Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 3;71(Pt 7):o438–o439. doi: 10.1107/S2056989015010221

Crystal structure of 1-[(2,4,6-triiso­propyl­phen­yl)sulfon­yl]aziridine

Lena Knauer a, Christopher Golz a, Carsten Strohmann a,*
PMCID: PMC4518957  PMID: 26279895

Abstract

The title compound, C17H27NO2S, exhibits a distorted geometry of the aromatic ring with elongated bonds at the ipso-C atom. The S atom deviates from the aromatic ring plane by 0.393 (4) Å. Similar to this, the adjacent isopropyl groups are bent out of the aromatic ring plane by −0.125 (4) and −0.154 (4) Å. Even the distant isopropyl group in para-position to the sulfonyl moiety shows a slight deviation from the ring plane of 0.111 (5) Å. These distortions, which are caused by the bulky substituents, can also be observed in related sulfonyl­aziridine structures.

Keywords: crystal structure, aziridine, triiso­propyl­benzene­sulfon­yl, consecutive ring-opening reactions

Related literature  

For the crystal structure of a related phenyl-substituted compound, see: Golz et al. (2014). For a discussion of the geometry of the triiso­propyl­benzene­sulfonyl moiety, see: Sandrock et al. (2004). For a discussion of the pyramidalized geometry of N-sulfonyl­amides, see: Ohwada et al. (1998). By regioselective ring opening reactions, countless nitro­gen-containing compounds are accessible, see: Stamm (1999); Schneider (2009). For consecutive ring-opening reactions of aziridines by tri­ethyl­amine, see: Golz & Strohmann (2015). In some cases, the three-membered aziridine ring is further activated by electron-withdrawing groups (Hu, 2004) to increase its reactivity.graphic file with name e-71-0o438-scheme1.jpg

Experimental  

Crystal data  

  • C17H27NO2S

  • M r = 309.45

  • Monoclinic, Inline graphic

  • a = 6.2679 (8) Å

  • b = 17.5289 (18) Å

  • c = 16.3890 (13) Å

  • β = 100.331 (10)°

  • V = 1771.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 173 K

  • 0.33 × 0.25 × 0.01 mm

Data collection  

  • Agilent Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) T min = 0.782, T max = 1.000

  • 9521 measured reflections

  • 3449 independent reflections

  • 2479 reflections with I > 2σ(I)

  • R int = 0.049

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.141

  • S = 1.07

  • 3449 reflections

  • 196 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.58 e Å−3

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015010221/fk2088sup1.cif

e-71-0o438-sup1.cif (353.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010221/fk2088Isup2.hkl

e-71-0o438-Isup2.hkl (275.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015010221/fk2088Isup3.cml

. DOI: 10.1107/S2056989015010221/fk2088fig1.tif

Mol­ecular structure of the title compound with anisotropic displacement ellipsoids drawn at 50% probability level.

CCDC reference: 1403377

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Deutsche Forschungsgemeinschaft (DFG) for financial support.

supplementary crystallographic information

S1. Structural commentary

Aziridines are inter­esting and versatile building blocks in synthetic chemistry due to their high ring strain. By regioselective ring opening reactions, countless nitro­gen-containing compounds are accessible (Stamm, 1999; Schneider, 2009). For example, the aziridine ring can be opened by tri­ethyl­amine (Golz & Strohmann, 2015). In some cases, the three-membered aziridine ring is further activated by electron-withdrawing groups (Hu, 2004) to increase its reactivity.

The title compound, C17H27NO2S, is a representative of the class of activated aziridines, as it contains a triiso­propyl­benzene substituted sulfonyl ester attached to the nitro­gen atom. In the aromatic ring, the bulky substituents lead to a distortion of its geometry. This is expressed by the increased bond lengths and out-of-plane bent substituents around the benzene ring. At the ipso-carbon, the bonds C10–C11 and C10–C6 are slightly elongated to 1.410 (3) Å. In contrast, the other bonds of the aromatic ring exhibit usual lengths [C4–C15 1.374 (3) Å, C5–C61.380 (3) Å, C11–C15 1.388 (3) Å, C4–C5 1.389 (3) Å]. The sulfonyl group as well as the adjacent iso­propyl groups bend out of the aromatic plane. This is caused by steric repulsion between the iso­propyl groups and the sulfonyl oxygen atoms. The sulfur atom deviates from the mean aromatic ring plane by 0.393 (4) Å. The carbon atoms C7 and C12 show distances of -0.125 (4) Å and -0.154 (4) Å, respectively (see Table 5). A similar distortion can also be observed at the iso­propyl group in para position to the sulfonyl moiety. Here, C1 has a distance to the aromatic ring plane of 0.111 (5) Å, thus being distorted in the same direction as the sulfur atom. This is caused by steric repulsion between the C1 iso­propyl group and the adjacent iso­propyl groups in ortho position in respect of the sulfonyl moiety.

S2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

Hydrogen atoms were located from difference Fourier maps, refined at idealized positions riding on the carbon atoms with isotropic displacement parameters Uiso(H) = 1.2Ueq(C) or 1.5Ueq(–CH3) and aromatic C–H = 0.95 Å, primary C–H = 0.98 Å, secondary C–H = 0.99 Å, tertiary C–H = 1.00 Å. All CH3 hydrogen atoms were allowed to rotate but not to tip. Aziridine protons could be located from difference Fourier maps, but were refined as idealized CH2 groups.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with anisotropic displacement ellipsoids drawn at 50% probability level.

Crystal data

C17H27NO2S F(000) = 672
Mr = 309.45 Dx = 1.160 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 6.2679 (8) Å Cell parameters from 2277 reflections
b = 17.5289 (18) Å θ = 3.3–29.2°
c = 16.3890 (13) Å µ = 0.19 mm1
β = 100.331 (10)° T = 173 K
V = 1771.5 (3) Å3 Plate, colourless
Z = 4 0.33 × 0.25 × 0.01 mm

Data collection

Agilent Xcalibur Sapphire3 diffractometer 3449 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2479 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.049
Detector resolution: 16.0560 pixels mm-1 θmax = 26.0°, θmin = 2.5°
ω scans h = −7→7
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) k = −15→21
Tmin = 0.782, Tmax = 1.000 l = −20→20
9521 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053 H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.8936P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
3449 reflections Δρmax = 0.33 e Å3
196 parameters Δρmin = −0.58 e Å3

Special details

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.36.28 (release 01-02-2013 CrysAlis171 .NET) (compiled Feb 1 2013,16:14:44) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.71473 (10) 0.20619 (4) 0.37952 (4) 0.0245 (2)
C10 0.7527 (4) 0.26810 (13) 0.29748 (14) 0.0205 (5)
C15 0.8227 (4) 0.28863 (14) 0.16069 (15) 0.0272 (6)
H15 0.8229 0.2705 0.1061 0.033*
C6 0.8105 (4) 0.34434 (14) 0.31802 (14) 0.0246 (6)
C5 0.8842 (4) 0.38836 (15) 0.25903 (15) 0.0297 (6)
H5 0.9273 0.4394 0.2726 0.036*
C11 0.7462 (4) 0.24050 (14) 0.21624 (15) 0.0243 (6)
C4 0.8981 (4) 0.36110 (15) 0.18058 (15) 0.0279 (6)
O1 0.7219 (3) 0.12858 (10) 0.35547 (11) 0.0370 (5)
O2 0.8625 (3) 0.22687 (11) 0.45315 (10) 0.0360 (5)
N1 0.4729 (4) 0.23217 (13) 0.39562 (14) 0.0345 (6)
C17 0.3491 (5) 0.17365 (19) 0.4317 (2) 0.0500 (9)
H17A 0.4185 0.1234 0.4451 0.060*
H17B 0.2536 0.1908 0.4702 0.060*
C16 0.2886 (6) 0.1945 (3) 0.3447 (2) 0.0701 (12)
H16A 0.1543 0.2246 0.3280 0.084*
H16B 0.3190 0.1572 0.3029 0.084*
C12 0.6577 (5) 0.16388 (14) 0.18281 (15) 0.0312 (6)
H12 0.5872 0.1391 0.2261 0.037*
C7 0.7975 (4) 0.38301 (14) 0.40041 (15) 0.0290 (6)
H7 0.7291 0.3463 0.4347 0.035*
C1 0.9900 (5) 0.41027 (15) 0.11913 (15) 0.0331 (7)
H1 0.9766 0.3811 0.0660 0.040*
C13 0.4860 (6) 0.17400 (18) 0.10515 (18) 0.0489 (9)
H13A 0.3751 0.2099 0.1166 0.073*
H13B 0.4184 0.1246 0.0887 0.073*
H13C 0.5539 0.1940 0.0602 0.073*
C3 0.8614 (5) 0.48402 (17) 0.10107 (18) 0.0457 (8)
H3A 0.7095 0.4719 0.0787 0.068*
H3B 0.9223 0.5142 0.0605 0.068*
H3C 0.8695 0.5133 0.1525 0.068*
C14 0.8399 (5) 0.11176 (17) 0.1661 (2) 0.0471 (8)
H14A 0.9167 0.1361 0.1259 0.071*
H14B 0.7787 0.0631 0.1436 0.071*
H14C 0.9415 0.1026 0.2180 0.071*
C2 1.2285 (5) 0.42692 (19) 0.1493 (2) 0.0496 (9)
H2A 1.2459 0.4567 0.2006 0.074*
H2B 1.2856 0.4560 0.1068 0.074*
H2C 1.3083 0.3788 0.1597 0.074*
C8 1.0244 (5) 0.40142 (17) 0.44750 (16) 0.0407 (8)
H8A 1.1099 0.3544 0.4564 0.061*
H8B 1.0137 0.4243 0.5012 0.061*
H8C 1.0951 0.4374 0.4151 0.061*
C9 0.6542 (6) 0.45350 (17) 0.38647 (18) 0.0476 (8)
H9A 0.7228 0.4919 0.3562 0.071*
H9B 0.6351 0.4744 0.4401 0.071*
H9C 0.5125 0.4396 0.3541 0.071*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0289 (4) 0.0256 (4) 0.0205 (3) 0.0015 (3) 0.0085 (3) 0.0032 (3)
C10 0.0213 (13) 0.0238 (13) 0.0168 (11) 0.0008 (10) 0.0048 (10) 0.0025 (10)
C15 0.0372 (16) 0.0275 (14) 0.0178 (12) −0.0032 (12) 0.0077 (11) −0.0036 (10)
C6 0.0284 (14) 0.0279 (14) 0.0174 (12) −0.0012 (11) 0.0039 (11) −0.0011 (10)
C5 0.0401 (17) 0.0269 (14) 0.0228 (13) −0.0082 (12) 0.0077 (12) −0.0035 (11)
C11 0.0283 (14) 0.0233 (13) 0.0212 (12) 0.0003 (11) 0.0043 (11) −0.0005 (10)
C4 0.0358 (16) 0.0297 (15) 0.0190 (12) −0.0034 (12) 0.0068 (11) 0.0003 (11)
O1 0.0590 (14) 0.0250 (10) 0.0292 (10) 0.0063 (9) 0.0137 (10) 0.0051 (8)
O2 0.0431 (13) 0.0460 (12) 0.0184 (9) −0.0037 (9) 0.0036 (9) 0.0068 (8)
N1 0.0286 (13) 0.0448 (14) 0.0326 (12) −0.0001 (11) 0.0128 (11) 0.0007 (11)
C17 0.0423 (19) 0.053 (2) 0.063 (2) −0.0197 (15) 0.0294 (17) −0.0063 (17)
C16 0.0294 (19) 0.123 (4) 0.059 (2) −0.014 (2) 0.0122 (17) −0.030 (2)
C12 0.0473 (18) 0.0251 (14) 0.0221 (13) −0.0042 (12) 0.0088 (12) −0.0015 (11)
C7 0.0442 (17) 0.0251 (14) 0.0197 (12) −0.0084 (12) 0.0115 (12) −0.0048 (11)
C1 0.0504 (18) 0.0296 (15) 0.0224 (13) −0.0063 (13) 0.0152 (13) −0.0008 (11)
C13 0.060 (2) 0.0442 (19) 0.0360 (16) −0.0173 (16) −0.0084 (16) −0.0013 (14)
C3 0.060 (2) 0.0423 (19) 0.0371 (16) −0.0001 (16) 0.0160 (16) 0.0155 (14)
C14 0.059 (2) 0.0336 (17) 0.0517 (19) −0.0011 (15) 0.0181 (17) −0.0145 (15)
C2 0.047 (2) 0.055 (2) 0.0497 (19) −0.0071 (16) 0.0182 (16) 0.0124 (16)
C8 0.056 (2) 0.0432 (18) 0.0215 (13) −0.0145 (15) 0.0028 (14) −0.0060 (13)
C9 0.070 (2) 0.0402 (18) 0.0353 (16) 0.0090 (16) 0.0172 (16) −0.0109 (14)

Geometric parameters (Å, º)

S1—C10 1.777 (2) C7—H7 1.0000
S1—O1 1.4193 (19) C7—C8 1.526 (4)
S1—O2 1.4300 (19) C7—C9 1.520 (4)
S1—N1 1.649 (2) C1—H1 1.0000
C10—C6 1.410 (3) C1—C3 1.524 (4)
C10—C11 1.410 (3) C1—C2 1.517 (4)
C15—H15 0.9500 C13—H13A 0.9800
C15—C11 1.388 (3) C13—H13B 0.9800
C15—C4 1.374 (4) C13—H13C 0.9800
C6—C5 1.380 (3) C3—H3A 0.9800
C6—C7 1.526 (3) C3—H3B 0.9800
C5—H5 0.9500 C3—H3C 0.9800
C5—C4 1.389 (3) C14—H14A 0.9800
C11—C12 1.518 (4) C14—H14B 0.9800
C4—C1 1.516 (3) C14—H14C 0.9800
N1—C17 1.473 (3) C2—H2A 0.9800
N1—C16 1.456 (4) C2—H2B 0.9800
C17—H17A 0.9900 C2—H2C 0.9800
C17—H17B 0.9900 C8—H8A 0.9800
C17—C16 1.455 (5) C8—H8B 0.9800
C16—H16A 0.9900 C8—H8C 0.9800
C16—H16B 0.9900 C9—H9A 0.9800
C12—H12 1.0000 C9—H9B 0.9800
C12—C13 1.523 (4) C9—H9C 0.9800
C12—C14 1.526 (4)
O1—S1—C10 111.10 (11) C8—C7—H7 107.9
O1—S1—O2 115.43 (12) C9—C7—C6 110.6 (2)
O1—S1—N1 112.65 (12) C9—C7—H7 107.9
O2—S1—C10 109.23 (11) C9—C7—C8 112.1 (2)
O2—S1—N1 105.67 (12) C4—C1—H1 107.8
N1—S1—C10 101.77 (11) C4—C1—C3 111.1 (2)
C6—C10—S1 117.51 (17) C4—C1—C2 111.3 (2)
C6—C10—C11 120.9 (2) C3—C1—H1 107.8
C11—C10—S1 121.32 (19) C2—C1—H1 107.8
C11—C15—H15 118.3 C2—C1—C3 110.9 (2)
C4—C15—H15 118.3 C12—C13—H13A 109.5
C4—C15—C11 123.4 (2) C12—C13—H13B 109.5
C10—C6—C7 125.5 (2) C12—C13—H13C 109.5
C5—C6—C10 117.8 (2) H13A—C13—H13B 109.5
C5—C6—C7 116.7 (2) H13A—C13—H13C 109.5
C6—C5—H5 118.6 H13B—C13—H13C 109.5
C6—C5—C4 122.7 (2) C1—C3—H3A 109.5
C4—C5—H5 118.6 C1—C3—H3B 109.5
C10—C11—C12 126.2 (2) C1—C3—H3C 109.5
C15—C11—C10 117.1 (2) H3A—C3—H3B 109.5
C15—C11—C12 116.6 (2) H3A—C3—H3C 109.5
C15—C4—C5 117.5 (2) H3B—C3—H3C 109.5
C15—C4—C1 121.6 (2) C12—C14—H14A 109.5
C5—C4—C1 120.9 (2) C12—C14—H14B 109.5
C17—N1—S1 116.0 (2) C12—C14—H14C 109.5
C16—N1—S1 116.1 (2) H14A—C14—H14B 109.5
C16—N1—C17 59.5 (2) H14A—C14—H14C 109.5
N1—C17—H17A 117.8 H14B—C14—H14C 109.5
N1—C17—H17B 117.8 C1—C2—H2A 109.5
H17A—C17—H17B 114.9 C1—C2—H2B 109.5
C16—C17—N1 59.7 (2) C1—C2—H2C 109.5
C16—C17—H17A 117.8 H2A—C2—H2B 109.5
C16—C17—H17B 117.8 H2A—C2—H2C 109.5
N1—C16—H16A 117.7 H2B—C2—H2C 109.5
N1—C16—H16B 117.7 C7—C8—H8A 109.5
C17—C16—N1 60.8 (2) C7—C8—H8B 109.5
C17—C16—H16A 117.7 C7—C8—H8C 109.5
C17—C16—H16B 117.7 H8A—C8—H8B 109.5
H16A—C16—H16B 114.8 H8A—C8—H8C 109.5
C11—C12—H12 107.9 H8B—C8—H8C 109.5
C11—C12—C13 110.9 (2) C7—C9—H9A 109.5
C11—C12—C14 111.0 (2) C7—C9—H9B 109.5
C13—C12—H12 107.9 C7—C9—H9C 109.5
C13—C12—C14 111.1 (2) H9A—C9—H9B 109.5
C14—C12—H12 107.9 H9A—C9—H9C 109.5
C6—C7—H7 107.9 H9B—C9—H9C 109.5
C8—C7—C6 110.4 (2)
S1—C10—C6—C5 166.7 (2) C5—C6—C7—C8 −67.6 (3)
S1—C10—C6—C7 −13.6 (3) C5—C6—C7—C9 57.1 (3)
S1—C10—C11—C15 −166.5 (2) C5—C4—C1—C3 −58.7 (4)
S1—C10—C11—C12 15.3 (4) C5—C4—C1—C2 65.4 (3)
S1—N1—C17—C16 −106.4 (3) C11—C10—C6—C5 −7.3 (4)
S1—N1—C16—C17 106.1 (2) C11—C10—C6—C7 172.4 (3)
C10—S1—N1—C17 154.1 (2) C11—C15—C4—C5 −3.9 (4)
C10—S1—N1—C16 87.0 (2) C11—C15—C4—C1 177.0 (3)
C10—C6—C5—C4 1.6 (4) C4—C15—C11—C10 −1.5 (4)
C10—C6—C7—C8 112.8 (3) C4—C15—C11—C12 176.8 (2)
C10—C6—C7—C9 −122.6 (3) O1—S1—C10—C6 −162.51 (19)
C10—C11—C12—C13 125.2 (3) O1—S1—C10—C11 11.4 (3)
C10—C11—C12—C14 −110.8 (3) O1—S1—N1—C17 35.1 (2)
C15—C11—C12—C13 −52.9 (3) O1—S1—N1—C16 −32.0 (3)
C15—C11—C12—C14 71.0 (3) O2—S1—C10—C6 −34.0 (2)
C15—C4—C1—C3 120.4 (3) O2—S1—C10—C11 139.9 (2)
C15—C4—C1—C2 −115.5 (3) O2—S1—N1—C17 −91.8 (2)
C6—C10—C11—C15 7.2 (4) O2—S1—N1—C16 −158.9 (2)
C6—C10—C11—C12 −170.9 (2) N1—S1—C10—C6 77.4 (2)
C6—C5—C4—C15 3.8 (4) N1—S1—C10—C11 −108.7 (2)
C6—C5—C4—C1 −177.1 (3) C7—C6—C5—C4 −178.1 (3)

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: FK2088).

References

  1. Agilent (2013). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  3. Golz, C., Preut, H. & Strohmann, C. (2014). Acta Cryst. E70, o153. [DOI] [PMC free article] [PubMed]
  4. Golz, C. & Strohmann, C. (2015). Acta Cryst E71, 564–566. [DOI] [PMC free article] [PubMed]
  5. Hu, X. E. (2004). Tetrahedron, 60, 2701–2743.
  6. Ohwada, T., Okamoto, I., Shudo, K. & Yamaguchi, K. (1998). Tetrahedron Lett. 39, 7877–7880.
  7. Sandrock, P. B., Meyers, C. Y., Rath, N. P. & Robinson, P. D. (2004). Acta Cryst. E60, o544–o546.
  8. Schneider, C. (2009). Angew. Chem. Int. Ed. 48, 2082–2084.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  11. Stamm, H. (1999). J. Prakt. Chem. 341, 319–331.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015010221/fk2088sup1.cif

e-71-0o438-sup1.cif (353.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010221/fk2088Isup2.hkl

e-71-0o438-Isup2.hkl (275.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015010221/fk2088Isup3.cml

. DOI: 10.1107/S2056989015010221/fk2088fig1.tif

Mol­ecular structure of the title compound with anisotropic displacement ellipsoids drawn at 50% probability level.

CCDC reference: 1403377

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES