Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 20;71(Pt 7):821–823. doi: 10.1107/S2056989015011688

Crystal structure of ethyl 6-chloro­methyl-2-oxo-4-(2,3,4-tri­meth­oxy­phen­yl)-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

M Suresh a, M Syed Ali Padusha a, J Josephine Novina b, G Vasuki c,*, Vijayan Viswanathan d, Devadasan Velmurugan d
PMCID: PMC4518964  PMID: 26279876

The di­hydro­pyrimidine ring in the title ester adopts a flattened envelope conformation. An intra­molecular C—H⋯O hydrogen bond generates an S(6) ring. Mol­ecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers.

Keywords: crystal structure, conformation, di­hydro­pyrimidine, ring motif, C—H⋯π inter­actions

Abstract

In the title compound, C17H21ClN2O6, the di­hydro­pyrimidine ring adopts a flattened envelope conformation, with the sp 3-hybridized C atom forming the flap. The dihedral angle between the least-squares planes of the benzene and di­hydro­pyrimidine rings is 88.09 (6)°. An intra­molecular C—H⋯O hydrogen bond generates an S(6) ring. In the crystal, mol­ecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R 2 2(8) ring motif, and the dimers are linked via further pairs of N—H⋯O hydrogen bonds, forming R 2 2(14) rings and chains of mol­ecules along [111]. Pairs of inversion-related chains are linked via weak C—H⋯π inter­actions.

Chemical context  

Pyrimidine derivatives have been investigated extensively due to their great biological significance and as the main constituent of nucleic acids. Pyrimidines and their derivatives are considered to be important for drugs and agricultural chemicals. They are also found to exhibit remarkable pharmacological activities such as anti-cancer, anti-tumor, anti-inflammatory and anti­fungal etc and are used widely as agrochemicals, pharmaceuticals, dyes, organic additives in electroplating of steel and in the polymerization process (Sharma et al., 2014; Vaisalini et al., 2012). Di­hydro­pyrimidino­nes, the product of the Biginelli reaction, are also widely used in the pharmaceutical industry as calcium channel blockers and alpha-1 antagonists (Beena & Akelesh, 2012). Moreover, some bioactive alkaloids such as batzelladine B, containing the di­hydro­pyrimidine unit, which has been isolated from marine sources, show anti-HIV activity (Asghari et al., 2011). Our inter­est in the preparation of pharmaco­logically active compounds led us to synthesize the title compound (I) and we report its crystal structure herein.

Structural commentary  

The mol­ecular structure of (I) is shown in Fig. 1. The di­hydro­pyrimidine ring adopts a flattened envelope conformation. Atoms N1/N2/C11/C12/C14 are essentially planar with a maximum deviation of 0.0305 (17) Å for C11 while atom C13 is displaced by 0.1311 (17) Å from this plane, forming the flap. The puckering parameters are q2 = 0.0935, q3 = −0.0317, Q = 0.0987 Å, Θ = 108.7 and Φ = 22.9°. The benzene ring is almost perpendicular to the least-squares plane of the six-membered tetra­hydro­pyrimidine ring, making a dihedral angle of 88.09 (6)°.graphic file with name e-71-00821-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. The dashed line indicates the intra­molecular C10—H10A⋯O1 hydrogen bond.

In comparison, this dihedral angle in the structure of ethyl 6-eth­oxy­carbonyl­methyl-4-(2-hy­droxy­phen­yl)-2-oxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate, (II), is 87.7 (2)° (Kettmann et al., 2008), in ethyl-6-(chloro­meth­yl)-4-(4-chlorophen­yl)-2-oxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate, (III), it is 87.08 (9)° (Bharanidharan et al., 2014), and in the crystal structure of ethyl 6-methyl-2-oxo-4-(3,4,5-tri­meth­oxy­phen­yl)-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate, (IV), it is 75.25 (6)° (Novina et al., 2015). The ethyl acetate group attached to the pyrimidine ring shows an extended conformation [torsion angle C12—C15—O2—C16 = −175.83 (15)°]. The meth­oxy group at C4 is essentially coplanar with the benzene ring [C5—C4—O5—C7 = −1.3 (3)°], whereas the two meth­oxy substituent groups at C2 and C3 deviate significantly from the benzene plane [C3—C2—O3—C9 = 71.6 (2) and C2—C3—O4—C8 = 71.6 (2)°]. The mol­ecular structure is partially stabilized by the C10—H10A⋯O1 intra­molecular inter­action (Table 1), which generates an S(6) ring motif.

Table 1. Hydrogen-bond geometry (, ).

Cg is the centroid of the N1/C11C13/N2/C14 pyrimidine ring.

DHA DH HA D A DHA
N1H1NO6i 0.86 1.95 2.812(2) 178
N2H2NO4ii 0.86 2.37 3.160(2) 153
C17H17C Cg iii 0.96 2.83 3.676(4) 147
C10H10AO1 0.97 2.14 2.864(3) 131

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Supra­molecular features  

In the crystal, both N—H groups participate in inter­molecular hydrogen-bonding associations (Table 1) giving centrosymmetric cyclic motifs [graph sets Inline graphic(8) and Inline graphic(14)], resulting in ribbons parallel to [111] (Fig. 2). The packing (Fig. 3) also features weak C—H⋯π inter­actions between the methyl H atoms of the ethyl groups and the pyrimidine rings of inversion-related mol­ecules.

Figure 2.

Figure 2

Partial crystal packing diagram for the title compound, showing the Inline graphic(8) and Inline graphic(14) ring motifs. Hydrogen bonds are shown as dashed lines.

Figure 3.

Figure 3

Part of the crystal packing of the title compound, showing C—H⋯π inter­actions and N—H⋯O hydrogen bonds as dashed lines.

Synthesis and crystallization  

To an ethano­lic solution of ethyl 4-chloro­aceto acetate (2 ml, 0.012 mol), 2,3,4-trimeth­oxy benzaldehyde (2.4 g, 0.012 mol), and urea (2.25 g, 0.037 mol) were added followed by CeCl3·7H2O (931 mg). The reaction mixture was taken in a round-bottom flask and refluxed for 2 h. Then the reaction mixture was cooled and poured into crushed ice taken in a beaker with constant stirring. The solid separated out was filtered, washed with ice-cold water and then recrystallized from hot ethanol to afford the product [yield: 92%; m.p. 425–427 K] as X-ray quality crystals.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed in geometrically idealized positions and refined as riding on their parent atoms with C—H distances fixed in the range 0.93–0.98 Å and N—H = 0.86 Å with U iso(H) = 1.5U eq(CH3) and 1.2U eq(CH2,CH, NH).

Table 2. Experimental details.

Crystal data
Chemical formula C17H21ClN2O6
M r 384.81
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c () 9.479(5), 10.080(5), 10.320(5)
, , () 108.552(5), 102.886(5), 94.406(5)
V (3) 899.5(8)
Z 2
Radiation type Mo K
(mm1) 0.25
Crystal size (mm) 0.20 0.15 0.10
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.952, 0.976
No. of measured, independent and observed [I > 2(I)] reflections 12878, 3737, 3025
R int 0.025
(sin /)max (1) 0.631
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.041, 0.121, 1.04
No. of reflections 3737
No. of parameters 239
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.25, 0.28

Computer programs: APEX2, SAINT and XPREP (Bruker, 2008), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015011688/lh5770sup1.cif

e-71-00821-sup1.cif (28.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015011688/lh5770Isup2.hkl

e-71-00821-Isup2.hkl (183.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015011688/lh5770Isup3.cml

CCDC reference: 1407186

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection.

supplementary crystallographic information

Crystal data

C17H21ClN2O6 Z = 2
Mr = 384.81 F(000) = 404
Triclinic, P1 Dx = 1.421 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.479 (5) Å Cell parameters from 3737 reflections
b = 10.080 (5) Å θ = 1.0–26.6°
c = 10.320 (5) Å µ = 0.25 mm1
α = 108.552 (5)° T = 293 K
β = 102.886 (5)° Block, colourless
γ = 94.406 (5)° 0.20 × 0.15 × 0.10 mm
V = 899.5 (8) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer 3737 independent reflections
Radiation source: fine-focus sealed tube 3025 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
ω and φ scan θmax = 26.6°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −11→11
Tmin = 0.952, Tmax = 0.976 k = −12→12
12878 measured reflections l = −12→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0599P)2 + 0.3029P] where P = (Fo2 + 2Fc2)/3
3737 reflections (Δ/σ)max < 0.001
239 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C7 0.3380 (3) −0.2172 (2) −0.3248 (3) 0.0695 (6)
H7A 0.3999 −0.1501 −0.3444 0.104*
H7B 0.3213 −0.3077 −0.3989 0.104*
H7C 0.3848 −0.2260 −0.2360 0.104*
C4 0.2052 (2) −0.03983 (17) −0.22112 (17) 0.0417 (4)
C5 0.33170 (19) 0.04788 (18) −0.12747 (18) 0.0428 (4)
H5 0.4230 0.0206 −0.1293 0.051*
C6 0.32077 (18) 0.17612 (18) −0.03140 (17) 0.0404 (4)
H6 0.4058 0.2338 0.0317 0.049*
C1 0.18792 (17) 0.22104 (16) −0.02627 (16) 0.0353 (3)
C2 0.06034 (17) 0.13322 (17) −0.12190 (17) 0.0375 (4)
C3 0.06932 (19) 0.00217 (17) −0.21729 (17) 0.0409 (4)
C8 −0.1441 (3) −0.0596 (3) −0.4122 (2) 0.0685 (6)
H8A −0.1575 0.0377 −0.3781 0.103*
H8B −0.2377 −0.1197 −0.4467 0.103*
H8C −0.0969 −0.0740 −0.4877 0.103*
C9 −0.1707 (3) 0.1099 (3) −0.0726 (3) 0.0690 (6)
H9A −0.1769 0.0092 −0.1149 0.104*
H9B −0.2658 0.1358 −0.0970 0.104*
H9C −0.1365 0.1373 0.0285 0.104*
C13 0.17802 (17) 0.35901 (16) 0.08517 (16) 0.0360 (3)
H13 0.0787 0.3807 0.0601 0.043*
C12 0.28624 (17) 0.48334 (16) 0.09400 (16) 0.0357 (3)
C11 0.39561 (18) 0.54845 (16) 0.21121 (17) 0.0376 (4)
C14 0.31732 (19) 0.40206 (18) 0.33668 (17) 0.0417 (4)
C10 0.5076 (2) 0.67371 (18) 0.23650 (19) 0.0451 (4)
H10A 0.5094 0.6851 0.1470 0.054*
H10B 0.6041 0.6582 0.2793 0.054*
C15 0.26590 (19) 0.52688 (17) −0.03168 (17) 0.0391 (4)
C16 0.1095 (2) 0.4838 (2) −0.2602 (2) 0.0548 (5)
H16A 0.1940 0.4739 −0.2989 0.066*
H16B 0.0869 0.5787 −0.2469 0.066*
C17 −0.0182 (3) 0.3764 (3) −0.3576 (2) 0.0816 (8)
H17A 0.0067 0.2832 −0.3725 0.122*
H17B −0.0438 0.3916 −0.4466 0.122*
H17C −0.1001 0.3852 −0.3166 0.122*
N2 0.20306 (15) 0.34077 (15) 0.22426 (14) 0.0414 (3)
H2N 0.1367 0.2844 0.2341 0.050*
N1 0.41333 (16) 0.50454 (16) 0.32654 (15) 0.0478 (4)
H1N 0.4894 0.5439 0.3964 0.057*
O5 0.20239 (16) −0.16966 (14) −0.31766 (15) 0.0586 (4)
O4 −0.05528 (14) −0.09329 (13) −0.29991 (14) 0.0536 (4)
O3 −0.07186 (13) 0.17960 (13) −0.12314 (14) 0.0471 (3)
O1 0.34931 (16) 0.60863 (16) −0.05290 (15) 0.0615 (4)
O2 0.13972 (14) 0.45913 (14) −0.12663 (13) 0.0495 (3)
O6 0.33671 (15) 0.37184 (15) 0.44510 (13) 0.0595 (4)
Cl 0.46401 (7) 0.83004 (5) 0.35072 (6) 0.06618 (19)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C7 0.0724 (15) 0.0561 (13) 0.0664 (14) 0.0167 (11) 0.0202 (11) −0.0003 (10)
C4 0.0495 (10) 0.0351 (8) 0.0351 (8) 0.0004 (7) 0.0089 (7) 0.0082 (7)
C5 0.0384 (9) 0.0438 (9) 0.0440 (9) 0.0025 (7) 0.0120 (7) 0.0123 (7)
C6 0.0355 (8) 0.0396 (8) 0.0382 (8) −0.0058 (7) 0.0033 (6) 0.0097 (7)
C1 0.0371 (8) 0.0317 (7) 0.0324 (7) −0.0034 (6) 0.0034 (6) 0.0106 (6)
C2 0.0355 (8) 0.0346 (8) 0.0371 (8) −0.0010 (6) 0.0016 (6) 0.0119 (6)
C3 0.0411 (9) 0.0340 (8) 0.0369 (8) −0.0066 (7) −0.0003 (7) 0.0082 (7)
C8 0.0629 (13) 0.0710 (14) 0.0475 (11) −0.0165 (11) −0.0123 (9) 0.0127 (10)
C9 0.0669 (14) 0.0783 (15) 0.0892 (17) 0.0250 (12) 0.0395 (13) 0.0495 (14)
C13 0.0343 (8) 0.0352 (8) 0.0316 (7) −0.0030 (6) 0.0020 (6) 0.0087 (6)
C12 0.0380 (8) 0.0294 (7) 0.0348 (8) 0.0013 (6) 0.0059 (6) 0.0078 (6)
C11 0.0393 (9) 0.0320 (8) 0.0371 (8) −0.0010 (6) 0.0078 (7) 0.0089 (6)
C14 0.0439 (9) 0.0385 (8) 0.0351 (8) −0.0059 (7) 0.0025 (7) 0.0107 (7)
C10 0.0469 (10) 0.0373 (9) 0.0426 (9) −0.0075 (7) 0.0076 (7) 0.0082 (7)
C15 0.0424 (9) 0.0337 (8) 0.0384 (8) 0.0052 (7) 0.0088 (7) 0.0100 (7)
C16 0.0629 (12) 0.0611 (12) 0.0402 (9) 0.0124 (10) 0.0058 (8) 0.0220 (9)
C17 0.0997 (19) 0.0735 (16) 0.0466 (12) 0.0001 (14) −0.0117 (12) 0.0114 (11)
N2 0.0422 (8) 0.0407 (7) 0.0328 (7) −0.0115 (6) 0.0035 (6) 0.0096 (6)
N1 0.0463 (8) 0.0482 (8) 0.0369 (7) −0.0168 (7) −0.0066 (6) 0.0160 (6)
O5 0.0615 (9) 0.0436 (7) 0.0531 (8) 0.0061 (6) 0.0102 (6) −0.0030 (6)
O4 0.0483 (7) 0.0383 (6) 0.0535 (7) −0.0110 (5) −0.0075 (6) 0.0066 (6)
O3 0.0359 (6) 0.0398 (6) 0.0581 (8) −0.0001 (5) 0.0015 (5) 0.0154 (6)
O1 0.0604 (9) 0.0675 (9) 0.0557 (8) −0.0128 (7) 0.0036 (6) 0.0334 (7)
O2 0.0519 (7) 0.0511 (7) 0.0386 (6) −0.0040 (6) −0.0016 (5) 0.0180 (5)
O6 0.0628 (9) 0.0630 (9) 0.0412 (7) −0.0235 (7) −0.0084 (6) 0.0250 (6)
Cl 0.0771 (4) 0.0375 (3) 0.0716 (4) 0.0020 (2) 0.0145 (3) 0.0072 (2)

Geometric parameters (Å, º)

C7—O5 1.415 (3) C13—N2 1.474 (2)
C7—H7A 0.9600 C13—C12 1.523 (2)
C7—H7B 0.9600 C13—H13 0.9800
C7—H7C 0.9600 C12—C11 1.341 (2)
C4—O5 1.364 (2) C12—C15 1.475 (2)
C4—C5 1.389 (2) C11—N1 1.378 (2)
C4—C3 1.391 (3) C11—C10 1.500 (2)
C5—C6 1.384 (3) C14—O6 1.230 (2)
C5—H5 0.9300 C14—N2 1.335 (2)
C6—C1 1.377 (3) C14—N1 1.369 (2)
C6—H6 0.9300 C10—Cl 1.783 (2)
C1—C2 1.403 (2) C10—H10A 0.9700
C1—C13 1.522 (2) C10—H10B 0.9700
C2—O3 1.370 (2) C15—O1 1.202 (2)
C2—C3 1.396 (2) C15—O2 1.335 (2)
C3—O4 1.3791 (19) C16—O2 1.448 (2)
C8—O4 1.424 (3) C16—C17 1.487 (3)
C8—H8A 0.9600 C16—H16A 0.9700
C8—H8B 0.9600 C16—H16B 0.9700
C8—H8C 0.9600 C17—H17A 0.9600
C9—O3 1.412 (2) C17—H17B 0.9600
C9—H9A 0.9600 C17—H17C 0.9600
C9—H9B 0.9600 N2—H2N 0.8600
C9—H9C 0.9600 N1—H1N 0.8600
O5—C7—H7A 109.5 C12—C13—H13 108.2
O5—C7—H7B 109.5 C11—C12—C15 122.12 (15)
H7A—C7—H7B 109.5 C11—C12—C13 120.78 (14)
O5—C7—H7C 109.5 C15—C12—C13 117.09 (13)
H7A—C7—H7C 109.5 C12—C11—N1 120.98 (14)
H7B—C7—H7C 109.5 C12—C11—C10 126.74 (15)
O5—C4—C5 124.55 (17) N1—C11—C10 112.26 (14)
O5—C4—C3 115.73 (15) O6—C14—N2 123.26 (15)
C5—C4—C3 119.71 (16) O6—C14—N1 120.67 (14)
C6—C5—C4 119.45 (17) N2—C14—N1 116.06 (15)
C6—C5—H5 120.3 C11—C10—Cl 109.90 (13)
C4—C5—H5 120.3 C11—C10—H10A 109.7
C1—C6—C5 122.07 (15) Cl—C10—H10A 109.7
C1—C6—H6 119.0 C11—C10—H10B 109.7
C5—C6—H6 119.0 Cl—C10—H10B 109.7
C6—C1—C2 118.47 (15) H10A—C10—H10B 108.2
C6—C1—C13 121.07 (13) O1—C15—O2 122.11 (16)
C2—C1—C13 120.39 (15) O1—C15—C12 127.08 (15)
O3—C2—C3 120.68 (14) O2—C15—C12 110.79 (14)
O3—C2—C1 119.18 (15) O2—C16—C17 107.07 (17)
C3—C2—C1 120.11 (16) O2—C16—H16A 110.3
O4—C3—C4 118.51 (15) C17—C16—H16A 110.3
O4—C3—C2 121.07 (16) O2—C16—H16B 110.3
C4—C3—C2 120.16 (14) C17—C16—H16B 110.3
O4—C8—H8A 109.5 H16A—C16—H16B 108.6
O4—C8—H8B 109.5 C16—C17—H17A 109.5
H8A—C8—H8B 109.5 C16—C17—H17B 109.5
O4—C8—H8C 109.5 H17A—C17—H17B 109.5
H8A—C8—H8C 109.5 C16—C17—H17C 109.5
H8B—C8—H8C 109.5 H17A—C17—H17C 109.5
O3—C9—H9A 109.5 H17B—C17—H17C 109.5
O3—C9—H9B 109.5 C14—N2—C13 127.23 (14)
H9A—C9—H9B 109.5 C14—N2—H2N 116.4
O3—C9—H9C 109.5 C13—N2—H2N 116.4
H9A—C9—H9C 109.5 C14—N1—C11 124.02 (14)
H9B—C9—H9C 109.5 C14—N1—H1N 118.0
N2—C13—C1 109.46 (13) C11—N1—H1N 118.0
N2—C13—C12 109.91 (12) C4—O5—C7 117.72 (15)
C1—C13—C12 112.61 (13) C3—O4—C8 117.15 (15)
N2—C13—H13 108.2 C2—O3—C9 116.65 (15)
C1—C13—H13 108.2 C15—O2—C16 117.05 (14)
O5—C4—C5—C6 −178.30 (16) C13—C12—C11—N1 0.2 (3)
C3—C4—C5—C6 0.0 (3) C15—C12—C11—C10 2.3 (3)
C4—C5—C6—C1 −0.7 (3) C13—C12—C11—C10 −178.40 (16)
C5—C6—C1—C2 0.0 (2) C12—C11—C10—Cl 103.68 (19)
C5—C6—C1—C13 176.89 (15) N1—C11—C10—Cl −75.01 (18)
C6—C1—C2—O3 −176.62 (14) C11—C12—C15—O1 9.9 (3)
C13—C1—C2—O3 6.5 (2) C13—C12—C15—O1 −169.41 (18)
C6—C1—C2—C3 1.4 (2) C11—C12—C15—O2 −171.87 (16)
C13—C1—C2—C3 −175.49 (14) C13—C12—C15—O2 8.8 (2)
O5—C4—C3—O4 5.7 (2) O6—C14—N2—C13 −173.33 (17)
C5—C4—C3—O4 −172.75 (15) N1—C14—N2—C13 7.7 (3)
O5—C4—C3—C2 179.86 (15) C1—C13—N2—C14 112.29 (19)
C5—C4—C3—C2 1.4 (3) C12—C13—N2—C14 −11.9 (2)
O3—C2—C3—O4 −10.1 (2) O6—C14—N1—C11 −177.08 (18)
C1—C2—C3—O4 171.86 (15) N2—C14—N1—C11 1.9 (3)
O3—C2—C3—C4 175.89 (15) C12—C11—N1—C14 −5.6 (3)
C1—C2—C3—C4 −2.1 (2) C10—C11—N1—C14 173.14 (17)
C6—C1—C13—N2 −72.80 (18) C5—C4—O5—C7 −1.3 (3)
C2—C1—C13—N2 104.02 (16) C3—C4—O5—C7 −179.67 (18)
C6—C1—C13—C12 49.8 (2) C4—C3—O4—C8 −114.3 (2)
C2—C1—C13—C12 −133.40 (15) C2—C3—O4—C8 71.6 (2)
N2—C13—C12—C11 7.4 (2) C3—C2—O3—C9 71.6 (2)
C1—C13—C12—C11 −114.95 (17) C1—C2—O3—C9 −110.4 (2)
N2—C13—C12—C15 −173.26 (14) O1—C15—O2—C16 2.5 (3)
C1—C13—C12—C15 64.41 (19) C12—C15—O2—C16 −175.83 (15)
C15—C12—C11—N1 −179.15 (15) C17—C16—O2—C15 168.35 (19)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the N1/C11–C13/N2/C14 pyrimidine ring.

D—H···A D—H H···A D···A D—H···A
N1—H1N···O6i 0.86 1.95 2.812 (2) 178
N2—H2N···O4ii 0.86 2.37 3.160 (2) 153
C17—H17C···Cgiii 0.96 2.83 3.676 (4) 147
C10—H10A···O1 0.97 2.14 2.864 (3) 131

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y, −z; (iii) −x, −y+1, −z+2.

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  2. Asghari, S., Tajbakhsh, M., Kenari, B. J. & Khaksar, S. (2011). Chin. Chem. Lett. 22, 127–130.
  3. Beena, K. P. & Akelesh, T. (2012). Int. Res. J. Pharm. 3, 303–304.
  4. Bharanidharan, S., Saleem, H., Gunasekaran, B., Padusha, M. S. A. & Suresh, M. (2014). Acta Cryst. E70, o1185–o1186. [DOI] [PMC free article] [PubMed]
  5. Bruker (2008). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Kettmann, V., Světlík, J. & Veizerová, L. (2008). Acta Cryst. E64, o1092. [DOI] [PMC free article] [PubMed]
  8. Novina, J. J., Vasuki, G., Suresh, M. & Padusha, M. S. A. (2015). Acta Cryst. E71, o206–o207. [DOI] [PMC free article] [PubMed]
  9. Sharma, A., Khare, R., Kumar, V., Gupta, G. K. & Beniwal, V. (2014). Int. J. Pharm. Pharm. Sci. 6, 171–175.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Vaisalini, N. B., Rao, N. V., Harika, V. B. M. L., Desu, P. K. & Nama, S. (2012). Int. J. Pharm. Chem. Res. 1, 2278–8700.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015011688/lh5770sup1.cif

e-71-00821-sup1.cif (28.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015011688/lh5770Isup2.hkl

e-71-00821-Isup2.hkl (183.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015011688/lh5770Isup3.cml

CCDC reference: 1407186

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES