Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 13;71(Pt 7):766–771. doi: 10.1107/S2056989015011044

Crystal structures of two 6-(2-hy­droxy­benzo­yl)-5H-thia­zolo[3,2-a]pyrimidin-5-ones

Ligia R Gomes a,b, John Nicolson Low c,*, Fernando Cagide d, Fernanda Borges d
PMCID: PMC4518966  PMID: 26279863

The title fused heterocycles arose from an unexpected intra­molecular cyclization reaction. Each mol­ecule features an intra­molecular O—H⋯O hydrogen bond. In the crystal, chains mediated by C—H⋯O inter­actions arise.

Keywords: crystal structure, thia­zole, conformation, supra­molecular structure, hydrogen bonding, π–π stacking inter­actions

Abstract

The title compounds, 6-(2-hy­droxy­benz­yl)-5H-thia­zolo[3,2-a]pyrimidin-5-one, C13H8N2O3S, (1), and 6-(2-hy­droxy­benz­yl)-3-methyl-5H-thia­zolo[3,2-a]pyrimidin-5-one, C14H10N2O3S, (2), were synthesized when a chromone-3-carb­oxy­lic acid, activated with (benzotriazol-1-yl­oxy)tripyrrolidinyl­phospho­nium hexa­fluorido­phosphate (PyBOP), was reacted with a primary heteromamine. Instead of the expected amidation, the unusual title thia­zolo­pyrimidine-5-one derivatives were obtained serendipitously and a mechanism of formation is proposed. Both compounds present an intra­molecular O—H⋯O hydrogen bond, which generates an S(6) ring. The dihedral angles between the heterocyclic moiety and the 2-hydroxybenzoyl ring are 55.22 (5) and 46.83 (6)° for (1) and (2), respectively. In the crystals, the mol­ecules are linked by weak C—H⋯O hydrogen bonds and π–π stacking inter­actions.

Chemical context  

Although heterocycles, namely those bearing thia­zole or pyrimidine motifs, are reported to show a broad spectrum of pharmacological properties such as anti­microbial, anti­cancer and anti-inflammatory activities (Jiang et al., 2013; Mishra et al., 2015; Perrone et al., 2012), only a few compounds enclosing the thia­zolo[3,2a]pyrimidine framework have been explored and screened towards the above-mentioned pharmacological activities. Even though some derivatives tested up to now have shown inter­esting anti-inflammatory (Bekhit et al., 2003), anti­viral (Abd El-Galil et al., 2010) and anti­bacterial activities (Mulwad et al., 2010) and as calcium agonists (Balkan et al., 1992), the data acquired so far are insufficient to indicate the importance of the thia­zolo[3,2a]pyrimidine motif as a positive contributor to the biological profile mentioned above. The same reflection is valid in relation to the data acquired for some thia­zolo[3,2a]pyrimidine-5-one derivatives as 5-HT2a receptor antagonists, a putative therapeutic target for the treatment of depression, although they have structural similarity to ritanserin, a serotonin antagonist (Awadallah, 2008). In this last case, the pharmacological activity appears to be enhanced by the nature of the planar aromatic or heterocyclic ring systems, the type of spacer as well as the presence of a basic nitro­gen atom.

A search made in the latest version (5.36.0; 2015) of the Cambridge Structural Database (Groom & Allen, 2014) for thia­zolo[3,2a]pyrimidine-5-one-based structures revealed the existence of 11 compounds containing the 5H-thia­zolo[3,2a]-pyrimidine-5-one fragment in which the hetero ring was not fused with other cyclic rings. In order to clarify the significance of the thia­zolo[3,2a]pyrimidine scaffold in medicinal chemistry, new 5H-thia­zolo[3,2-a]pyrimidin-5-one derivatives were synthesized. In this work we report the structures and synthesis, by a one-pot reaction, of two deriva­tives 6-(2-hy­droxy­benz­yl)-5H-thia­zolo[3,2-a]pyrimidin-5-one (1) and 6-(2-hy­droxy­benz­yl)-5H-thia­zolo[3,2-a]pyrimidin-3-methyl-5-one (2), which will be screened for anti­microbial activity.graphic file with name e-71-00766-scheme1.jpg

Structural commentary  

The mol­ecules of (1) and (2) are shown in Figs. 1 and 2. The structural characterization reveals that the mol­ecules have two cyclic units, viz. the hy­droxy­benzyl and the heterocyclic 5H-thia­zolo[3,2-a]pyrimidin-5-one ring separated by a carbonyl spacer, as expected. In both compounds, the carbonyl O atoms are trans oriented with respect to each other, contributing to the establishment of an intra­molecular O—H⋯O hydrogen bond between the o-hydroxyl group of the benzene ring and the carbonyl group of the spacer (Tables 1 and 2), which generates an S(6) ring. Taken together, the benzene ring and hydrogen-bonded pseudo ring are roughly planar, the carbonyl oxygen atom deviates by 0.391 (3) and 0.055 (4) Å in (1) and (2), respectively from the least-square plane formed by the benzene ring atoms. The heterocyclic rings of both compounds are also almost planar, as expected; the maximum deviation from the best plane formed by the ten atoms of the thia­zolo­pyrimidine moiety is 0.103 (1) Å for the carbonyl oxygen atom, O5, in (1) and 0.129 (1) Å for the same atom in (2). Thus, both mol­ecules are twisted around the C6—C67 bond that links the ring systems, which are inclined to one another by 55.22 (5) and 46.83 (6)° for (1) and (2), respectively.

Figure 1.

Figure 1

A view of the asymmetric unit of (1) with displacement ellipsoids drawn at the 70% probability level.

Figure 2.

Figure 2

A view of the asymmetric unit of (2) with displacement ellipsoids drawn at the 70% probability level.

Table 1. Hydrogen-bond geometry (Å, °) for (1) .

D—H⋯A D—H H⋯A DA D—H⋯A
O62—H62A⋯O67 0.84 1.87 2.5906 (16) 144
C2—H2⋯O5i 0.95 2.29 3.146 (2) 150

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °) for (2) .

D—H⋯A D—H H⋯A DA D—H⋯A
O62—H3⋯O67 0.84 1.81 2.557 (2) 146
C64—H64⋯O5i 0.95 2.57 3.217 (3) 125

Symmetry code: (i) Inline graphic.

Supra­molecular features  

As noted above, the hydroxyl group is involved in intra­molecular hydrogen bonding, which leaves it unavailable for participation in inter­molecular hydrogen bonding. Thus, the mol­ecules are linked via weak C—H⋯O inter­actions: in both compounds the oxygen acceptor atom is the oxo atom O5, being in (1) the hydrogen-bond donor atom is C2 (of the heterocyclic group) and in (2) the hydrogen-bond donor atom is C64 (located in the exocyclic benzene ring).

In (1) the mol­ecules are linked by the C2—H2⋯O5 (x + Inline graphic, −y + Inline graphic, z + Inline graphic) hydrogen bond, forming a C(6) chain, which runs parallel to [101] and results from the action of a c-glide at (0, Inline graphic, 0) (Table 1 and Fig. 3). The presence of the methyl group on atom C2 of the heterocyclic ring precludes the formation of a similar bond in (2). Thus in the supra­molecular structure of this compound, the mol­ecules are linked by a C64—H64⋯O5(−x + 2, y + Inline graphic, −z + 1) hydrogen bond, forming a C(9) chain, which runs parallel to the b-axis direction and results from the action of a 21 screw axis at (1, y, Inline graphic) (Table 2 and Fig. 4).

Figure 3.

Figure 3

Compound (1): Mol­ecular C6 chain which runs parallel to [101]. Symmetry codes: (i) x + Inline graphic, −y + Inline graphic, z + Inline graphic; (ii) x − Inline graphic, −y + Inline graphic, z − Inline graphic. Hydrogen atoms not involved in the hydrogen bonding are omitted.

Figure 4.

Figure 4

Compound (2): Mol­ecular C9 chain which runs parallel to the a-axis direction. Symmetry codes: (i) −x + 2, y + Inline graphic, −z + 1; (ii) −x + 2, y − Inline graphic, −z + 1. Hydrogen atoms not involved in the hydrogen bonding are omitted.

Both mol­ecules present aromatic π–π stacking contacts. In (1) there is a close contact between centrosymmetrically related rings containing atom C5 at (x, y, z) and (−x + 1, −y + 1, −z + 1) [centroid-to-centroid distance = 3.6764 (9) Å, perpendicular distance between rings = 3.2478 (6) Å and slippage = 1.723 Å]. In (2) the mol­ecules stack above each other along the a-axis direction with unit translation of 3.931 (2) Å [perpendicular distances between the rings (and slippages) of 3.3821 (9) (2.004), 3.3355 (9) (2.080), 3.4084 (9) (1.958) Å for the thia­zole, pyrimidine and benzene rings, respectively].

Database survey  

As said before, a search made in the latest version (5.36.0; 2015) of the Cambridge Structural Database revealed the existence of 11 deposited compounds containing the 5H-thia­zolo[3,2a]-pyrimidine-5-one residue. Of those, eight were 2,3-di­hydro derivatives thus leaving only the compounds listed below. Fig. 5 shows representations of the compounds referred to in this work (the scaffold indicates the adopted numbering scheme for the 5H-thia­zolo[3,2a]-pyrimidine-5-one residue). Compounds (1) and (2) are herein characterized and the remaining are referred to by their CSD codes. GEFTES: 7-(methyl­sulfan­yl)-5H-[1,3]thia­zolo[3,2-a]pyrimidin-5-one (Bernhardt & Wentrup, 2012); JABRAG: 7-penta­fluoro­ethyl-6-tri­fluoro­methyl­thia­zolo[3,2-a]pyrimidine-5-one (Chi et al., 2002); NAMWEE: N-phenyl-6-methyl-5-oxo-5H-[1,3]-thia­zolo[3,2-a]pyrimidine-2-carboxamide (Volovenko et al., 2004); QIBNOF: 3-ethyl-2-(4-methyl­thia­zol-2-yl)thia­zolo[3,2-a]pyrimidin-4-one (Troisi et al., 2006); and TUFCAY: 3-benzoyl-7-methyl-5H-thia­zolo[3,2-a]pyrimidine-5-one (Elokhina et al., 1996). In those compounds, the C2—C3 bond length averages 1.329 (9) Å, typical for values for a Csp 2—Csp 2 bond length in thio­phenes (Allen et al., 1987). The average length of the C3—N4 bond at 1.397 (6) Å is slightly shorter than that for N4—C5, which is 1.418 (7) Å. The average values for the N4—C9 and C7—N8 bond lengths, 1.363 (7) and 1.357 (12) Å, respectively, are significantly shorter than the previous ones, suggesting the presence of a higher electronic density in that part of the rings. The N8—C9 average of 1.306 (9) Å is typical of a C=N bond.

Figure 5.

Figure 5

Representations of the compounds referred to in this work (the scaffold indicates the adopted numbering scheme for the 5H-thia­zolo[3,2a]-pyrimidine-5-one residue).

Synthesis and crystallization  

Compounds (1) and (2) were synthesized in moderate/high yields by a one-pot reaction using 4-oxo-4H-chromene-3-carb­oxy­lic acid as the starting material. Chromone-3-carb­oxy­lic acid was initially activated with benzotriazol-1-yl-oxy­tripyrrolidino­phospho­nium hexa­fluorido­phosphate (PyBOP). Then the in situ formed inter­mediate reacts with the hetero­amine (stoichiometry 1:1) giving rise to 5H-thia­zolo[3,2-a]pyrimidin-5-one derivatives (1) (68%) and (2) (81%). From a mechanistic point of view, the 6-(2-hy­droxy­benzo­yl)-5H-thia­zolo[3,2-a]pyrimidin-5-one derivatives may have been obtained by a nucleophilic attack of primary hetero­amine to the 2-position of the activated chromone with a subsequent opening of the pyran ring. Then, the heterocycle entities were obtained by a process involving an intra­molecular reaction assisted by the nitro­gen atom of the heterocycle moiety (see scheme below). Crystals were obtained by recrystallization from (1) in AcOEt (m.p. 454–456 K) in the form of colourless plates and from (2) in CH2Cl2 (m.p. 451–453 K) in the form of yellow blocks.graphic file with name e-71-00766-scheme2.jpg

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were positioned geom­etrically and treated as riding atoms with C—H(aromatic) = 0.95 and O—H = 0.84 Å with U iso = 1.2U eq(C) or 1.5U eq(O).

Table 3. Experimental details.

  (1) (2)
Crystal data
Chemical formula C13H8N2O3S C14H10N2O3S
M r 272.27 286.30
Crystal system, space group Monoclinic, P21/n Monoclinic, P21
Temperature (K) 100 100
a, b, c (Å) 7.5563 (5), 15.3187 (11), 10.1229 (7) 3.931 (2), 10.459 (6), 14.657 (8)
β (°) 99.49 (2) 94.201 (14)
V3) 1155.70 (15) 601.0 (6)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.29 0.28
Crystal size (mm) 0.33 × 0.21 × 0.04 0.26 × 0.13 × 0.09
 
Data collection
Diffractometer Rigaku Saturn724+ Rigaku Saturn724+
Absorption correction Multi-scan CrystalClear-SM Expert (Rigaku, 2012) Multi-scan CrystalClear-SM Expert (Rigaku, 2012)
T min, T max 0.912, 0.989 0.931, 0.975
No. of measured, independent and observed [I > 2σ(I)] reflections 7713, 2632, 2135 4859, 3175, 2808
R int 0.040 0.023
(sin θ/λ)max−1) 0.649 0.729
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.036, 0.096, 1.02 0.031, 0.067, 1.04
No. of reflections 2632 3175
No. of parameters 172 183
No. of restraints 0 1
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.22 0.35, −0.34
Absolute structure Flack x determined using 981 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.03 (4)

Computer programs: CrystalClear-SM Expert (Rigaku, 2012), SHELXS (Sheldrick, 2008), ShelXle (Hübschle et al., 2011), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009), Flipper 25 (Oszlányi & Sütő, 2004), OSCAIL (McArdle et al., 2004) and Mercury (Macrae et al., 2006).

Supplementary Material

Crystal structure: contains datablock(s) general, 1, 2. DOI: 10.1107/S2056989015011044/hb7437sup1.cif

e-71-00766-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989015011044/hb74371sup2.hkl

e-71-00766-1sup2.hkl (210.7KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989015011044/hb74372sup3.hkl

e-71-00766-2sup3.hkl (253.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015011044/hb74371sup4.cml

Supporting information file. DOI: 10.1107/S2056989015011044/hb74372sup5.cml

CCDC references: 1405409, 1405408

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the staff at the National Crystallographic Service, University of Southampton, for the data collection, help and advice, (Coles & Gale, 2012) and the Foundation for Science and Technology (FCT) of Portugal (QUI/UI0081/2015). FC (SFRH/BPD/74491/2010) is supported by FCT grant.

supplementary crystallographic information

(1) 6-(2-Hydroxybenzoyl)-5H-thiazolo[3,2-a]pyrimidin-5-one . Crystal data

C13H8N2O3S F(000) = 560
Mr = 272.27 Dx = 1.565 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71075 Å
a = 7.5563 (5) Å Cell parameters from 7040 reflections
b = 15.3187 (11) Å θ = 2.4–27.5°
c = 10.1229 (7) Å µ = 0.28 mm1
β = 99.49 (2)° T = 100 K
V = 1155.70 (15) Å3 Plate, colourless
Z = 4 0.33 × 0.21 × 0.04 mm

(1) 6-(2-Hydroxybenzoyl)-5H-thiazolo[3,2-a]pyrimidin-5-one . Data collection

Rigaku Saturn724+ (2x2 bin mode) diffractometer 2632 independent reflections
Radiation source: Sealed Tube 2135 reflections with I > 2σ(I)
Graphite Monochromator monochromator Rint = 0.040
Detector resolution: 28.5714 pixels mm-1 θmax = 27.5°, θmin = 3.1°
profile data from ω–scans h = −8→9
Absorption correction: multi-scan CrystalClear-SM Expert (Rigaku, 2012) k = −16→19
Tmin = 0.912, Tmax = 0.989 l = −13→10
7713 measured reflections

(1) 6-(2-Hydroxybenzoyl)-5H-thiazolo[3,2-a]pyrimidin-5-one . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036 H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0485P)2 + 0.3293P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
2632 reflections Δρmax = 0.38 e Å3
172 parameters Δρmin = −0.22 e Å3

(1) 6-(2-Hydroxybenzoyl)-5H-thiazolo[3,2-a]pyrimidin-5-one . Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

(1) 6-(2-Hydroxybenzoyl)-5H-thiazolo[3,2-a]pyrimidin-5-one . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.53044 (5) 0.47242 (3) 0.82245 (4) 0.01896 (13)
O5 0.13953 (16) 0.30924 (7) 0.48703 (11) 0.0220 (3)
O62 −0.16684 (15) 0.43565 (8) 0.04276 (11) 0.0244 (3)
H62A −0.1549 0.4787 0.0949 0.037*
O67 −0.03352 (15) 0.51893 (7) 0.25912 (11) 0.0202 (3)
N4 0.32960 (17) 0.39593 (9) 0.62970 (12) 0.0153 (3)
N8 0.35861 (18) 0.54953 (9) 0.59756 (13) 0.0182 (3)
C2 0.4957 (2) 0.36098 (11) 0.83142 (15) 0.0200 (3)
H2 0.5482 0.3254 0.9044 0.024*
C3 0.3863 (2) 0.33073 (11) 0.72355 (15) 0.0184 (3)
H3 0.3510 0.2713 0.7121 0.022*
C5 0.2084 (2) 0.38137 (11) 0.50752 (15) 0.0167 (3)
C6 0.1834 (2) 0.45847 (10) 0.42710 (14) 0.0157 (3)
C7 0.2532 (2) 0.53721 (11) 0.47770 (15) 0.0174 (3)
H7 0.2244 0.5873 0.4232 0.021*
C9 0.3934 (2) 0.47688 (10) 0.66844 (15) 0.0159 (3)
C61 0.1006 (2) 0.39010 (10) 0.19292 (14) 0.0162 (3)
C62 −0.0209 (2) 0.38331 (11) 0.07150 (15) 0.0184 (3)
C63 0.0072 (2) 0.32092 (11) −0.02354 (16) 0.0219 (4)
H62 −0.0774 0.3146 −0.1035 0.026*
C64 0.1571 (2) 0.26854 (11) −0.00138 (16) 0.0217 (4)
H64 0.1752 0.2264 −0.0666 0.026*
C65 0.2832 (2) 0.27646 (11) 0.11565 (16) 0.0201 (3)
H65 0.3881 0.2413 0.1289 0.024*
C66 0.2531 (2) 0.33623 (10) 0.21201 (15) 0.0178 (3)
H66 0.3372 0.3409 0.2926 0.021*
C67 0.0738 (2) 0.45816 (10) 0.29057 (15) 0.0160 (3)

(1) 6-(2-Hydroxybenzoyl)-5H-thiazolo[3,2-a]pyrimidin-5-one . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0213 (2) 0.0200 (2) 0.01334 (19) −0.00121 (15) −0.00382 (14) 0.00147 (15)
O5 0.0276 (6) 0.0188 (6) 0.0182 (6) −0.0057 (5) −0.0003 (5) −0.0008 (4)
O62 0.0242 (6) 0.0272 (7) 0.0184 (6) 0.0057 (5) −0.0068 (5) −0.0042 (5)
O67 0.0210 (6) 0.0209 (6) 0.0167 (5) 0.0045 (5) −0.0025 (4) −0.0006 (4)
N4 0.0172 (6) 0.0143 (7) 0.0140 (6) 0.0011 (5) 0.0008 (5) 0.0005 (5)
N8 0.0209 (7) 0.0164 (7) 0.0151 (6) 0.0003 (5) −0.0038 (5) −0.0002 (5)
C2 0.0231 (8) 0.0204 (9) 0.0160 (7) 0.0034 (6) 0.0019 (6) 0.0034 (6)
C3 0.0235 (8) 0.0150 (8) 0.0166 (7) 0.0028 (6) 0.0033 (6) 0.0039 (6)
C5 0.0161 (7) 0.0188 (9) 0.0148 (7) −0.0002 (6) 0.0015 (6) −0.0025 (6)
C6 0.0164 (7) 0.0177 (9) 0.0122 (7) 0.0015 (6) −0.0004 (6) −0.0016 (6)
C7 0.0181 (7) 0.0174 (9) 0.0154 (7) 0.0019 (6) −0.0014 (6) 0.0008 (6)
C9 0.0158 (7) 0.0156 (8) 0.0153 (7) 0.0001 (6) −0.0007 (6) −0.0009 (6)
C61 0.0179 (7) 0.0161 (8) 0.0136 (7) −0.0025 (6) 0.0002 (6) −0.0002 (6)
C62 0.0193 (7) 0.0181 (9) 0.0164 (7) −0.0009 (6) −0.0013 (6) 0.0013 (6)
C63 0.0283 (8) 0.0211 (9) 0.0145 (7) −0.0042 (7) −0.0017 (6) −0.0004 (6)
C64 0.0328 (9) 0.0163 (9) 0.0165 (7) −0.0029 (7) 0.0059 (7) −0.0021 (6)
C65 0.0241 (8) 0.0163 (9) 0.0200 (8) 0.0015 (6) 0.0043 (6) 0.0006 (6)
C66 0.0196 (8) 0.0171 (9) 0.0160 (7) −0.0015 (6) 0.0007 (6) 0.0005 (6)
C67 0.0153 (7) 0.0162 (8) 0.0158 (7) −0.0014 (6) 0.0004 (6) 0.0016 (6)

(1) 6-(2-Hydroxybenzoyl)-5H-thiazolo[3,2-a]pyrimidin-5-one . Geometric parameters (Å, º)

S1—C9 1.7248 (16) C6—C7 1.381 (2)
S1—C2 1.7318 (17) C6—C67 1.489 (2)
O5—C5 1.225 (2) C7—H7 0.9500
O62—C62 1.3559 (19) C61—C66 1.404 (2)
O62—H62A 0.8405 C61—C62 1.411 (2)
O67—C67 1.2413 (19) C61—C67 1.473 (2)
N4—C9 1.364 (2) C62—C63 1.397 (2)
N4—C3 1.396 (2) C63—C64 1.376 (2)
N4—C5 1.4298 (19) C63—H62 0.9500
N8—C9 1.327 (2) C64—C65 1.397 (2)
N8—C7 1.3503 (19) C64—H64 0.9500
C2—C3 1.339 (2) C65—C66 1.384 (2)
C2—H2 0.9500 C65—H65 0.9500
C3—H3 0.9500 C66—H66 0.9500
C5—C6 1.429 (2)
C9—S1—C2 90.74 (7) N4—C9—S1 110.78 (11)
C62—O62—H62A 109.3 C66—C61—C62 118.53 (14)
C9—N4—C3 113.61 (13) C66—C61—C67 121.59 (14)
C9—N4—C5 122.40 (13) C62—C61—C67 119.65 (14)
C3—N4—C5 123.91 (13) O62—C62—C63 117.85 (14)
C9—N8—C7 113.80 (14) O62—C62—C61 122.18 (14)
C3—C2—S1 112.14 (12) C63—C62—C61 119.97 (15)
C3—C2—H2 123.9 C64—C63—C62 120.06 (15)
S1—C2—H2 123.9 C64—C63—H62 120.0
C2—C3—N4 112.72 (15) C62—C63—H62 120.0
C2—C3—H3 123.6 C63—C64—C65 121.00 (15)
N4—C3—H3 123.6 C63—C64—H64 119.5
O5—C5—N4 118.75 (14) C65—C64—H64 119.5
O5—C5—C6 129.54 (14) C66—C65—C64 119.14 (15)
N4—C5—C6 111.69 (13) C66—C65—H65 120.4
C7—C6—C5 120.26 (14) C64—C65—H65 120.4
C7—C6—C67 117.84 (14) C65—C66—C61 121.21 (15)
C5—C6—C67 121.81 (13) C65—C66—H66 119.4
N8—C7—C6 126.02 (15) C61—C66—H66 119.4
N8—C7—H7 117.0 O67—C67—C61 120.99 (14)
C6—C7—H7 117.0 O67—C67—C6 118.38 (14)
N8—C9—N4 125.30 (14) C61—C67—C6 120.53 (13)
N8—C9—S1 123.91 (12)
C9—S1—C2—C3 −0.18 (13) C2—S1—C9—N8 −179.59 (14)
S1—C2—C3—N4 0.97 (18) C2—S1—C9—N4 −0.67 (12)
C9—N4—C3—C2 −1.52 (19) C66—C61—C62—O62 −176.96 (15)
C5—N4—C3—C2 −178.23 (13) C67—C61—C62—O62 −2.4 (2)
C9—N4—C5—O5 −171.08 (14) C66—C61—C62—C63 3.3 (2)
C3—N4—C5—O5 5.4 (2) C67—C61—C62—C63 177.80 (14)
C9—N4—C5—C6 7.34 (19) O62—C62—C63—C64 177.45 (15)
C3—N4—C5—C6 −176.23 (13) C61—C62—C63—C64 −2.8 (2)
O5—C5—C6—C7 170.03 (16) C62—C63—C64—C65 0.1 (3)
N4—C5—C6—C7 −8.2 (2) C63—C64—C65—C66 1.9 (2)
O5—C5—C6—C67 −6.4 (3) C64—C65—C66—C61 −1.4 (2)
N4—C5—C6—C67 175.39 (13) C62—C61—C66—C65 −1.2 (2)
C9—N8—C7—C6 0.0 (2) C67—C61—C66—C65 −175.63 (14)
C5—C6—C7—N8 5.1 (2) C66—C61—C67—O67 161.58 (15)
C67—C6—C7—N8 −178.29 (14) C62—C61—C67—O67 −12.8 (2)
C7—N8—C9—N4 −1.1 (2) C66—C61—C67—C6 −14.7 (2)
C7—N8—C9—S1 177.67 (11) C62—C61—C67—C6 170.93 (14)
C3—N4—C9—N8 −179.75 (14) C7—C6—C67—O67 −40.9 (2)
C5—N4—C9—N8 −3.0 (2) C5—C6—C67—O67 135.67 (15)
C3—N4—C9—S1 1.35 (16) C7—C6—C67—C61 135.52 (15)
C5—N4—C9—S1 178.12 (10) C5—C6—C67—C61 −48.0 (2)

(1) 6-(2-Hydroxybenzoyl)-5H-thiazolo[3,2-a]pyrimidin-5-one . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O62—H62A···O67 0.84 1.87 2.5906 (16) 144
C2—H2···O5i 0.95 2.29 3.146 (2) 150

Symmetry code: (i) x+1/2, −y+1/2, z+1/2.

(2) 6-(2-Hydroxybenzoyl)-2-methyl-5H-thiazolo[3,2-a]pyrimidin-5-one . Crystal data

C14H10N2O3S F(000) = 296
Mr = 286.30 Dx = 1.582 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71075 Å
a = 3.931 (2) Å Cell parameters from 1337 reflections
b = 10.459 (6) Å θ = 2.4–31.1°
c = 14.657 (8) Å µ = 0.28 mm1
β = 94.201 (14)° T = 100 K
V = 601.0 (6) Å3 Block, yellow
Z = 2 0.26 × 0.13 × 0.09 mm

(2) 6-(2-Hydroxybenzoyl)-2-methyl-5H-thiazolo[3,2-a]pyrimidin-5-one . Data collection

Rigaku Saturn724+ (2x2 bin mode) diffractometer 3175 independent reflections
Radiation source: Rotating Anode 2808 reflections with I > 2σ(I)
Confocal monochromator Rint = 0.023
Detector resolution: 28.5714 pixels mm-1 θmax = 31.2°, θmin = 2.4°
profile data from ω–scans h = −5→5
Absorption correction: multi-scan CrystalClear-SM Expert (Rigaku, 2012) k = −14→14
Tmin = 0.931, Tmax = 0.975 l = −18→20
4859 measured reflections

(2) 6-(2-Hydroxybenzoyl)-2-methyl-5H-thiazolo[3,2-a]pyrimidin-5-one . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0296P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.067 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.35 e Å3
3175 reflections Δρmin = −0.33 e Å3
183 parameters Absolute structure: Flack x determined using 981 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: −0.03 (4)

(2) 6-(2-Hydroxybenzoyl)-2-methyl-5H-thiazolo[3,2-a]pyrimidin-5-one . Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

(2) 6-(2-Hydroxybenzoyl)-2-methyl-5H-thiazolo[3,2-a]pyrimidin-5-one . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.15253 (13) 0.38511 (5) 0.04641 (4) 0.01618 (13)
O62 0.9984 (4) 1.04996 (14) 0.34842 (12) 0.0214 (4)
H3 0.9814 1.0301 0.2927 0.032*
O5 0.8745 (4) 0.55020 (15) 0.29853 (11) 0.0183 (3)
O67 0.8149 (4) 0.91654 (14) 0.20714 (11) 0.0197 (4)
N4 0.4972 (4) 0.49139 (17) 0.17956 (13) 0.0138 (4)
N8 0.2366 (5) 0.63883 (18) 0.07249 (13) 0.0159 (4)
C2 0.3438 (5) 0.2885 (2) 0.13351 (16) 0.0155 (4)
C3 0.5170 (5) 0.3595 (2) 0.19717 (15) 0.0155 (5)
H3A 0.6412 0.3241 0.2492 0.019*
C5 0.6695 (5) 0.5856 (2) 0.23699 (16) 0.0146 (4)
C6 0.5742 (5) 0.7132 (2) 0.20851 (15) 0.0129 (4)
C7 0.3746 (5) 0.7315 (2) 0.12859 (16) 0.0156 (4)
H7 0.3288 0.8175 0.1108 0.019*
C9 0.3047 (5) 0.5225 (2) 0.10207 (15) 0.0143 (4)
C21 0.3011 (6) 0.1472 (2) 0.13112 (17) 0.0196 (5)
H21A 0.4177 0.1097 0.1861 0.029*
H21B 0.3997 0.1128 0.0767 0.029*
H21C 0.0578 0.1260 0.1289 0.029*
C61 0.7116 (5) 0.8455 (2) 0.35577 (15) 0.0142 (4)
C62 0.8621 (5) 0.9562 (2) 0.39773 (16) 0.0157 (5)
C63 0.8759 (5) 0.9700 (2) 0.49229 (17) 0.0177 (5)
H63 0.9829 1.0429 0.5205 0.021*
C64 0.7340 (5) 0.8779 (2) 0.54512 (15) 0.0182 (4)
H64 0.7464 0.8878 0.6097 0.022*
C65 0.5725 (5) 0.7705 (2) 0.50554 (16) 0.0174 (5)
H65 0.4721 0.7087 0.5427 0.021*
C66 0.5602 (5) 0.7550 (2) 0.41204 (15) 0.0151 (4)
H66 0.4483 0.6824 0.3849 0.018*
C67 0.7112 (5) 0.8297 (2) 0.25681 (15) 0.0150 (4)

(2) 6-(2-Hydroxybenzoyl)-2-methyl-5H-thiazolo[3,2-a]pyrimidin-5-one . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0175 (2) 0.0166 (3) 0.0143 (2) −0.0011 (2) −0.00033 (18) −0.0012 (2)
O62 0.0274 (8) 0.0165 (8) 0.0203 (9) −0.0060 (7) 0.0026 (7) 0.0000 (7)
O5 0.0213 (8) 0.0179 (8) 0.0148 (8) 0.0035 (7) −0.0049 (7) −0.0009 (7)
O67 0.0249 (8) 0.0161 (9) 0.0182 (8) −0.0015 (6) 0.0026 (6) 0.0025 (6)
N4 0.0149 (8) 0.0143 (10) 0.0121 (9) 0.0016 (7) 0.0009 (7) 0.0007 (7)
N8 0.0173 (9) 0.0180 (10) 0.0124 (9) 0.0006 (8) −0.0001 (7) −0.0003 (8)
C2 0.0154 (10) 0.0164 (11) 0.0150 (11) −0.0002 (9) 0.0032 (8) 0.0009 (9)
C3 0.0165 (9) 0.0159 (12) 0.0144 (11) 0.0029 (8) 0.0025 (8) 0.0032 (8)
C5 0.0138 (9) 0.0173 (11) 0.0131 (11) −0.0003 (9) 0.0026 (8) −0.0023 (9)
C6 0.0157 (9) 0.0119 (10) 0.0114 (11) 0.0004 (8) 0.0033 (8) 0.0001 (8)
C7 0.0178 (10) 0.0147 (11) 0.0144 (11) 0.0016 (9) 0.0027 (8) 0.0010 (8)
C9 0.0124 (9) 0.0179 (11) 0.0123 (11) 0.0008 (9) 0.0000 (8) −0.0023 (9)
C21 0.0220 (11) 0.0163 (11) 0.0204 (13) −0.0019 (10) 0.0011 (9) −0.0017 (10)
C61 0.0138 (9) 0.0138 (11) 0.0150 (11) 0.0020 (8) 0.0008 (8) 0.0002 (8)
C62 0.0144 (9) 0.0134 (11) 0.0193 (12) 0.0009 (8) 0.0009 (8) −0.0001 (8)
C63 0.0168 (10) 0.0145 (11) 0.0215 (12) 0.0003 (9) −0.0018 (9) −0.0048 (9)
C64 0.0189 (9) 0.0211 (11) 0.0144 (10) 0.0038 (12) −0.0006 (8) −0.0022 (11)
C65 0.0188 (10) 0.0142 (11) 0.0191 (11) 0.0017 (9) 0.0015 (9) 0.0016 (9)
C66 0.0168 (10) 0.0117 (10) 0.0166 (11) 0.0012 (8) 0.0006 (8) −0.0012 (8)
C67 0.0148 (10) 0.0142 (10) 0.0160 (11) 0.0029 (8) 0.0011 (9) 0.0030 (9)

(2) 6-(2-Hydroxybenzoyl)-2-methyl-5H-thiazolo[3,2-a]pyrimidin-5-one . Geometric parameters (Å, º)

S1—C9 1.737 (2) C6—C67 1.490 (3)
S1—C2 1.754 (2) C7—H7 0.9500
O62—C62 1.352 (3) C21—H21A 0.9800
O62—H3 0.8400 C21—H21B 0.9800
O5—C5 1.222 (3) C21—H21C 0.9800
O67—C67 1.251 (3) C61—C66 1.415 (3)
N4—C9 1.357 (3) C61—C62 1.419 (3)
N4—C3 1.404 (3) C61—C67 1.460 (3)
N4—C5 1.434 (3) C62—C63 1.391 (3)
N8—C9 1.313 (3) C63—C64 1.379 (3)
N8—C7 1.358 (3) C63—H63 0.9500
C2—C3 1.339 (3) C64—C65 1.396 (3)
C2—C21 1.487 (3) C64—H64 0.9500
C3—H3A 0.9500 C65—C66 1.377 (3)
C5—C6 1.439 (3) C65—H65 0.9500
C6—C7 1.375 (3) C66—H66 0.9500
C9—S1—C2 91.17 (12) H21A—C21—H21B 109.5
C62—O62—H3 109.5 C2—C21—H21C 109.5
C9—N4—C3 114.16 (19) H21A—C21—H21C 109.5
C9—N4—C5 122.48 (18) H21B—C21—H21C 109.5
C3—N4—C5 123.4 (2) C66—C61—C62 118.2 (2)
C9—N8—C7 113.5 (2) C66—C61—C67 122.2 (2)
C3—C2—C21 128.2 (2) C62—C61—C67 119.57 (19)
C3—C2—S1 110.87 (17) O62—C62—C63 118.0 (2)
C21—C2—S1 120.92 (18) O62—C62—C61 121.9 (2)
C2—C3—N4 113.5 (2) C63—C62—C61 120.10 (19)
C2—C3—H3A 123.3 C64—C63—C62 119.9 (2)
N4—C3—H3A 123.3 C64—C63—H63 120.0
O5—C5—N4 118.9 (2) C62—C63—H63 120.0
O5—C5—C6 129.7 (2) C63—C64—C65 121.3 (2)
N4—C5—C6 111.41 (19) C63—C64—H64 119.4
C7—C6—C5 119.8 (2) C65—C64—H64 119.4
C7—C6—C67 117.0 (2) C66—C65—C64 119.3 (2)
C5—C6—C67 122.88 (19) C66—C65—H65 120.3
N8—C7—C6 126.4 (2) C64—C65—H65 120.3
N8—C7—H7 116.8 C65—C66—C61 121.1 (2)
C6—C7—H7 116.8 C65—C66—H66 119.5
N8—C9—N4 125.9 (2) C61—C66—H66 119.5
N8—C9—S1 123.84 (17) O67—C67—C61 121.3 (2)
N4—C9—S1 110.26 (16) O67—C67—C6 116.06 (19)
C2—C21—H21A 109.5 C61—C67—C6 122.63 (18)
C2—C21—H21B 109.5
C9—S1—C2—C3 −1.90 (17) C5—N4—C9—S1 176.89 (15)
C9—S1—C2—C21 177.56 (18) C2—S1—C9—N8 −177.19 (19)
C21—C2—C3—N4 −178.26 (19) C2—S1—C9—N4 2.17 (15)
S1—C2—C3—N4 1.1 (2) C66—C61—C62—O62 −176.97 (19)
C9—N4—C3—C2 0.5 (3) C67—C61—C62—O62 1.8 (3)
C5—N4—C3—C2 −178.30 (19) C66—C61—C62—C63 3.7 (3)
C9—N4—C5—O5 −170.18 (19) C67—C61—C62—C63 −177.5 (2)
C3—N4—C5—O5 8.6 (3) O62—C62—C63—C64 178.71 (19)
C9—N4—C5—C6 7.7 (3) C61—C62—C63—C64 −1.9 (3)
C3—N4—C5—C6 −173.54 (18) C62—C63—C64—C65 −0.6 (3)
O5—C5—C6—C7 170.2 (2) C63—C64—C65—C66 1.2 (3)
N4—C5—C6—C7 −7.4 (3) C64—C65—C66—C61 0.7 (3)
O5—C5—C6—C67 −3.2 (4) C62—C61—C66—C65 −3.1 (3)
N4—C5—C6—C67 179.16 (18) C67—C61—C66—C65 178.16 (19)
C9—N8—C7—C6 1.3 (3) C66—C61—C67—O67 172.6 (2)
C5—C6—C7—N8 3.4 (3) C62—C61—C67—O67 −6.1 (3)
C67—C6—C7—N8 177.25 (19) C66—C61—C67—C6 −4.5 (3)
C7—N8—C9—N4 −1.1 (3) C62—C61—C67—C6 176.78 (18)
C7—N8—C9—S1 178.13 (16) C7—C6—C67—O67 −40.7 (3)
C3—N4—C9—N8 177.37 (19) C5—C6—C67—O67 133.0 (2)
C5—N4—C9—N8 −3.8 (3) C7—C6—C67—C61 136.6 (2)
C3—N4—C9—S1 −2.0 (2) C5—C6—C67—C61 −49.8 (3)

(2) 6-(2-Hydroxybenzoyl)-2-methyl-5H-thiazolo[3,2-a]pyrimidin-5-one . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O62—H3···O67 0.84 1.81 2.557 (2) 146
C64—H64···O5i 0.95 2.57 3.217 (3) 125

Symmetry code: (i) −x+2, y+1/2, −z+1.

References

  1. Abd El-Galil, E. A., Salwa, F. M., Eman, M. F. & Abd El-Shafy, D. N. (2010). Eur J Med Chem. 45, 149–1501.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Awadallah, F. M. (2008). Sci. Pharm. 76, 415–438.
  4. Balkan, A., Uma, S., Ertan, M. & Wiegrebe, W. (1992). Pharmazie, 47, 687–688. [PubMed]
  5. Bekhit, A. A., Fahmy, H. T. Y., Rostom, S. A. F. & Baraka, A. M. (2003). Eur. J. Med. Chem. 38, 27–36. [DOI] [PubMed]
  6. Bernhardt, P. V. & Wentrup, C. (2012). Aust. J. Chem. 65, 371–375.
  7. Chi, K.-W., Kim, H.-A., Lee, W., Park, T.-H., Lee, U. & Furin, G. G. (2002). Bull. Korean Chem. Soc. 23, 1017–1020.
  8. Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.
  9. Elokhina, V. N., Nakhmanovich, A. S., Stepanova, Z. V., Lopyrev, V. A., Bannikova, O. V., Struchkov, Y. T. & Shishkin, O. V. (1996). Izv. Akad. Nauk SSSR, Ser. Khim. 45, 2189–2191.
  10. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  11. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  12. Jiang, Z., Wang, Y., Wang, W., Wang, S., Xu, B., Fan, G., Dong, G., Liu, Y., Yao, J., Miao, Z., Zhang, W. & Sheng, C. (2013). Eur. J. Med. Chem. 64, 16–22. [DOI] [PubMed]
  13. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  14. McArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm. 6, 30–309.
  15. Mishra, C. B., Kumari, S. & Tiwari, M. (2015). Eur J Med Chem. 92, DOI: 10.1016/j. ejmech. 2014.12.031. [DOI] [PubMed]
  16. Mulwad, V. V., Parmar, H. T. & Mir, A. A. (2010). J. Korean Chem. Soc. 54, 9–12.
  17. Oszlányi, G. & Sütő, A. (2004). Acta Cryst. A60, 134–141. [DOI] [PubMed]
  18. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  19. Perrone, M. G., Vitale, P., Malerba, P., Altomare, A., Rizzi, R., Lavecchia, A., Di Giovanni, C., Novellino, E. & Scilimati, A. (2012). ChemMedChem, 7, 629–641. [DOI] [PubMed]
  20. Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.
  21. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  22. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  23. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  24. Troisi, L., Ronzini, L., Granito, C., Pindinelli, E., Troisi, A. & Pilati, T. (2006). Tetrahedron, 62, 12064–12070.
  25. Volovenko, Y. M. G. G., Dubinina, G. G. & Chernega, A. N. (2004). Khim. Get. Soedin. SSSR, pp. 100–106.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) general, 1, 2. DOI: 10.1107/S2056989015011044/hb7437sup1.cif

e-71-00766-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989015011044/hb74371sup2.hkl

e-71-00766-1sup2.hkl (210.7KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989015011044/hb74372sup3.hkl

e-71-00766-2sup3.hkl (253.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015011044/hb74371sup4.cml

Supporting information file. DOI: 10.1107/S2056989015011044/hb74372sup5.cml

CCDC references: 1405409, 1405408

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES