Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 30;71(Pt 7):875–878. doi: 10.1107/S2056989015012219

Crystal structure of catena-poly[[[tri­aqua­strontium]-di-μ2-glycinato] dibromide]

Palanisamy Revathi a, Thangavelu Balakrishnan a,*, Kandasamy Ramamurthi b, Subbiah Thamotharan c,*
PMCID: PMC4518974  PMID: 26279890

The characteristic structural feature of the title compound is the formation of cationic chains extending parallel to [001], with the Br counter-anions located in between. Inter­molecular N—H⋯O, N—H⋯Br, O—H⋯O and O—H⋯Br hydrogen bonds stabilize the structure.

Keywords: crystal structure, glycine, strontium, N/O—H⋯Br/O hydrogen bonds

Abstract

In the title coordination polymer, {[Sr(C2H5NO2)2(H2O)3]Br2}n, the Sr2+ ion and one of the water mol­ecules are located on twofold rotation axes. The alkaline earth ion is nine-coordinated by three water O atoms and six O atoms of the carboxyl­ate groups of four glycine ligands, two in a chelating mode and two in a monodentate mode. The glycine mol­ecule exists in a zwitterionic form and bridges the cations into chains parallel to [001]. The Br counter-anions are located between the chains. Inter­molecular hydrogen bonds are formed between the amino and carboxyl­ate groups of neighbouring glycine ligands, generating a head-to-tail sequence. Adjacent head-to-tail sequences are further inter­connected by inter­molecular N—H⋯Br hydrogen-bonding inter­actions into sheets parallel to (100). O—H⋯Br and O—H⋯O hydrogen bonds involving the coordinating water mol­ecules are also present, consolidating the three-dimensional hydrogen-bonding network.

Chemical context  

Research in the field of coordination polymers has undergone rapid development in recent years due to their inter­esting structures and their wide range of applications as functional materials (Lyhs et al., 2012). One of the simplest amino acids is glycine and some glycine–metal complexes have been reported previously (Fleck et al., 2006 and references therein). The crystal structures of strontium combined with anions of amino acids are rare. As part of our ongoing investigations of the crystal and mol­ecular structures of a series of metal complexes derived from amino acids (Sathiskumar et al., 2015a,b ; Balakrishnan et al., 2013), we report here the crystal structure of a polymeric strontium–glycine complex, {[Sr(C2H5NO2)2(H2O)3]Br2}n, (I).graphic file with name e-71-00875-scheme1.jpg

Structural commentary  

The asymmetric unit of (I) contains one Sr2+ ion, one glycine ligand, one and a half water mol­ecules and one bromide anion (Fig. 1). The Sr2+ cation and one of the water mol­ecules (O4) are located on special positions with site symmetry 2. The bond lengths involving the carboxyl­ate atoms and the proton­ation of the amino group reveal a zwitterionic form for the glycine ligand in (I). The Sr2+ ion is nine-coordinated by three oxygen atoms [Sr—O = 2.526 (4)–2.661 (2) Å] of water mol­ecules and six carboxyl­ate oxygen atoms of four glycine ligands [Sr—O = 2.605 (2)–2.703 (2) Å]. The glycine ligands coordinate each cation in a bis-bidentate and bis-monodentate way and simultaneously bridge two alkaline earth cations. As shown in Fig. 2, this coordination mode leads to the formation of polymeric chains running parallel to [001]. Adjacent Sr2+ ions are separated by 4.3497 (3) Å within a chain and the shortest Sr⋯Sr distance between neighbouring chains is 9.4960 (3) Å.

Figure 1.

Figure 1

The coordination environment of Sr2+ in the crystal structure of (I). Displacement ellipsoids are drawn at the 40% probability level. [Symmetry codes: (a) −x, y, Inline graphic − z; (b) −x, 1 − y, 1 − z; (c) x, 1 − y, −Inline graphic + z].

Figure 2.

Figure 2

The crystal packing of (I) projected along [010]. H atoms have been omitted for clarity.

Supra­molecular features  

The crystal structure of (I) contains an intricate network of inter­molecular N—H⋯O, N—H⋯Br, O—H⋯O and O—H⋯Br hydrogen bonds (Table 1). The protonated N atom of the glycine mol­ecule is capable of forming three hydrogen-bonding inter­actions. One of them is the characteristic head-to-tail sequence in which amino acids are self-assembled through their amino and carboxyl­ate groups (Sharma et al., 2006; Selvaraj et al., 2007; Balakrishnan et al., 2013). In (I), the zwitterionic glycine mol­ecules are arranged in linear arrays that run parallel to the [110] direction (Fig. 3), and adjacent glycine mol­ecules are inter­connected by an inter­molecular N1—H1A⋯O1 hydrogen bond. This inter­action can be described as a head-to-tail sequence having a C(5) graph-set motif (Bernstein et al., 1995). In each array, the Br counter anions bridge neighbouring glycines. Taken together, these three inter­actions form a hydrogen-bonded sheet extending parallel to (100). One of the water mol­ecules (O3) acts as a donor for two different Br anions. These inter­molecular O—H⋯Br inter­actions result in a cyclic dibromide motif as observed in the crystal structure of N,N′-dibenzyl-N,N,N′,N′-tetra­methyl­ethylenedi­ammonium dibromide dihydrate (Srinivasan et al., 2006). Within this motif, the distance between Br anions is 5.3398 (3) Å, and the distance between water oxygen atoms (O3⋯O3′) is 3.932 (4) Å. Adjacent cylic dibromide motifs, which are parallel to [001], are inter­connected by another water mol­ecule (O4) (Table 1 and Fig. 4).

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H1AO1i 0.88(5) 2.00(5) 2.879(4) 175(4)
N1H1BBr1ii 0.88(4) 2.58(4) 3.450(3) 179(4)
N1H1CBr1iii 0.89(4) 2.51(4) 3.321(3) 152(3)
O4H4O3iv 0.83(2) 2.01(2) 2.828(3) 166(5)
O3H3ABr1ii 0.84(5) 2.50(5) 3.335(3) 170(4)
O3H3BBr1v 0.84(2) 2.55(3) 3.296(3) 148(4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 3.

Figure 3

Zwitterionic glycine mol­ecules are inter­connected by inter­molecular N—H⋯O and N—H⋯Br hydrogen bonds into (100) sheets.

Figure 4.

Figure 4

Cyclic dibromide motifs are inter­connected by inter­molecular O—H⋯O inter­actions.

Synthesis and crystallization  

Crystals of (I) were grown from an aqueous solution by slow solvent evaporation at room temperature. Analytical grade reagents glycine (Merck) and strontium bromide hexa­hydrate (Sigma–Aldrich) were taken in a 2:1 molar ratio, dissolved in double-distilled water and stirred well for 4 h using a temperature-controlled magnetic stirrer to yield a homogeneous mixture. The solution was finally filtered using Whatman filter paper. The beaker containing the solution was closed with a polythene sheet with two (or) three perforations and kept in a dust-free atmosphere for slow evaporation. Single crystals were harvested after a growth period of 20 days.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The positions of the amino and water H atoms were located from difference Fourier maps. The O3—H3B and O4—H4 distances of the water mol­ecules were restrained to 0.85 (2) Å. The remaining hydrogen atoms were placed in geometrically idealized positions (C—H = 0.97 Å) with U iso(H) = 1.2U eq(C) and were constrained to ride on their parent atoms.

Table 2. Experimental details.

Crystal data
Chemical formula [Sr(C2H5NO2)2(H2O)3]Br2
M r 451.63
Crystal system, space group Orthorhombic, P b c n
Temperature (K) 296
a, b, c () 16.4198(9), 9.5438(5), 8.2402(4)
V (3) 1291.30(12)
Z 4
Radiation type Mo K
(mm1) 10.38
Crystal size (mm) 0.15 0.10 0.10
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 1999)
T min, T max 0.251, 0.410
No. of measured, independent and observed [I > 2(I)] reflections 22178, 1564, 1244
R int 0.070
(sin /)max (1) 0.661
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.023, 0.057, 1.14
No. of reflections 1564
No. of parameters 99
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.86, 0.68

Computer programs: APEX2 and SAINT (Bruker, 2004), SIR92 (Altomare et al., 1995), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015012219/wm5177sup1.cif

e-71-00875-sup1.cif (799.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015012219/wm5177Isup2.hkl

e-71-00875-Isup2.hkl (86.3KB, hkl)

CCDC reference: 1408767

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

TB and PR acknowledge the Tamil Nadu State Council for Science and Technology, Tamil Nadu, for providing funding as a Major Research Project Scheme (TNSCST/S&T project/PS/RJ/2013–2014). ST is very grateful to the management of SASTRA University for infrastructural and financial support (Professor TRR grant).

supplementary crystallographic information

Crystal data

[Sr(C2H5NO2)2(H2O)3]Br2 Dx = 2.323 Mg m3
Mr = 451.63 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbcn Cell parameters from 6100 reflections
a = 16.4198 (9) Å θ = 2.5–27.8°
b = 9.5438 (5) Å µ = 10.38 mm1
c = 8.2402 (4) Å T = 296 K
V = 1291.30 (12) Å3 Block, colourless
Z = 4 0.15 × 0.10 × 0.10 mm
F(000) = 872

Data collection

Bruker Kappa APEXII CCD diffractometer 1244 reflections with I > 2σ(I)
Radiation source: Sealed tube Rint = 0.070
ω and φ scan θmax = 28.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 1999) h = −21→21
Tmin = 0.251, Tmax = 0.410 k = −12→12
22178 measured reflections l = −9→10
1564 independent reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0169P)2 + 1.7773P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.057 (Δ/σ)max = 0.001
S = 1.14 Δρmax = 0.86 e Å3
1564 reflections Δρmin = −0.67 e Å3
99 parameters Extinction correction: SHELXL2014 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraints Extinction coefficient: 0.0086 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.14184 (17) 0.5997 (3) 0.4781 (4) 0.0178 (6)
C2 0.1901 (2) 0.6557 (3) 0.6205 (4) 0.0232 (7)
H2A 0.1529 0.6963 0.6989 0.028*
H2B 0.2183 0.5788 0.6729 0.028*
N1 0.2500 (2) 0.7627 (3) 0.5708 (4) 0.0263 (6)
O1 0.15044 (13) 0.6537 (2) 0.3416 (2) 0.0224 (5)
O2 0.09257 (13) 0.5034 (2) 0.5090 (3) 0.0251 (5)
O3 −0.00732 (17) 0.8029 (3) 0.4322 (3) 0.0308 (6)
O4 0.0000 0.3083 (4) 0.2500 0.0331 (8)
Br1 0.14700 (2) 0.97766 (4) 0.86395 (4) 0.02908 (12)
Sr2 0.0000 0.57306 (4) 0.2500 0.01637 (12)
H1A 0.279 (3) 0.793 (5) 0.654 (6) 0.062 (15)*
H1B 0.224 (2) 0.830 (4) 0.520 (5) 0.046 (13)*
H1C 0.287 (3) 0.726 (4) 0.505 (5) 0.044 (12)*
H4 −0.007 (3) 0.264 (4) 0.164 (4) 0.064 (15)*
H3A 0.033 (3) 0.853 (5) 0.404 (5) 0.059 (15)*
H3B −0.0497 (19) 0.852 (4) 0.444 (6) 0.067 (16)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0131 (14) 0.0216 (15) 0.0186 (14) 0.0022 (11) 0.0002 (12) −0.0025 (12)
C2 0.0231 (17) 0.0283 (18) 0.0183 (16) −0.0036 (13) −0.0017 (13) −0.0028 (13)
N1 0.0224 (15) 0.0283 (17) 0.0283 (15) −0.0035 (13) −0.0052 (14) −0.0055 (14)
O1 0.0204 (11) 0.0284 (12) 0.0184 (11) −0.0046 (9) −0.0007 (9) 0.0022 (9)
O2 0.0259 (12) 0.0277 (12) 0.0216 (11) −0.0084 (9) −0.0011 (9) 0.0018 (9)
O3 0.0295 (14) 0.0273 (14) 0.0356 (14) −0.0015 (12) 0.0082 (12) −0.0045 (11)
O4 0.044 (2) 0.031 (2) 0.0248 (19) 0.000 0.0019 (18) 0.000
Br1 0.02717 (19) 0.0276 (2) 0.0325 (2) 0.00143 (14) 0.00329 (15) 0.00078 (14)
Sr2 0.01582 (19) 0.0194 (2) 0.01391 (19) 0.000 −0.00064 (16) 0.000

Geometric parameters (Å, º)

C1—O1 1.246 (4) O2—Sr2 2.703 (2)
C1—O2 1.251 (3) O3—Sr2 2.661 (2)
C1—C2 1.513 (4) O3—H3A 0.84 (5)
C1—Sr2 3.004 (3) O3—H3B 0.842 (19)
C2—N1 1.477 (4) O4—Sr2 2.526 (4)
C2—H2A 0.9700 O4—H4 0.833 (19)
C2—H2B 0.9700 Sr2—O2ii 2.605 (2)
N1—H1A 0.88 (5) Sr2—O2i 2.605 (2)
N1—H1B 0.88 (4) Sr2—O3iii 2.661 (2)
N1—H1C 0.89 (4) Sr2—O1iii 2.695 (2)
O1—Sr2 2.695 (2) Sr2—O2iii 2.703 (2)
O2—Sr2i 2.605 (2) Sr2—C1iii 3.004 (3)
O1—C1—O2 124.1 (3) O1iii—Sr2—O1 146.83 (10)
O1—C1—C2 119.7 (3) O4—Sr2—O2iii 75.77 (4)
O2—C1—C2 116.1 (3) O2ii—Sr2—O2iii 69.96 (8)
O1—C1—Sr2 63.74 (15) O2i—Sr2—O2iii 101.82 (7)
O2—C1—Sr2 64.13 (16) O3iii—Sr2—O2iii 77.44 (7)
C2—C1—Sr2 157.1 (2) O3—Sr2—O2iii 128.53 (7)
N1—C2—C1 112.2 (3) O1iii—Sr2—O2iii 48.23 (6)
N1—C2—H2A 109.2 O1—Sr2—O2iii 143.76 (6)
C1—C2—H2A 109.2 O4—Sr2—O2 75.77 (4)
N1—C2—H2B 109.2 O2ii—Sr2—O2 101.82 (7)
C1—C2—H2B 109.2 O2i—Sr2—O2 69.96 (8)
H2A—C2—H2B 107.9 O3iii—Sr2—O2 128.53 (7)
C2—N1—H1A 111 (3) O3—Sr2—O2 77.44 (7)
C2—N1—H1B 108 (3) O1iii—Sr2—O2 143.76 (6)
H1A—N1—H1B 113 (4) O1—Sr2—O2 48.23 (6)
C2—N1—H1C 111 (3) O2iii—Sr2—O2 151.53 (9)
H1A—N1—H1C 104 (4) O4—Sr2—C1iii 94.86 (6)
H1B—N1—H1C 109 (4) O2ii—Sr2—C1iii 89.95 (7)
C1—O1—Sr2 91.77 (17) O2i—Sr2—C1iii 92.77 (7)
C1—O2—Sr2i 137.62 (19) O3iii—Sr2—C1iii 67.17 (8)
C1—O2—Sr2 91.27 (18) O3—Sr2—C1iii 104.38 (8)
Sr2i—O2—Sr2 110.04 (8) O1iii—Sr2—C1iii 24.49 (7)
Sr2—O3—H3A 106 (3) O1—Sr2—C1iii 149.51 (7)
Sr2—O3—H3B 124 (3) O2iii—Sr2—C1iii 24.60 (7)
H3A—O3—H3B 111 (4) O2—Sr2—C1iii 161.97 (7)
Sr2—O4—H4 120 (3) O4—Sr2—C1 94.86 (6)
O4—Sr2—O2ii 73.73 (5) O2ii—Sr2—C1 92.77 (7)
O4—Sr2—O2i 73.73 (5) O2i—Sr2—C1 89.95 (7)
O2ii—Sr2—O2i 147.46 (10) O3iii—Sr2—C1 104.38 (8)
O4—Sr2—O3iii 145.52 (6) O3—Sr2—C1 67.17 (8)
O2ii—Sr2—O3iii 76.97 (7) O1iii—Sr2—C1 149.51 (7)
O2i—Sr2—O3iii 133.43 (8) O1—Sr2—C1 24.49 (7)
O4—Sr2—O3 145.52 (6) O2iii—Sr2—C1 161.97 (7)
O2ii—Sr2—O3 133.43 (8) O2—Sr2—C1 24.60 (7)
O2i—Sr2—O3 76.96 (7) C1iii—Sr2—C1 170.29 (11)
O3iii—Sr2—O3 68.96 (11) O4—Sr2—Sr2iv 71.300 (10)
O4—Sr2—O1iii 106.59 (5) O2ii—Sr2—Sr2iv 35.72 (5)
O2ii—Sr2—O1iii 113.67 (6) O2i—Sr2—Sr2iv 129.21 (5)
O2i—Sr2—O1iii 76.03 (7) O3iii—Sr2—Sr2iv 74.32 (6)
O3iii—Sr2—O1iii 69.40 (8) O3—Sr2—Sr2iv 143.02 (6)
O3—Sr2—O1iii 83.18 (8) O1iii—Sr2—Sr2iv 80.00 (4)
O4—Sr2—O1 106.59 (5) O1—Sr2—Sr2iv 110.90 (4)
O2ii—Sr2—O1 76.03 (7) O2iii—Sr2—Sr2iv 34.24 (5)
O2i—Sr2—O1 113.67 (6) O2—Sr2—Sr2iv 131.99 (5)
O3iii—Sr2—O1 83.18 (8) C1iii—Sr2—Sr2iv 55.55 (6)
O3—Sr2—O1 69.40 (8) C1—Sr2—Sr2iv 128.31 (6)
O1—C1—C2—N1 −6.2 (4) O1—C1—O2—Sr2i −144.8 (2)
O2—C1—C2—N1 176.5 (3) C2—C1—O2—Sr2i 32.3 (4)
Sr2—C1—C2—N1 −98.5 (5) Sr2—C1—O2—Sr2i −122.2 (3)
O2—C1—O1—Sr2 22.7 (3) O1—C1—O2—Sr2 −22.6 (3)
C2—C1—O1—Sr2 −154.3 (2) C2—C1—O2—Sr2 154.5 (2)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, −y+1, z−1/2; (iii) −x, y, −z+1/2; (iv) −x, −y+1, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1v 0.88 (5) 2.00 (5) 2.879 (4) 175 (4)
N1—H1B···Br1vi 0.88 (4) 2.58 (4) 3.450 (3) 179 (4)
N1—H1C···Br1vii 0.89 (4) 2.51 (4) 3.321 (3) 152 (3)
O4—H4···O3ii 0.83 (2) 2.01 (2) 2.828 (3) 166 (5)
O3—H3A···Br1vi 0.84 (5) 2.50 (5) 3.335 (3) 170 (4)
O3—H3B···Br1viii 0.84 (2) 2.55 (3) 3.296 (3) 148 (4)

Symmetry codes: (ii) x, −y+1, z−1/2; (v) −x+1/2, −y+3/2, z+1/2; (vi) x, −y+2, z−1/2; (vii) −x+1/2, −y+3/2, z−1/2; (viii) −x, y, −z+3/2.

References

  1. Altomare, A., Burla, M. C., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G. & Polidori, G. (1995). J. Appl. Cryst. 28, 842–846.
  2. Balakrishnan, T., Ramamurthi, K., Jeyakanthan, J. & Thamotharan, S. (2013). Acta Cryst. E69, m60–m61. [DOI] [PMC free article] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Fleck, M., Schwendtner, K. & Hensler, A. (2006). Acta Cryst. C62, m122–m125. [DOI] [PubMed]
  6. Lyhs, B., Bläser, D., Wölper, C., Haack, R., Jansen, G. & Schulz, S. (2012). Eur. J. Inorg. Chem. pp. 4350–4355. [DOI] [PubMed]
  7. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  8. Sathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015a). Spectrochim. Acta Part A , 138, 187–194. [DOI] [PubMed]
  9. Sathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015b). Acta Cryst. E71, 217–219. [DOI] [PMC free article] [PubMed]
  10. Selvaraj, M., Thamotharan, S., Roy, S. & Vijayan, M. (2007). Acta Cryst. B63, 459–468. [DOI] [PubMed]
  11. Sharma, A., Thamotharan, S., Roy, S. & Vijayan, M. (2006). Acta Cryst. C62, o148–o152. [DOI] [PubMed]
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Srinivasan, B. R., Dhuri, S. N., Sawant, J. V., Näther, C. & Bensch, W. (2006). J. Chem. Sci. 118, 211–218.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015012219/wm5177sup1.cif

e-71-00875-sup1.cif (799.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015012219/wm5177Isup2.hkl

e-71-00875-Isup2.hkl (86.3KB, hkl)

CCDC reference: 1408767

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES