Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 6;71(Pt 7):o453–o454. doi: 10.1107/S2056989015010543

Crystal structure of 6-amino-4-(3-bromo-4-meth­oxy­phen­yl)-3-methyl-2,4-di­hydro­pyrano[2,3-c]pyrazole-5-carbo­nitrile dimethyl sulfoxide monosolvate

Sammer Yousuf a,*, Huma Bano a, Munira Taj Muhammad a, Khalid Mohammed Khan a
PMCID: PMC4518963  PMID: 26279904

Abstract

In the pyrazole mol­ecule of the title solvate, C15H13BrN4O2·C2H6OS, the dihedral angle between the benzene ring and the mean plane of the di­hydro­pyrano[2,3-c]pyrazole ring system [r.m.s deviation = 0.031 (2) Å] is 86.71 (14)°. In the crystal, the pyrazole mol­ecules are linked by N—H⋯N hydrogen bonds, forming a layer parallel to (10-1). The pyrazole and dimethyl sulfoxide mol­ecules are connected by an N—H⋯O hydrogen bond.

Keywords: crystal structure, pyrazole derivative, hydrogen bonding

Related literature  

For the applications and biological activities of pyrazole derivative, see: Balbia et al. (2011); Insuasty et al. (2010); Szabó et al. (2008); Perchellet et al. (2006); Tanitame et al. (2004, 2005); Abadi et al. (2003). For crystal structures of related compounds, see: Sharma et al. (2014).graphic file with name e-71-0o453-scheme1.jpg

Experimental  

Crystal data  

  • C15H13BrN4O2·C2H6OS

  • M r = 439.33

  • Monoclinic, Inline graphic

  • a = 13.4982 (6) Å

  • b = 8.3470 (4) Å

  • c = 17.7173 (8) Å

  • β = 101.510 (1)°

  • V = 1956.05 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.23 mm−1

  • T = 273 K

  • 0.54 × 0.51 × 0.33 mm

Data collection  

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.345, T max = 0.479

  • 9464 measured reflections

  • 3642 independent reflections

  • 2776 reflections with I > 2σ(I)

  • R int = 0.019

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.149

  • S = 1.04

  • 3642 reflections

  • 247 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.15 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015010543/is5403sup1.cif

e-71-0o453-sup1.cif (26.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010543/is5403Isup2.hkl

e-71-0o453-Isup2.hkl (178.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015010543/is5403Isup3.cml

. DOI: 10.1107/S2056989015010543/is5403fig1.tif

The mol­ecular structure of the title compound with displacement ellipsoids drawn at 30% probability level. H atoms have been omitted.

. DOI: 10.1107/S2056989015010543/is5403fig2.tif

A crystal packing view of the title compound. Only H atoms involved in the hydrogen bonds (dashed lines) are shown.

CCDC reference: 1404448

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N2H2AO3i 0.82(3) 1.96(4) 2.762(5) 166(4)
N3H3AN4ii 0.84(4) 2.26(4) 3.080(5) 165(3)
N3H3BN1iii 0.86(3) 2.14(4) 2.983(4) 169(3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors acknowledge the financial support of the Higher Education Commission of Pakistan (HEC) through research projects Nos. 20–1910 and 20–2216 under the National Research Program for Universities.

supplementary crystallographic information

S1. Comment

The pyrazole moiety containing compounds represent an important group of pharmaceutically active molecules with a wide range of biological activities including antifungal (Tanitame et al., 2004), antibacterial (Tanitame et al., 2005), anti-diabetic, (Balbia et al., 2011), anti-inflammatory (Szabo et al., 2008) and antiangiogenesis (Abadi et al., 2003). The pyrazole derivatives are also known to have antiproliferative (Perchellet et al., 2006) and anti-tumor (Insuasty et al., 2010) activities. The title compound was synthesize as a part of our ongoing research to synthesize and evaluate the biological activities of structural analogues of dihydropyrano[2,3-c] pyrazole derivatives. In continuation of our efforts to purify enantiomerically pure compounds from racemic mixtures by using simple crystallization techniques the title compound was crystallize as dimethyl sulfoxide (DMSO) solvate from racemic mixture by dissolving in DMSO at room temperature.

The structure of title compound is similar to that of previously published 6-amino-3-methyl-4-(3,4,5-trimethoxy-phenyl)-2,4-dihydropyrano[2,3-c]- pyrazole-5-carbonitrile (Sharma et al., 2014) with the difference that trimethoxy sustituted phenyl ring is replaced by methoxy substituted bromo benzene ring (Fig. 1). The dihedral angles between the benzene (C1–C6) / pyran (O1/C7–C9/C10/C11) rings and the benzene (C1–C6) / pyrazole (N1/N2/C8/C9/C13) rings are 87.53 (15) and 86.04 (18)°, respectively. The bond lengths and angles are similar as in structurally related benzohydrazide derivatives (Sharma et al., 2014). The crystal structure stabilize by intermolecular N—H···O and N—H···N interactions to form a layer parallel to (101) (Table 2 and Fig. 2).

S2. Experimental

The title compound was synthesized as follows. Dichloromethane (10 ml), 1.0 equivalent (1 mmol) of triethylamine and pyrazolone were taken in a round bottom flask and allowed to stirred for 2 minutes at room temperature followed by the addition of 1.0 equivalent of corresponding pre-synthesized benzylidene from malononitrile and allowed to stir for additional 25–30 min. The progress of reaction was monitored by TLC. The desired product was appeared in the form of precipitates. The precipitates were washed with water to remove the unreacted pyrazolone to obtain pure products. Yeild 79%; m.p. 215 °C. The precipitates were redissolved in DMSO and allow to stand at room temperature for whole night followed by the removal of DMSO under freeze drying condition to obtain single crystals suitable for X-ray diffraction.

S3. Refinement

H atoms on methyl, phenyl and methine groups were positioned geometrically with C—H = 0.96, 0.93 and 0.98 Å, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(C) for the methyl H atoms or 1.2Ueq(C) for the other H atoms. H atoms on N were located in a difference Fourier map and refined freely [N—H = 0.81 (3)–0.86 (4) Å].

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level. H atoms have been omitted.

Fig. 2.

Fig. 2.

A crystal packing view of the title compound. Only H atoms involved in the hydrogen bonds (dashed lines) are shown.

Crystal data

C15H13BrN4O2·C2H6OS F(000) = 896
Mr = 439.33 Dx = 1.492 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3172 reflections
a = 13.4982 (6) Å θ = 2.4–25.5°
b = 8.3470 (4) Å µ = 2.23 mm1
c = 17.7173 (8) Å T = 273 K
β = 101.510 (1)° BLOCK, colorless
V = 1956.05 (16) Å3 0.54 × 0.51 × 0.33 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 3642 independent reflections
Radiation source: fine-focus sealed tube 2776 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.019
ω scan θmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −16→8
Tmin = 0.345, Tmax = 0.479 k = −10→10
9464 measured reflections l = −16→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0714P)2 + 2.3987P] where P = (Fo2 + 2Fc2)/3
3642 reflections (Δ/σ)max < 0.001
247 parameters Δρmax = 1.15 e Å3
0 restraints Δρmin = −0.59 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.53684 (5) 0.80041 (9) 0.10616 (4) 0.1100 (3)
S2 0.41262 (9) 1.33033 (14) 0.16737 (7) 0.0725 (4)
O1 0.80217 (17) 0.8729 (2) −0.16690 (11) 0.0408 (5)
C11 0.8828 (2) 0.8290 (3) −0.03464 (16) 0.0318 (6)
C10 0.8569 (2) 0.7805 (4) −0.10982 (17) 0.0347 (7)
C7 0.8596 (2) 0.9926 (3) −0.00378 (16) 0.0328 (6)
H7A 0.9235 1.0499 0.0131 0.039*
N1 0.7159 (2) 1.1133 (3) −0.19466 (15) 0.0415 (6)
N3 0.8795 (3) 0.6418 (4) −0.13885 (18) 0.0499 (8)
C12 0.9385 (2) 0.7201 (4) 0.01801 (17) 0.0378 (7)
C8 0.7977 (2) 1.0822 (3) −0.07006 (16) 0.0328 (6)
C6 0.8067 (2) 0.9806 (4) 0.06440 (16) 0.0348 (7)
N2 0.7048 (2) 1.2445 (3) −0.15155 (16) 0.0432 (7)
C9 0.7727 (2) 1.0195 (3) −0.14372 (16) 0.0345 (7)
C2 0.6640 (3) 0.9018 (5) 0.1172 (2) 0.0530 (9)
C13 0.7513 (3) 1.2299 (4) −0.07755 (18) 0.0388 (7)
C4 0.7998 (3) 1.0387 (5) 0.19660 (19) 0.0527 (9)
H4A 0.8299 1.0837 0.2436 0.063*
N4 0.9847 (3) 0.6326 (4) 0.06142 (17) 0.0545 (8)
C5 0.8497 (3) 1.0446 (4) 0.13548 (18) 0.0458 (8)
H5A 0.9131 1.0925 0.1423 0.055*
O2 0.6509 (2) 0.9565 (4) 0.24480 (16) 0.0713 (8)
C1 0.7129 (3) 0.9085 (4) 0.05641 (18) 0.0439 (8)
H1B 0.6826 0.8641 0.0093 0.053*
C14 0.7477 (3) 1.3584 (4) −0.0197 (2) 0.0588 (10)
H14A 0.7084 1.4468 −0.0441 0.088*
H14B 0.8151 1.3940 0.0015 0.088*
H14C 0.7171 1.3170 0.0208 0.088*
C15 0.6936 (4) 1.0205 (7) 0.3188 (2) 0.0878 (16)
H15A 0.6470 1.0061 0.3527 0.132*
H15B 0.7068 1.1327 0.3140 0.132*
H15C 0.7557 0.9659 0.3394 0.132*
C3 0.7068 (3) 0.9673 (4) 0.18880 (19) 0.0499 (9)
O3 0.4267 (3) 1.5021 (4) 0.1919 (3) 0.1011 (12)
C16 0.4432 (4) 1.2187 (6) 0.2534 (3) 0.0736 (12)
H16A 0.3899 1.2292 0.2817 0.110*
H16B 0.5052 1.2583 0.2840 0.110*
H16C 0.4511 1.1079 0.2413 0.110*
C17 0.5216 (5) 1.2847 (8) 0.1298 (4) 0.106 (2)
H17A 0.5175 1.3380 0.0812 0.159*
H17B 0.5255 1.1711 0.1226 0.159*
H17C 0.5808 1.3204 0.1652 0.159*
H3A 0.913 (3) 0.572 (5) −0.110 (2) 0.055 (11)*
H3B 0.850 (3) 0.620 (4) −0.185 (2) 0.041 (9)*
H2A 0.670 (3) 1.320 (4) −0.1703 (19) 0.034 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0905 (4) 0.1520 (6) 0.1031 (5) −0.0652 (4) 0.0569 (4) −0.0322 (4)
S2 0.0579 (6) 0.0701 (7) 0.0833 (8) 0.0025 (5) −0.0009 (5) 0.0238 (6)
O1 0.0583 (14) 0.0336 (11) 0.0269 (10) 0.0099 (10) 0.0000 (9) 0.0002 (9)
C11 0.0335 (15) 0.0346 (15) 0.0262 (14) 0.0017 (12) 0.0030 (11) 0.0019 (12)
C10 0.0387 (16) 0.0351 (16) 0.0299 (15) 0.0015 (13) 0.0060 (12) 0.0021 (12)
C7 0.0349 (15) 0.0341 (16) 0.0285 (14) −0.0028 (12) 0.0042 (12) −0.0005 (12)
N1 0.0535 (16) 0.0364 (14) 0.0329 (13) 0.0044 (12) 0.0042 (12) 0.0039 (11)
N3 0.072 (2) 0.0428 (17) 0.0293 (15) 0.0176 (16) −0.0038 (14) −0.0042 (13)
C12 0.0441 (17) 0.0405 (17) 0.0288 (15) 0.0015 (15) 0.0075 (13) −0.0036 (14)
C8 0.0380 (16) 0.0325 (15) 0.0277 (14) −0.0033 (12) 0.0063 (12) 0.0010 (12)
C6 0.0414 (17) 0.0341 (16) 0.0286 (15) 0.0038 (13) 0.0064 (12) 0.0007 (12)
N2 0.0552 (18) 0.0322 (15) 0.0413 (16) 0.0082 (13) 0.0077 (13) 0.0058 (12)
C9 0.0425 (17) 0.0305 (15) 0.0302 (15) −0.0014 (13) 0.0065 (12) 0.0025 (12)
C2 0.056 (2) 0.055 (2) 0.053 (2) −0.0082 (18) 0.0221 (17) −0.0011 (17)
C13 0.0484 (18) 0.0331 (16) 0.0360 (16) −0.0018 (14) 0.0114 (14) 0.0015 (13)
C4 0.066 (2) 0.062 (2) 0.0303 (17) 0.0052 (19) 0.0112 (16) −0.0061 (16)
N4 0.069 (2) 0.0520 (18) 0.0379 (16) 0.0160 (16) 0.0002 (14) 0.0015 (14)
C5 0.0481 (19) 0.055 (2) 0.0331 (17) −0.0028 (16) 0.0045 (14) −0.0050 (15)
O2 0.089 (2) 0.084 (2) 0.0512 (16) 0.0065 (17) 0.0397 (15) 0.0057 (14)
C1 0.0467 (19) 0.0522 (19) 0.0343 (16) −0.0085 (16) 0.0115 (14) −0.0051 (14)
C14 0.087 (3) 0.0398 (19) 0.049 (2) 0.0094 (19) 0.014 (2) −0.0070 (16)
C15 0.105 (4) 0.127 (4) 0.040 (2) 0.034 (3) 0.034 (2) 0.005 (2)
C3 0.066 (2) 0.051 (2) 0.0377 (18) 0.0106 (18) 0.0239 (16) 0.0077 (15)
O3 0.104 (3) 0.0544 (19) 0.151 (4) 0.0290 (18) 0.041 (2) 0.030 (2)
C16 0.070 (3) 0.065 (3) 0.084 (3) 0.003 (2) 0.011 (2) 0.020 (2)
C17 0.119 (5) 0.109 (5) 0.101 (4) 0.031 (4) 0.047 (4) 0.014 (4)

Geometric parameters (Å, º)

Br1—C2 1.889 (4) N2—H2A 0.81 (3)
S2—O3 1.499 (4) C2—C1 1.371 (5)
S2—C16 1.764 (5) C2—C3 1.397 (5)
S2—C17 1.773 (6) C13—C14 1.492 (5)
O1—C10 1.365 (4) C4—C3 1.372 (5)
O1—C9 1.374 (4) C4—C5 1.385 (5)
C11—C10 1.369 (4) C4—H4A 0.9300
C11—C12 1.408 (4) C5—H5A 0.9300
C11—C7 1.527 (4) O2—C3 1.365 (4)
C10—N3 1.327 (4) O2—C15 1.426 (6)
C7—C8 1.498 (4) C1—H1B 0.9300
C7—C6 1.524 (4) C14—H14A 0.9600
C7—H7A 0.9800 C14—H14B 0.9600
N1—C9 1.319 (4) C14—H14C 0.9600
N1—N2 1.360 (4) C15—H15A 0.9600
N3—H3A 0.84 (4) C15—H15B 0.9600
N3—H3B 0.86 (4) C15—H15C 0.9600
C12—N4 1.150 (4) C16—H16A 0.9600
C8—C13 1.377 (4) C16—H16B 0.9600
C8—C9 1.384 (4) C16—H16C 0.9600
C6—C1 1.384 (4) C17—H17A 0.9600
C6—C5 1.385 (4) C17—H17B 0.9600
N2—C13 1.341 (4) C17—H17C 0.9600
O3—S2—C16 105.1 (2) C8—C13—C14 130.9 (3)
O3—S2—C17 104.3 (3) C3—C4—C5 121.0 (3)
C16—S2—C17 98.2 (3) C3—C4—H4A 119.5
C10—O1—C9 115.3 (2) C5—C4—H4A 119.5
C10—C11—C12 116.9 (3) C6—C5—C4 121.1 (3)
C10—C11—C7 125.6 (3) C6—C5—H5A 119.5
C12—C11—C7 117.4 (2) C4—C5—H5A 119.5
N3—C10—O1 109.7 (3) C3—O2—C15 117.6 (4)
N3—C10—C11 126.9 (3) C2—C1—C6 120.7 (3)
O1—C10—C11 123.3 (3) C2—C1—H1B 119.6
C8—C7—C6 112.2 (2) C6—C1—H1B 119.6
C8—C7—C11 106.7 (2) C13—C14—H14A 109.5
C6—C7—C11 112.7 (2) C13—C14—H14B 109.5
C8—C7—H7A 108.3 H14A—C14—H14B 109.5
C6—C7—H7A 108.3 C13—C14—H14C 109.5
C11—C7—H7A 108.3 H14A—C14—H14C 109.5
C9—N1—N2 102.0 (2) H14B—C14—H14C 109.5
C10—N3—H3A 120 (3) O2—C15—H15A 109.5
C10—N3—H3B 117 (2) O2—C15—H15B 109.5
H3A—N3—H3B 122 (4) H15A—C15—H15B 109.5
N4—C12—C11 179.2 (4) O2—C15—H15C 109.5
C13—C8—C9 103.1 (3) H15A—C15—H15C 109.5
C13—C8—C7 133.9 (3) H15B—C15—H15C 109.5
C9—C8—C7 122.9 (3) O2—C3—C4 125.7 (3)
C1—C6—C5 118.0 (3) O2—C3—C2 116.5 (4)
C1—C6—C7 120.8 (3) C4—C3—C2 117.8 (3)
C5—C6—C7 121.2 (3) S2—C16—H16A 109.5
C13—N2—N1 113.1 (3) S2—C16—H16B 109.5
C13—N2—H2A 126 (2) H16A—C16—H16B 109.5
N1—N2—H2A 121 (2) S2—C16—H16C 109.5
N1—C9—O1 119.2 (3) H16A—C16—H16C 109.5
N1—C9—C8 114.8 (3) H16B—C16—H16C 109.5
O1—C9—C8 126.0 (3) S2—C17—H17A 109.5
C1—C2—C3 121.4 (3) S2—C17—H17B 109.5
C1—C2—Br1 120.4 (3) H17A—C17—H17B 109.5
C3—C2—Br1 118.2 (3) S2—C17—H17C 109.5
N2—C13—C8 106.9 (3) H17A—C17—H17C 109.5
N2—C13—C14 122.2 (3) H17B—C17—H17C 109.5
C9—O1—C10—N3 179.1 (3) C7—C8—C9—N1 178.5 (3)
C9—O1—C10—C11 −0.9 (4) C13—C8—C9—O1 179.3 (3)
C12—C11—C10—N3 −0.7 (5) C7—C8—C9—O1 −1.9 (5)
C7—C11—C10—N3 177.0 (3) N1—N2—C13—C8 0.9 (4)
C12—C11—C10—O1 179.4 (3) N1—N2—C13—C14 −179.0 (3)
C7—C11—C10—O1 −2.9 (5) C9—C8—C13—N2 −0.4 (3)
C10—C11—C7—C8 4.0 (4) C7—C8—C13—N2 −179.0 (3)
C12—C11—C7—C8 −178.4 (3) C9—C8—C13—C14 179.6 (4)
C10—C11—C7—C6 127.6 (3) C7—C8—C13—C14 0.9 (6)
C12—C11—C7—C6 −54.7 (4) C1—C6—C5—C4 −0.8 (5)
C6—C7—C8—C13 52.8 (4) C7—C6—C5—C4 177.6 (3)
C11—C7—C8—C13 176.8 (3) C3—C4—C5—C6 0.8 (6)
C6—C7—C8—C9 −125.6 (3) C3—C2—C1—C6 0.1 (6)
C11—C7—C8—C9 −1.6 (4) Br1—C2—C1—C6 −179.1 (3)
C8—C7—C6—C1 58.8 (4) C5—C6—C1—C2 0.3 (5)
C11—C7—C6—C1 −61.8 (4) C7—C6—C1—C2 −178.1 (3)
C8—C7—C6—C5 −119.6 (3) C15—O2—C3—C4 −2.0 (6)
C11—C7—C6—C5 119.8 (3) C15—O2—C3—C2 179.1 (4)
C9—N1—N2—C13 −1.0 (4) C5—C4—C3—O2 −179.2 (3)
N2—N1—C9—O1 −178.8 (3) C5—C4—C3—C2 −0.4 (6)
N2—N1—C9—C8 0.8 (4) C1—C2—C3—O2 178.8 (3)
C10—O1—C9—N1 −177.1 (3) Br1—C2—C3—O2 −2.0 (5)
C10—O1—C9—C8 3.4 (4) C1—C2—C3—C4 −0.1 (6)
C13—C8—C9—N1 −0.3 (4) Br1—C2—C3—C4 179.1 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O3i 0.82 (3) 1.96 (4) 2.762 (5) 166 (4)
N3—H3A···N4ii 0.84 (4) 2.26 (4) 3.080 (5) 165 (3)
N3—H3B···N1iii 0.86 (3) 2.14 (4) 2.983 (4) 169 (3)

Symmetry codes: (i) −x+1, −y+3, −z; (ii) −x+2, −y+1, −z; (iii) −x+3/2, y−1/2, −z−1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: IS5403).

References

  1. Abadi, A. H., Eissa, A. A. H. & Hassan, G. S. (2003). Chem. Pharm. Bull. 51, 838–844. [DOI] [PubMed]
  2. Balbi, A., Anzaldi, M., Macciò, C., Aiello, C., Mazzei, M., Gangemi, R., Castagnola, P., Miele, M., Rosano, C. & Viale, M. (2011). Eur. J. Med. Chem. 46, 5293–5309. [DOI] [PubMed]
  3. Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Insuasty, B., Tigreros, A., Orozco, F., Quiroga, J., Abonía, R., Nogueras, M., Sanchez, A. & Cobo, J. (2010). Bioorg. Med. Chem. 18, 4965–4974. [DOI] [PubMed]
  5. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  6. Perchellet, E. M., Ward, M. M., Skaltsounis, A. L., Kostakis, I. K., Pouli, N., Marakos, P. & Perchellet, J. P. (2006). Anticancer Res. 26, 2791–2804. [PubMed]
  7. Sharma, N., Brahmachari, G., Banerjee, B., Kant, R. & Gupta, V. K. (2014). Acta Cryst. E70, o875–o876. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Szabó, G., Fischer, J., Kis-Varga, A. & Gyires, K. (2008). J. Med. Chem. 51, 142–147. [DOI] [PubMed]
  11. Tanitame, A., Oyamada, Y., Ofuji, K., Fujimoto, M., Suzuki, K., Ueda, T., Terauchi, H., Kawasaki, M., Nagai, K., Wachi, M. & Yamagishi, J. (2004). Bioorg. Med. Chem. 12, 5515–5524. [DOI] [PubMed]
  12. Tanitame, A., Oyamada, Y., Ofuji, K., Terauchi, H., Kawasaki, M., Wachi, M. & Yamagishi, J. (2005). Bioorg. Med. Chem. Lett. 15, 4299–4303. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015010543/is5403sup1.cif

e-71-0o453-sup1.cif (26.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010543/is5403Isup2.hkl

e-71-0o453-Isup2.hkl (178.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015010543/is5403Isup3.cml

. DOI: 10.1107/S2056989015010543/is5403fig1.tif

The mol­ecular structure of the title compound with displacement ellipsoids drawn at 30% probability level. H atoms have been omitted.

. DOI: 10.1107/S2056989015010543/is5403fig2.tif

A crystal packing view of the title compound. Only H atoms involved in the hydrogen bonds (dashed lines) are shown.

CCDC reference: 1404448

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES