Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 13;71(Pt 7):o489–o490. doi: 10.1107/S2056989015011007

Crystal structure of (6-bromo-2-oxo-2H-chromen-4-yl)methyl morpholine-4-carbodi­thio­ate

K Mahesh Kumar a, K R Roopashree b, M Vinduvahini c, O Kotresh a, H C Devarajegowda b,*
PMCID: PMC4518962  PMID: 26279923

Abstract

In the title compound, C15H14BrNO3S2, the 2H-chromene ring system is nearly planar, with a maximum deviation of 0.034 (2) Å, and the morpholine ring adopts a chair conformation. The dihedral angle between best plane through the 2H-chromene ring system and the morpholine ring is 86.32 (9)°. Intra­molecular C—H⋯S hydrogen bonds are observed. In the crystal, inversion-related C—H⋯S and C—H⋯O inter­actions generate R 2 2(10) and R 2 2(8) rings patterns, respectively. In addition, the crystal packing features π–π inter­actions between fused benzene rings [centroid–centroid distance = 3.7558 (12) Å].

Keywords: crystal structure, coumarins, di­thio­carbamates, biological applications, hydrogen bonding, π–π inter­actions

Related literature  

For biological applications of coumarins and di­thio­carbamates, see: D’hooghe & De Kimpe (2006); Hesse & Kirsch (2002); Jung et al. (2001, 2004); Lee et al. (1998); Melagraki et al. (2009); Schönenberger & Lippert (1972). For standard bond lengths, see: Devarajegowda et al. (2013). For a related structure and the synthesis of the title compound, see: Devarajegowda et al. (2013).graphic file with name e-71-0o489-scheme1.jpg

Experimental  

Crystal data  

  • C15H14BrNO3S2

  • M r = 400.30

  • Triclinic, Inline graphic

  • a = 7.0500 (3) Å

  • b = 7.6049 (3) Å

  • c = 15.1376 (7) Å

  • α = 78.782 (2)°

  • β = 88.549 (2)°

  • γ = 78.515 (2)°

  • V = 780.07 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.91 mm−1

  • T = 296 K

  • 0.24 × 0.20 × 0.12 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: ψ scan (SADABS; Sheldrick, 2007) T min = 0.770, T max = 1.000

  • 13789 measured reflections

  • 3224 independent reflections

  • 2806 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.065

  • S = 1.03

  • 3224 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015011007/bq2399sup1.cif

e-71-0o489-sup1.cif (557.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015011007/bq2399Isup2.hkl

e-71-0o489-Isup2.hkl (257.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015011007/bq2399Isup3.cml

. DOI: 10.1107/S2056989015011007/bq2399fig1.tif

The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

. DOI: 10.1107/S2056989015011007/bq2399fig2.tif

Crystal packing for the title compound with hydrogen bonds drawn as dashed lines.

CCDC reference: 1405247

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C17H17AO5i 0.97 2.53 3.501(2) 176
C17H17BS3 0.97 2.55 3.1633(16) 121
C19H19AS2 0.97 2.37 2.864(2) 111
C22H22BS3 0.97 2.61 3.0486(19) 108

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for access to the CCD X-ray facilities, X-ray data collection, GCMS, IR, CHNS and NMR data.

supplementary crystallographic information

S1. Comment

In recent years, much attention has been directed towards the synthesis of substituted coumarins owing to their tremendous application in various research fields including biological science and medicinal chemistry. Substituted coumarin derivatives are components of numerous natural products like warfarin, phenprocoumon, coumatetralyl, carbochromen, bromadialone, etc. These compounds also exhibit a wide band of biological activities including antibacterial, anti-HIV (Hesse & Kirsch, 2002), antiviral (Lee et al., 1998), anticoagulant (Jung et al., 2001), antioxidant (Melagraki et al., 2009) and anticancer activities (Jung et al.,(2004). Carbon–sulfur bond formation is a fundamental approach to bring sulfur into organic compounds, and this has received much attention due to its occurrence in many molecules that are of biological and pharmaceutical importance. The antibacterial and antifungal activities of dithiocarbamates were reported to arise by the reaction with HS-groups of the physiologically important enzymes by transferring the alkyl group of the dithioester to the HS-function of the enzyme (Schönenberger & Lippert, 1972). Organic dithiocarbamates, ubiquitously found in a variety of biologically active molecules (Dhooghe & De Kimpe, 2006), are of high importance in academia as well as in industry.

In view of the various physiological activities of coumarins and dithiocarbamates, our current studies are focused on the development of new routes for the synthesis of coumarins incorporating dithiocarbamate moieties.

The asymmetric unit of (6-bromo-2-oxo-2H-chromen-4-yl)methyl morpholine-4-carbodi thioate is shown in Fig. 1. The 2H-chromene ring systems is nearly planar, with a maximum deviation of 0.0337 (23) Å for the atom C16 and the morpholine ring adopts a chair conformation. The dihedral angle between the 2H-chromene ring and the morpholine ring is 86.32 (9) °. In the crystal structure, intermolecular C—H···O and intramolecular C–H···S hydrogen bonds are observed (Table 1) and inversion related C—H···S and C—H···O interactions generate R22(10) and R22(8) rings pattern respectively. In addition, the crystal packing is stabilized by π–π [Cg (3)– Cg(3);C8–C13] interactions between fused benzene rings [centroid- centroid distance = 3.7558 (12)].

S2. Experimental

All the chemicals used were of analytical reagent grade and were used directly without further purification. The title compound was synthesized according to the reported method (Devarajegowda et al., 2013). The compound is recrystallized by ethanol-chloroform mixture. Colourless needles of the title compound were grown from a mixed solution of Ethanol/Chloroform (V/V = 2/1) by slow evaporation at room temperature. Yield =72%, m.p.: 433–435 K

S3. Refinement

All H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H and C—H = 0.97 Å for methylene H and refined using a riding model with Uiso(H) = 1.2Ueq(C) for aromatic and methylene H.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Crystal packing for the title compound with hydrogen bonds drawn as dashed lines.

Crystal data

C15H14BrNO3S2 F(000) = 404
Mr = 400.30 Dx = 1.704 Mg m3
Triclinic, P1 Melting point: 435 K
a = 7.0500 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 7.6049 (3) Å Cell parameters from 3224 reflections
c = 15.1376 (7) Å θ = 2.7–26.5°
α = 78.782 (2)° µ = 2.91 mm1
β = 88.549 (2)° T = 296 K
γ = 78.515 (2)° Plate, colourless
V = 780.07 (6) Å3 0.24 × 0.20 × 0.12 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer 3224 independent reflections
Radiation source: fine-focus sealed tube 2806 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
ω and φ scans θmax = 26.5°, θmin = 2.7°
Absorption correction: ψ scan (SADABS; Sheldrick, 2007) h = −8→8
Tmin = 0.770, Tmax = 1.000 k = −9→9
13789 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0328P)2 + 0.2957P] where P = (Fo2 + 2Fc2)/3
3224 reflections (Δ/σ)max = 0.001
199 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.43 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.19477 (3) 0.33461 (3) 0.89681 (2) 0.05002 (9)
S2 0.70559 (7) 0.58659 (7) 0.62666 (3) 0.03418 (12)
S3 1.06683 (7) 0.72703 (8) 0.56091 (3) 0.03905 (13)
O6 0.5420 (2) 0.9077 (2) 0.29823 (10) 0.0520 (4)
O4 0.6263 (2) 0.94245 (19) 0.89038 (9) 0.0404 (3)
O5 0.8534 (3) 1.0955 (2) 0.84135 (14) 0.0650 (5)
N7 0.7479 (2) 0.7625 (2) 0.46382 (10) 0.0303 (3)
C8 0.3315 (3) 0.5266 (3) 0.89259 (13) 0.0373 (4)
C9 0.4939 (3) 0.5289 (3) 0.84039 (12) 0.0337 (4)
H9 0.5346 0.4379 0.8070 0.040*
C10 0.5976 (3) 0.6687 (2) 0.83777 (11) 0.0299 (4)
C11 0.5313 (3) 0.8021 (3) 0.88881 (12) 0.0345 (4)
C12 0.3686 (3) 0.7987 (3) 0.94128 (14) 0.0441 (5)
H12 0.3272 0.8889 0.9750 0.053*
C13 0.2683 (3) 0.6601 (3) 0.94310 (14) 0.0450 (5)
H13 0.1585 0.6561 0.9782 0.054*
C14 0.7717 (3) 0.6820 (2) 0.78610 (11) 0.0302 (4)
C15 0.8595 (3) 0.8222 (3) 0.78884 (14) 0.0381 (4)
H15 0.9729 0.8289 0.7567 0.046*
C16 0.7858 (3) 0.9630 (3) 0.83943 (15) 0.0428 (5)
C17 0.8495 (3) 0.5444 (3) 0.72867 (12) 0.0328 (4)
H17A 0.8481 0.4223 0.7622 0.039*
H17B 0.9826 0.5515 0.7133 0.039*
C18 0.8436 (2) 0.7021 (2) 0.54254 (12) 0.0275 (4)
C19 0.5618 (3) 0.7172 (3) 0.44561 (14) 0.0392 (5)
H19A 0.4913 0.6973 0.5014 0.047*
H19B 0.5848 0.6047 0.4223 0.047*
C20 0.4422 (3) 0.8674 (3) 0.37879 (14) 0.0418 (5)
H20A 0.3232 0.8309 0.3659 0.050*
H20B 0.4081 0.9764 0.4047 0.050*
C21 0.7118 (3) 0.9691 (4) 0.31608 (16) 0.0503 (6)
H21A 0.6753 1.0799 0.3403 0.060*
H21B 0.7785 0.9988 0.2600 0.060*
C22 0.8474 (3) 0.8295 (3) 0.38134 (13) 0.0381 (4)
H22A 0.9027 0.7273 0.3530 0.046*
H22B 0.9525 0.8835 0.3969 0.046*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.04201 (14) 0.05131 (15) 0.05488 (15) −0.01752 (10) −0.00222 (10) 0.00309 (10)
S2 0.0345 (2) 0.0421 (3) 0.0294 (2) −0.0157 (2) 0.00236 (18) −0.00731 (19)
S3 0.0262 (2) 0.0502 (3) 0.0414 (3) −0.0118 (2) −0.00145 (19) −0.0059 (2)
O6 0.0422 (8) 0.0743 (11) 0.0365 (8) −0.0190 (8) −0.0082 (6) 0.0050 (7)
O4 0.0543 (9) 0.0348 (7) 0.0348 (7) −0.0096 (6) −0.0005 (6) −0.0120 (6)
O5 0.0792 (13) 0.0475 (10) 0.0813 (13) −0.0312 (9) 0.0080 (10) −0.0262 (9)
N7 0.0259 (7) 0.0327 (8) 0.0322 (8) −0.0083 (6) 0.0005 (6) −0.0036 (6)
C8 0.0350 (10) 0.0413 (11) 0.0321 (10) −0.0085 (9) −0.0031 (8) 0.0025 (8)
C9 0.0386 (10) 0.0339 (10) 0.0278 (9) −0.0064 (8) −0.0018 (8) −0.0047 (7)
C10 0.0356 (9) 0.0293 (9) 0.0225 (8) −0.0036 (7) −0.0026 (7) −0.0022 (7)
C11 0.0438 (11) 0.0321 (10) 0.0260 (9) −0.0038 (8) −0.0029 (8) −0.0052 (7)
C12 0.0507 (12) 0.0463 (12) 0.0335 (10) −0.0010 (10) 0.0067 (9) −0.0133 (9)
C13 0.0392 (11) 0.0562 (14) 0.0358 (11) −0.0049 (10) 0.0067 (9) −0.0052 (10)
C14 0.0330 (9) 0.0296 (9) 0.0256 (8) −0.0035 (7) −0.0032 (7) −0.0018 (7)
C15 0.0382 (10) 0.0375 (11) 0.0395 (10) −0.0099 (8) 0.0014 (8) −0.0073 (8)
C16 0.0522 (13) 0.0352 (11) 0.0422 (11) −0.0112 (9) −0.0040 (10) −0.0072 (9)
C17 0.0335 (10) 0.0327 (10) 0.0304 (9) −0.0033 (8) 0.0009 (7) −0.0054 (8)
C18 0.0269 (9) 0.0238 (8) 0.0325 (9) −0.0037 (7) 0.0026 (7) −0.0089 (7)
C19 0.0309 (10) 0.0447 (12) 0.0419 (11) −0.0153 (9) −0.0047 (8) 0.0005 (9)
C20 0.0305 (10) 0.0471 (12) 0.0449 (11) −0.0067 (9) −0.0030 (8) −0.0022 (9)
C21 0.0423 (12) 0.0611 (15) 0.0435 (12) −0.0203 (11) −0.0036 (9) 0.0103 (11)
C22 0.0293 (9) 0.0480 (12) 0.0356 (10) −0.0085 (9) 0.0050 (8) −0.0044 (9)

Geometric parameters (Å, º)

Br1—C8 1.894 (2) C12—C13 1.377 (3)
S2—C18 1.7839 (18) C12—H12 0.9300
S2—C17 1.8095 (19) C13—H13 0.9300
S3—C18 1.6585 (18) C14—C15 1.343 (3)
O6—C20 1.405 (3) C14—C17 1.501 (3)
O6—C21 1.418 (3) C15—C16 1.442 (3)
O4—C16 1.365 (3) C15—H15 0.9300
O4—C11 1.373 (2) C17—H17A 0.9700
O5—C16 1.202 (3) C17—H17B 0.9700
N7—C18 1.338 (2) C19—C20 1.500 (3)
N7—C19 1.466 (2) C19—H19A 0.9700
N7—C22 1.470 (2) C19—H19B 0.9700
C8—C9 1.376 (3) C20—H20A 0.9700
C8—C13 1.385 (3) C20—H20B 0.9700
C9—C10 1.400 (3) C21—C22 1.501 (3)
C9—H9 0.9300 C21—H21A 0.9700
C10—C11 1.394 (3) C21—H21B 0.9700
C10—C14 1.448 (3) C22—H22A 0.9700
C11—C12 1.380 (3) C22—H22B 0.9700
C18—S2—C17 104.28 (9) C14—C17—S2 110.63 (13)
C20—O6—C21 109.57 (16) C14—C17—H17A 109.5
C16—O4—C11 121.90 (15) S2—C17—H17A 109.5
C18—N7—C19 123.45 (15) C14—C17—H17B 109.5
C18—N7—C22 121.02 (15) S2—C17—H17B 109.5
C19—N7—C22 112.94 (15) H17A—C17—H17B 108.1
C9—C8—C13 121.3 (2) N7—C18—S3 124.57 (14)
C9—C8—Br1 119.16 (16) N7—C18—S2 112.39 (13)
C13—C8—Br1 119.54 (16) S3—C18—S2 123.03 (11)
C8—C9—C10 119.64 (18) N7—C19—C20 111.25 (16)
C8—C9—H9 120.2 N7—C19—H19A 109.4
C10—C9—H9 120.2 C20—C19—H19A 109.4
C11—C10—C9 118.19 (18) N7—C19—H19B 109.4
C11—C10—C14 117.86 (17) C20—C19—H19B 109.4
C9—C10—C14 123.94 (17) H19A—C19—H19B 108.0
O4—C11—C12 116.55 (18) O6—C20—C19 111.60 (17)
O4—C11—C10 121.57 (18) O6—C20—H20A 109.3
C12—C11—C10 121.87 (19) C19—C20—H20A 109.3
C13—C12—C11 119.2 (2) O6—C20—H20B 109.3
C13—C12—H12 120.4 C19—C20—H20B 109.3
C11—C12—H12 120.4 H20A—C20—H20B 108.0
C12—C13—C8 119.8 (2) O6—C21—C22 112.72 (18)
C12—C13—H13 120.1 O6—C21—H21A 109.0
C8—C13—H13 120.1 C22—C21—H21A 109.0
C15—C14—C10 118.75 (17) O6—C21—H21B 109.0
C15—C14—C17 120.61 (18) C22—C21—H21B 109.0
C10—C14—C17 120.62 (16) H21A—C21—H21B 107.8
C14—C15—C16 122.92 (19) N7—C22—C21 111.57 (16)
C14—C15—H15 118.5 N7—C22—H22A 109.3
C16—C15—H15 118.5 C21—C22—H22A 109.3
O5—C16—O4 117.3 (2) N7—C22—H22B 109.3
O5—C16—C15 125.9 (2) C21—C22—H22B 109.3
O4—C16—C15 116.84 (18) H22A—C22—H22B 108.0
C13—C8—C9—C10 −0.2 (3) C11—O4—C16—O5 176.05 (19)
Br1—C8—C9—C10 −179.11 (13) C11—O4—C16—C15 −4.6 (3)
C8—C9—C10—C11 0.0 (3) C14—C15—C16—O5 −176.7 (2)
C8—C9—C10—C14 179.09 (17) C14—C15—C16—O4 4.1 (3)
C16—O4—C11—C12 −178.20 (18) C15—C14—C17—S2 −102.79 (18)
C16—O4—C11—C10 2.7 (3) C10—C14—C17—S2 75.62 (18)
C9—C10—C11—O4 179.34 (16) C18—S2—C17—C14 100.78 (14)
C14—C10—C11—O4 0.2 (3) C19—N7—C18—S3 171.30 (15)
C9—C10—C11—C12 0.3 (3) C22—N7—C18—S3 10.9 (3)
C14—C10—C11—C12 −178.90 (18) C19—N7—C18—S2 −7.7 (2)
O4—C11—C12—C13 −179.37 (18) C22—N7—C18—S2 −168.15 (14)
C10—C11—C12—C13 −0.3 (3) C17—S2—C18—N7 −173.01 (13)
C11—C12—C13—C8 0.0 (3) C17—S2—C18—S3 7.95 (14)
C9—C8—C13—C12 0.2 (3) C18—N7—C19—C20 150.27 (18)
Br1—C8—C13—C12 179.12 (16) C22—N7—C19—C20 −47.9 (2)
C11—C10—C14—C15 −0.7 (3) C21—O6—C20—C19 −61.6 (2)
C9—C10—C14—C15 −179.84 (17) N7—C19—C20—O6 56.1 (2)
C11—C10—C14—C17 −179.15 (16) C20—O6—C21—C22 59.8 (3)
C9—C10—C14—C17 1.7 (3) C18—N7—C22—C21 −151.82 (19)
C10—C14—C15—C16 −1.5 (3) C19—N7—C22—C21 45.8 (2)
C17—C14—C15—C16 176.98 (18) O6—C21—C22—N7 −51.9 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C17—H17A···O5i 0.97 2.53 3.501 (2) 176
C17—H17B···S3 0.97 2.55 3.1633 (16) 121
C19—H19A···S2 0.97 2.37 2.864 (2) 111
C22—H22B···S3 0.97 2.61 3.0486 (19) 108

Symmetry code: (i) x, y−1, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: BQ2399).

References

  1. Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Devarajegowda, H. C., Kumar, K. M., Seenivasa, S., Arunkashi, H. K. & Kotresh, O. (2013). Acta Cryst. E69, o192. [DOI] [PMC free article] [PubMed]
  3. D’hooghe, M. & De Kimpe, N. (2006). Tetrahedron, 62, 513–535.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Hesse, S. & Kirsch, G. (2002). Tetrahedron Lett. 43, 1213–1215.
  6. Jung, J.-C., Jung, Y.-J. & Park, O.-S. (2001). Synth. Commun. 31, 1195–1200.
  7. Jung, J.-C., Lee, J.-H., Oh, S., Lee, J.-G. & Park, O.-S. (2004). Bioorg. Med. Chem. Lett. 14, 5527–5531. [DOI] [PubMed]
  8. Lee, B. H., Clothier, M. F., Dutton, F. E., Conder, G. A. & Johnson, S. S. (1998). Bioorg. Med. Chem. Lett. 8, 3317–3320. [DOI] [PubMed]
  9. Melagraki, G., Afantitis, A., Igglessi-Markopoulou, O., Detsi, A., Koufaki, M., Kontogiorgis, C. & Hadjipavlou-Litina, D. J. (2009). Eur. J. Med. Chem. 44, 3020–3026. [DOI] [PubMed]
  10. Schönenberger, H. & Lippert, P. (1972). Pharmazie, 27, 139–145. [PubMed]
  11. Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015011007/bq2399sup1.cif

e-71-0o489-sup1.cif (557.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015011007/bq2399Isup2.hkl

e-71-0o489-Isup2.hkl (257.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015011007/bq2399Isup3.cml

. DOI: 10.1107/S2056989015011007/bq2399fig1.tif

The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

. DOI: 10.1107/S2056989015011007/bq2399fig2.tif

Crystal packing for the title compound with hydrogen bonds drawn as dashed lines.

CCDC reference: 1405247

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES