167 (4) −0.0007 (3) 0.0055 (3) −0.0001 (3)
C3 0.0154 (4) 0.0238 (5) 0.0204 (4) 0.0035 (3) 0.0071 (3) 0.0010 (4)
C4 0.0135 (4) 0.0317 (5) 0.0187 (4) −0.0012 (4) 0.0072 (3) 0.0010 (4)
C5 0.0182 (4) 0.0246 (5) 0.0186 (4) −0.0051 (3) 0.0068 (3) 0.0004 (4)
C6 0.0175 (4) 0.0193 (4) 0.0151 (4) 0.0004 (3) 0.0052 (3) −0.0012 (3)

(II) 6-Chloropyridine-2-carbonitrile. Geometric parameters (Å, º)

Cl—C6 1.7402 (11) C3—C4 1.3938 (15)
N1—C6 1.3218 (13) C3—H3A 0.95
N1—C2 1.3490 (13) C4—C5 1.3881 (16)
N2—C1 1.1378 (16) C4—H4A 0.95
C1—C2 1.4604 (15) C5—C6 1.3965 (14)
C2—C3 1.3870 (14) C5—H5A 0.95
C6—N1—C2 116.15 (9) C5—C4—H4A 120.2
N2—C1—C2 177.99 (12) C3—C4—H4A 120.2
N1—C2—C3 124.44 (9) C4—C5—C6 117.21 (9)
N1—C2—C1 113.94 (9) C4—C5—H5A 121.4
C3—C2—C1 121.62 (9) C6—C5—H5A 121.4
C2—C3—C4 117.46 (9) N1—C6—C5 125.09 (9)
C2—C3—H3A 121.3 N1—C6—Cl 114.83 (8)
C4—C3—H3A 121.3 C5—C6—Cl 120.07 (8)
C5—C4—C3 119.65 (9)
C6—N1—C2—C3 0.62 (14) C3—C4—C5—C6 −0.07 (15)
C6—N1—C2—C1 −178.24 (8) C2—N1—C6—C5 0.12 (15)
N1—C2—C3—C4 −1.03 (15) C2—N1—C6—Cl 179.80 (7)
C1—C2—C3—C4 177.74 (9) C4—C5—C6—N1 −0.38 (15)
C2—C3—C4—C5 0.71 (15) C4—C5—C6—Cl 179.96 (7)

(II) 6-Chloropyridine-2-carbonitrile. Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4A···N1i 0.95 2.49 3.4099 (15) 164
C5—H5A···N2ii 0.95 2.70 3.5651 (17) 152

Symmetry codes: (i) x−1, y, z; (ii) −x+3/2, y−1/2, −z+3/2.

References

  1. Bondi, A. (1964). J. Phys. Chem. 68, 441–451 .
  2. Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bull, J. A., Mousseau, J. J., Pelletier, G. & Charette, A. B. (2012). Chem. Rev. 112, 2642–2713. [DOI] [PubMed]
  4. Busto, E., Gotor-Fernandez, V. & Gotor, V. (2005). Tetrahedron Asymmetry, 16, 3427–3425.
  5. Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Freytag, M. & Jones, P. G. (2001). Z. Naturforsch. Teil B, 56, 889–896.
  8. Freytag, M., Jones, P. G., Aherns, B. & Fischer, A. K. (1999). New J. Chem. 23, 1137–1139.
  9. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  10. Guo, S., Wang, Y., Sun, C., Li, J., Zou, D., Wu, Y. & Wu, Y. (2013). Tetrahedron Lett. 54, 3233–3237.
  11. Hunter, C. A. & Saunders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534.
  12. Jelsch, C., Soudani, S. & Ben Nasr, C. (2015). IUCrJ, 2, 327–340. [DOI] [PMC free article] [PubMed]
  13. Kiener, A., Roduit, J.-P. & Glockler, R. (1996). Eur. Patent Appl. EP747486A119961211.
  14. Kubiak, R., Janczak, J. & Śledź, M. (2002). J. Mol. Struct. 610, 59–64.
  15. Laing, M., Sparrow, N. & Sommerville, P. (1971). Acta Cryst. B27, 1986–1990.
  16. Lueckheide, M., Rothman, N., Ko, B. & Tanski, J. M. (2013). Polyhedron, 58, 79–84.
  17. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  18. Mootz, D. & Wussow, H. G. (1981). J. Chem. Phys 75, 1517–1522.
  19. Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353–2360.
  20. Ruetman, S. H. & Taplin, W. H. (1971). US Patent 3591597 A.
  21. Sakamoto, T., Kaneda, S.-I., Nishimura, S. & Yamanaka, H. (1985). Chem. Pharm. Bull. 2, 565–571.
  22. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  23. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  24. Tsukamoto, I., Koshio, H., Kuramochi, T., Saitoh, C., Yanai-Inamura, H., Kitada-Nozawa, C., Yamamoto, E., Yatsu, T., Shimada, Y., Sakamoto, S. & Tsukamoto, S.-I. (2009). Bioorg. Med. Chem. 17, 3130–3141. [DOI] [PubMed]
  25. Veerareddy, A., Surendrareddy, G. & Dubey, P. K. (2011). J. Heterocycl. Chem. 48, 961–964.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989015011767/rz5161sup1.cif

e-71-00852-sup1.cif (829.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015011767/rz5161Isup2.hkl

e-71-00852-Isup2.hkl (149KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989015011767/rz5161IIsup3.hkl

e-71-00852-IIsup3.hkl (150.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015011767/rz5161Isup4.cml

Supporting information file. DOI: 10.1107/S2056989015011767/rz5161IIsup5.cml

CCDC references: 1407613, 1407612

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES