Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 3;71(Pt 7):734–736. doi: 10.1107/S2056989015009627

Crystal structure of (E)-N′-(5-bromo-2-hy­droxy­benzyl­idene)nicotinohydrazide monohydrate

S Sravya a, S Sruthy a, N Aiswarya b, M Sithambaresan c,*, M R Prathapachandra Kurup b
PMCID: PMC4518959  PMID: 26279854

The title compound, has an E conformation about the C=N bond and the mol­ecules is planar (r.m.s. deviation for all non-H atoms = 0.021 Å). In the crystal, the lattice water mol­ecule (Ow) links the mol­ecules via Ow—H⋯O, Ow—H⋯N and N—H⋯Ow hydrogen bonds, forming sheets lying parallel to (100).

Keywords: crystal structure, aroylhydrazone, carbohydrazide, nicotinohydrazide, hydrogen bonding

Abstract

In the title compound, C13H10BrN3O2·H2O, the conformation about the azomethine double bond is E. The mol­ecule exists in the amido form with a C=O bond length of 1.229 (2) Å. There is an intra­molecular O—H⋯N hydrogen bond forming an S(6) ring motif. The whole mol­ecule is almost planar, with an r.m.s. deviation of 0.021 Å for all non-H atoms, and the dihedral angle between the planes of the pyridine and benzene rings is 0.74 (12)°. In the crystal, the water mol­ecule of crystallization links the organic mol­ecules via Ow—H⋯O, Ow—H⋯N and N—H⋯Ow hydrogen bonds and short C—H⋯Ow contacts, forming sheets lying parallel to (100). Within the sheets there is a weak π–π inter­action involving the pyridine and benzene rings [centroid-to-centroid distance = 3.8473 (15) Å]. The sheets are linked via C—H⋯Br inter­actions, forming a three-dimensional network.

Chemical context  

Aroylhydrazones can coordinate to transition metals either in the amido form (Bessy Raj & Kurup, 2007) or in the imino­lato form (Ghosh et al., 2005; Galić et al., 2011), leading to the formation of two types of complexes. Hydrazones derived from isonicotinoyl hydrazides are potential drugs for the treatment of the iron-overload associated diseases (Macková et al., 2012). They are associated with a broad spectrum of biological activities, and studies have shown that nicotinic acid hydrazones could be considered as anti-inflammatory and analgesic agents (Navidpour et al., 2014; Kheradmand et al., 2013) and as a novel pharmacophore in the design of anti­convulsant drugs (Sinha et al., 2011). Hydrazones have been used in chemical processes, in non-linear optics and as sensors as well as in catalytic processes (Hosseini-Monfared et al., 2013; Du & Hong, 2014). Their potential as analytical reagents (Galić et al., 2011) and their uses as mol­ecular switches, metallo-assemblies and sensors have also been reported (Su & Aprahamian, 2014). Salicyl­aldehyde isonicotinoylhydrazone has also been used for the spectrophotometric determination of gallium(III) and indium(III) (Reddy et al., 2011).graphic file with name e-71-00734-scheme1.jpg

Structural commentary  

The title compound, Fig. 1, exists in the amido form with a C8=O2 bond length of 1.229 (2) Å. The mol­ecule has an E conformation with respect to the azomethine bond, which is confirmed by the torsion angle C6—C7=N1—N2 of 179.09 (19)°. The two aromatic rings (C1–C6 and N3/C9–C13), are inclined to the almost planar hydrazone moiety [O2/C8/N2/N1/C7; planar to within 0.006 (2) Å] by 2.12 (9) and 1.40 (8)°, respectively, and to each other by 0.74 (12)°. There is an intra­molecular O—H⋯N hydrogen bond present in the mol­ecule that involves the phenolic oxygen, O1 and the azomethine nitro­gen atom, N1, forming an S(6) ring motif (Table 1 and Fig. 1).

Figure 1.

Figure 1

A view of the mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O1H1N1 0.86(1) 1.91(2) 2.641(2) 143(3)
O1WH1AO2 0.85(1) 1.91(1) 2.756(2) 172(3)
O1WH1BN3i 0.85(1) 2.03(1) 2.845(3) 162(2)
N2H2O1W ii 0.87(1) 1.95(1) 2.806(3) 169(3)
C7H7O1W ii 0.93 2.49 3.263(3) 140
C10H10O1W ii 0.93 2.45 3.362(3) 165
C11H11Br1iii 0.93 2.93 3.825(3) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Supra­molecular features  

In the crystal, the water mol­ecule forms three hydrogen bonds with three different nicotinic hydrazone mol­ecules (Table 1 and Fig. 2). This compound is an example of a system where a single atom acts both as donor and acceptor. There are also C—H⋯O(water) contacts present enclosing Inline graphic(6) and Inline graphic(7) ring motifs (Fig. 2). Finally sheets are formed lying parallel to (100). There are weak π–π inter­actions within the sheets involving the bromine-bearing aromatic ring of one mol­ecule and the pyridine ring of another, with a centroid–centroid distance of 3.8473 (15) Å (Fig. 2). The sheets are linked via C—H⋯Br inter­actions, forming a three-dimensional network (Table 1 and Fig. 3).

Figure 2.

Figure 2

Hydrogen bonds (dashed lines) and a weak π–π inter­action (in blue) in the crystal of the title compound [symmetry codes: (i) x, −y + Inline graphic, z + Inline graphic; (ii) −x, y + Inline graphic, −z + Inline graphic].

Figure 3.

Figure 3

A view along the c axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details) and H atoms not involved in hydrogen bonding have been omitted for clarity.

Database survey  

A search of the Cambridge Structural Database (Version 5.36, update Feb. 2015; Groom & Allen, 2014) yielded 22 hits for the substructure N′-(2-hy­droxy­benzyl­idene)nico­tino­hydra­zide. The crystal structure of N′-(2-hy­droxy­benzyl­idene)nicotinohydrazide itself is reported as a monohydrate (IDASUB; Galić et al., 2001), and the crystal structure of the chloro derivative of the title compound, which crystallized with two independent mol­ecules in the asymmetric unit, has also been reported (MOZPIB; Ren, 2009). In these two compounds, an intra­molecular O—H⋯N hydrogen bond is also present. The mol­ecules are also relatively planar, with the benzene and pyridine rings being inclined to one another by ca 4.2° in IDASUB, and by ca 12.8 and 1.9° in the two independent mol­ecules of MOZPIB. This last dihedral angle is similar to that in the title compound [cf. 0.74 (12)°]. In the crystal structure of N′-(2-hy­droxy­benzyl­idene)nico­tino­hydrazide monohydrate (IDASUB), the water mol­ecule forms three hydrogen bonds and is another example of a system where a single atom acts both as donor and acceptor.

Synthesis and crystallization  

The title compound was prepared by adapting a reported procedure (Mathew & Kurup, 2011). A methano­lic solution of 5-bromo­salicyl­aldehyde (0.10051 g, 0.5 mmol) and nicotinic hydrazide (0.06857 g, 0.5 mmol) was refluxed for 3 h with two drops of glacial acetic acid. Light-yellow block-shaped crystals of the title compound were obtained by slow evaporation of the solvent. The crystals were filtered, washed with minimum qu­antity of methanol and dried over P4O10 in vacuo (yield: 0.22 g, 68.5%; m.p.: 480 K). Elemental analysis calculated for C13H10N3O2Br·H2O: C, 46.17, H, 3.58, N, 12.43%; found: C, 46.14, H, 3.57, N, 12.44%. IR FT–IR (KBr, cm−1) 3059 (NH), 3269(OH), 1680 (C=O), 1584 (C=N).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The water, hydroxyl and NH H atoms were located in difference Fourier maps and refined with distances restraints: O—H = 0.86 (1) Å and N—H = 0.88 (1) Å. All C-bound H atoms were placed in calculated positions and refined as riding: C—H = 0.93 Å with U iso(H) = 1.2U eq(C). Three reflections were omitted owing to bad agreement, viz. 100, 110 and 200.

Table 2. Experimental details.

Crystal data
Chemical formula C13H10BrN3O2H2O
M r 338.17
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c () 8.1623(7), 12.5953(9), 13.2510(8)
() 90.226(3)
V (3) 1362.28(17)
Z 4
Radiation type Mo K
(mm1) 3.03
Crystal size (mm) 0.42 0.12 0.11
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004)
T min, T max 0.349, 0.356
No. of measured, independent and observed [I > 2(I)] reflections 7570, 3331, 2233
R int 0.028
(sin /)max (1) 0.668
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.036, 0.102, 0.99
No. of reflections 3331
No. of parameters 198
No. of restraints 5
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.46, 0.35

Computer programs: APEX2, SAINT and XPREP (Bruker, 2004), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2010), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015009627/su5132sup1.cif

e-71-00734-sup1.cif (242.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009627/su5132Isup2.hkl

e-71-00734-Isup2.hkl (182.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015009627/su5132Isup3.cml

CCDC reference: 1401825

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

NA is grateful to the UGC, New Delhi, India, for the award of a Senior Research Fellowship. MRPK is grateful to the UGC, New Delhi, India, for a UGC–BSR one-time grant to Faculty. We also thank the Sophisticated Analytical Instruments Facility, Cochin University of S&T, Kochi-22, India, for the diffraction measurements.

supplementary crystallographic information

Crystal data

C13H10BrN3O2·H2O F(000) = 680
Mr = 338.17 Dx = 1.649 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 8.1623 (7) Å Cell parameters from 2267 reflections
b = 12.5953 (9) Å θ = 2.9–25.5°
c = 13.2510 (8) Å µ = 3.03 mm1
β = 90.226 (3)° T = 296 K
V = 1362.28 (17) Å3 Needle, yellow
Z = 4 0.42 × 0.12 × 0.11 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 2233 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.028
ω and φ scan θmax = 28.3°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −10→4
Tmin = 0.349, Tmax = 0.356 k = −16→16
7570 measured reflections l = −16→17
3331 independent reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0557P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102 (Δ/σ)max < 0.001
S = 0.99 Δρmax = 0.46 e Å3
3331 reflections Δρmin = −0.35 e Å3
198 parameters Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
5 restraints Extinction coefficient: 0.0129 (13)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3276 (3) 0.35310 (19) 0.45911 (17) 0.0442 (6)
C2 0.4115 (4) 0.3763 (2) 0.54807 (18) 0.0527 (7)
H2 0.4272 0.4467 0.5667 0.063*
C3 0.4712 (3) 0.2969 (2) 0.60856 (16) 0.0499 (6)
H3 0.5276 0.3134 0.6676 0.060*
C4 0.4471 (3) 0.19134 (19) 0.58114 (15) 0.0443 (6)
C5 0.3653 (3) 0.16695 (19) 0.49313 (15) 0.0441 (6)
H5 0.3499 0.0962 0.4753 0.053*
C6 0.3057 (3) 0.24637 (18) 0.43065 (15) 0.0401 (5)
C7 0.2191 (3) 0.21655 (19) 0.33854 (15) 0.0431 (6)
H7 0.2084 0.1452 0.3219 0.052*
C8 0.0128 (3) 0.32662 (17) 0.13365 (15) 0.0385 (5)
C9 −0.0754 (3) 0.28892 (17) 0.04153 (15) 0.0358 (5)
C10 −0.0990 (3) 0.18419 (18) 0.01526 (15) 0.0450 (6)
H10 −0.0591 0.1321 0.0586 0.054*
C11 −0.2332 (4) 0.2286 (2) −0.12925 (19) 0.0560 (7)
H11 −0.2880 0.2083 −0.1878 0.067*
C12 −0.2160 (3) 0.3349 (2) −0.10981 (18) 0.0580 (7)
H12 −0.2581 0.3852 −0.1542 0.070*
C13 −0.1355 (3) 0.36555 (19) −0.02368 (18) 0.0487 (6)
H13 −0.1214 0.4372 −0.0092 0.058*
N1 0.1580 (2) 0.28694 (15) 0.28050 (12) 0.0426 (5)
N2 0.0760 (3) 0.25244 (15) 0.19557 (13) 0.0403 (4)
N3 −0.1758 (3) 0.15309 (16) −0.06888 (13) 0.0524 (6)
O1 0.2713 (3) 0.43501 (14) 0.40347 (14) 0.0634 (6)
O2 0.0235 (3) 0.42215 (12) 0.15145 (12) 0.0586 (6)
O1W −0.0975 (3) 0.53043 (13) 0.31578 (13) 0.0641 (6)
Br1 0.52655 (4) 0.08150 (2) 0.66553 (2) 0.06576 (15)
H1 0.218 (4) 0.412 (2) 0.3516 (16) 0.079 (11)*
H2' 0.075 (3) 0.1842 (9) 0.1847 (18) 0.060 (8)*
H1A −0.053 (4) 0.4947 (19) 0.2684 (15) 0.087 (11)*
H1B −0.129 (3) 0.4858 (16) 0.3591 (15) 0.065 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0439 (15) 0.0460 (13) 0.0426 (11) −0.0079 (11) 0.0002 (10) −0.0046 (10)
C2 0.0600 (18) 0.0505 (14) 0.0477 (13) −0.0140 (13) 0.0000 (12) −0.0154 (11)
C3 0.0470 (16) 0.0603 (15) 0.0423 (12) −0.0117 (12) −0.0076 (11) −0.0122 (11)
C4 0.0385 (14) 0.0545 (14) 0.0399 (11) 0.0016 (11) −0.0018 (10) −0.0070 (10)
C5 0.0429 (15) 0.0446 (13) 0.0446 (12) −0.0009 (11) −0.0008 (10) −0.0131 (10)
C6 0.0364 (13) 0.0462 (13) 0.0378 (11) −0.0056 (10) 0.0010 (9) −0.0113 (9)
C7 0.0467 (15) 0.0435 (13) 0.0391 (11) −0.0050 (11) −0.0024 (10) −0.0104 (10)
C8 0.0475 (15) 0.0335 (12) 0.0346 (10) −0.0053 (10) 0.0043 (9) −0.0044 (8)
C9 0.0387 (13) 0.0339 (11) 0.0349 (10) −0.0006 (9) 0.0038 (9) −0.0037 (8)
C10 0.0599 (17) 0.0366 (12) 0.0384 (11) −0.0042 (11) −0.0085 (11) −0.0012 (9)
C11 0.0588 (18) 0.0624 (17) 0.0469 (13) −0.0008 (13) −0.0150 (12) −0.0026 (11)
C12 0.0626 (19) 0.0557 (17) 0.0556 (14) 0.0138 (14) −0.0201 (13) 0.0040 (11)
C13 0.0533 (17) 0.0363 (13) 0.0564 (14) 0.0067 (11) −0.0034 (12) 0.0000 (10)
N1 0.0479 (13) 0.0449 (11) 0.0348 (9) −0.0106 (9) −0.0022 (8) −0.0090 (8)
N2 0.0510 (13) 0.0350 (11) 0.0348 (9) −0.0064 (9) −0.0039 (8) −0.0069 (7)
N3 0.0667 (16) 0.0464 (12) 0.0439 (11) −0.0042 (11) −0.0110 (10) −0.0066 (9)
O1 0.0871 (16) 0.0443 (11) 0.0587 (11) −0.0099 (9) −0.0178 (11) −0.0052 (8)
O2 0.0956 (17) 0.0328 (9) 0.0472 (9) −0.0063 (8) −0.0065 (10) −0.0094 (6)
O1W 0.1112 (19) 0.0316 (9) 0.0494 (10) 0.0065 (10) 0.0025 (11) 0.0023 (8)
Br1 0.0773 (3) 0.0634 (2) 0.0564 (2) 0.00894 (15) −0.01868 (14) −0.00546 (12)

Geometric parameters (Å, º)

C1—O1 1.348 (3) C8—C9 1.492 (3)
C1—C2 1.392 (3) C9—C10 1.378 (3)
C1—C6 1.407 (3) C9—C13 1.384 (3)
C2—C3 1.370 (4) C10—N3 1.336 (3)
C2—H2 0.9300 C10—H10 0.9300
C3—C4 1.392 (3) C11—N3 1.327 (3)
C3—H3 0.9300 C11—C12 1.370 (4)
C4—C5 1.376 (3) C11—H11 0.9300
C4—Br1 1.892 (2) C12—C13 1.370 (3)
C5—C6 1.386 (3) C12—H12 0.9300
C5—H5 0.9300 C13—H13 0.9300
C6—C7 1.457 (3) N1—N2 1.378 (2)
C7—N1 1.274 (3) N2—H2' 0.872 (10)
C7—H7 0.9300 O1—H1 0.858 (10)
C8—O2 1.229 (2) O1W—H1A 0.854 (10)
C8—N2 1.345 (3) O1W—H1B 0.845 (9)
O1—C1—C2 117.9 (2) N2—C8—C9 117.42 (18)
O1—C1—C6 122.8 (2) C10—C9—C13 117.5 (2)
C2—C1—C6 119.3 (2) C10—C9—C8 125.3 (2)
C3—C2—C1 121.0 (2) C13—C9—C8 117.22 (19)
C3—C2—H2 119.5 N3—C10—C9 123.8 (2)
C1—C2—H2 119.5 N3—C10—H10 118.1
C2—C3—C4 119.6 (2) C9—C10—H10 118.1
C2—C3—H3 120.2 N3—C11—C12 123.4 (2)
C4—C3—H3 120.2 N3—C11—H11 118.3
C5—C4—C3 120.1 (2) C12—C11—H11 118.3
C5—C4—Br1 120.11 (18) C13—C12—C11 118.7 (2)
C3—C4—Br1 119.75 (17) C13—C12—H12 120.6
C4—C5—C6 120.9 (2) C11—C12—H12 120.6
C4—C5—H5 119.6 C12—C13—C9 119.4 (2)
C6—C5—H5 119.6 C12—C13—H13 120.3
C5—C6—C1 119.1 (2) C9—C13—H13 120.3
C5—C6—C7 118.8 (2) C7—N1—N2 117.49 (18)
C1—C6—C7 122.1 (2) C8—N2—N1 117.59 (18)
N1—C7—C6 120.9 (2) C8—N2—H2' 125.4 (19)
N1—C7—H7 119.5 N1—N2—H2' 116.9 (19)
C6—C7—H7 119.5 C11—N3—C10 117.2 (2)
O2—C8—N2 122.4 (2) C1—O1—H1 111 (2)
O2—C8—C9 120.1 (2) H1A—O1W—H1B 106 (2)
O1—C1—C2—C3 179.6 (2) N2—C8—C9—C10 0.7 (3)
C6—C1—C2—C3 −0.7 (4) O2—C8—C9—C13 3.2 (3)
C1—C2—C3—C4 −0.4 (4) N2—C8—C9—C13 −177.9 (2)
C2—C3—C4—C5 0.8 (4) C13—C9—C10—N3 0.1 (4)
C2—C3—C4—Br1 −179.05 (19) C8—C9—C10—N3 −178.6 (2)
C3—C4—C5—C6 −0.1 (4) N3—C11—C12—C13 0.0 (5)
Br1—C4—C5—C6 179.72 (18) C11—C12—C13—C9 −0.6 (4)
C4—C5—C6—C1 −1.0 (3) C10—C9—C13—C12 0.6 (4)
C4—C5—C6—C7 −179.7 (2) C8—C9—C13—C12 179.4 (2)
O1—C1—C6—C5 −179.0 (2) C6—C7—N1—N2 −179.09 (19)
C2—C1—C6—C5 1.4 (4) O2—C8—N2—N1 −1.4 (3)
O1—C1—C6—C7 −0.3 (4) C9—C8—N2—N1 179.77 (18)
C2—C1—C6—C7 −180.0 (2) C7—N1—N2—C8 −179.3 (2)
C5—C6—C7—N1 177.9 (2) C12—C11—N3—C10 0.7 (4)
C1—C6—C7—N1 −0.8 (3) C9—C10—N3—C11 −0.7 (4)
O2—C8—C9—C10 −178.1 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.86 (1) 1.91 (2) 2.641 (2) 143 (3)
O1W—H1A···O2 0.85 (1) 1.91 (1) 2.756 (2) 172 (3)
O1W—H1B···N3i 0.85 (1) 2.03 (1) 2.845 (3) 162 (2)
N2—H2′···O1Wii 0.87 (1) 1.95 (1) 2.806 (3) 169 (3)
C7—H7···O1Wii 0.93 2.49 3.263 (3) 140
C10—H10···O1Wii 0.93 2.45 3.362 (3) 165
C11—H11···Br1iii 0.93 2.93 3.825 (3) 162

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x, y−1/2, −z+1/2; (iii) x−1, y, z−1.

References

  1. Bessy Raj, B. N. & Kurup, M. R. P. (2007). Spectrochim. Acta Part A, 66, 898–903. [DOI] [PubMed]
  2. Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Du, C. & Hong, Z. (2014). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 45, 507–511.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Galić, N., Perić, B., Kojić-Prodić, B. & Cimerman, Z. (2001). J. Mol. Struct. 559, 187–194.
  7. Galić, N., Rubčić, M., Magdić, K., Cindrić, M. & Tomišić (2011). Inorg. Chim. Acta, 366, 98–104.
  8. Ghosh, T., Bhattacharya, S., Das, A., Mukherjee, G. & Drew, M. G. B. (2005). Inorg. Chim. Acta, 358, 989–996.
  9. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  10. Hosseini-Monfared, H., Farrokhi, A., Alavi, S. & Mayer, P. (2013). Transition Met. Chem. 38, 267–273.
  11. Kheradmand, A., Navidpour, L., Shafaroodi, H., Saeedi-Motahar, G. & Shafiee, A. (2013). Med. Chem. Res. 22, 2411–2420.
  12. Macková, E., Hrušková, K., Bendová, P., Vávrová, A., Jansová, H., Hašková, P., Kovaříková, P., Vávrová, K. & Šimůnek, T. (2012). Chem-Biol. Interact. 197, 69–79. [DOI] [PubMed]
  13. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  14. Mathew, N. & Kurup, M. R. P. (2011). Spectrochim. Acta Part A, 78, 1424–1428. [DOI] [PubMed]
  15. Navidpour, L., Shafaroodi, H., Saeedi-Motahar, G. & Shafiee, A. (2014). Med. Chem. Res. 23, 2793–2802.
  16. Reddy, G. C., Devanna, N. & Chandrasekhar, K. B. (2011). Orbital Elec. J. Chem. 3, 24–31.
  17. Ren, C.-G. (2009). Acta Cryst. E65, o1505–o1506. [DOI] [PMC free article] [PubMed]
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  20. Sinha, R., Singh Sara, U. V., Khosa, R. L., Shenoi, V., Stables, J. & Jain, J. (2011). Med. Chem. Res. 20, 1499–1504.
  21. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  22. Su, X. & Aprahamian, I. (2014). Chem. Soc. Rev. 43, 1963–1981. [DOI] [PubMed]
  23. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015009627/su5132sup1.cif

e-71-00734-sup1.cif (242.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009627/su5132Isup2.hkl

e-71-00734-Isup2.hkl (182.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015009627/su5132Isup3.cml

CCDC reference: 1401825

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES