The characteristic structural feature of the title compound is the formation of cationic chains extending parallel to [001], with the Br− counter-anions located in between. Intermolecular N—H⋯O, N—H⋯Br, O—H⋯O and O—H⋯Br hydrogen bonds stabilize the structure.
Keywords: crystal structure, glycine, strontium, N/O—H⋯Br/O hydrogen bonds
Abstract
In the title coordination polymer, {[Sr(C2H5NO2)2(H2O)3]Br2}n, the Sr2+ ion and one of the water molecules are located on twofold rotation axes. The alkaline earth ion is nine-coordinated by three water O atoms and six O atoms of the carboxylate groups of four glycine ligands, two in a chelating mode and two in a monodentate mode. The glycine molecule exists in a zwitterionic form and bridges the cations into chains parallel to [001]. The Br− counter-anions are located between the chains. Intermolecular hydrogen bonds are formed between the amino and carboxylate groups of neighbouring glycine ligands, generating a head-to-tail sequence. Adjacent head-to-tail sequences are further interconnected by intermolecular N—H⋯Br hydrogen-bonding interactions into sheets parallel to (100). O—H⋯Br and O—H⋯O hydrogen bonds involving the coordinating water molecules are also present, consolidating the three-dimensional hydrogen-bonding network.
Chemical context
Research in the field of coordination polymers has undergone rapid development in recent years due to their interesting structures and their wide range of applications as functional materials (Lyhs et al., 2012 ▸). One of the simplest amino acids is glycine and some glycine–metal complexes have been reported previously (Fleck et al., 2006 ▸ and references therein). The crystal structures of strontium combined with anions of amino acids are rare. As part of our ongoing investigations of the crystal and molecular structures of a series of metal complexes derived from amino acids (Sathiskumar et al., 2015a ▸,b
▸; Balakrishnan et al., 2013 ▸), we report here the crystal structure of a polymeric strontium–glycine complex, {[Sr(C2H5NO2)2(H2O)3]Br2}n, (I).
Structural commentary
The asymmetric unit of (I) contains one Sr2+ ion, one glycine ligand, one and a half water molecules and one bromide anion (Fig. 1 ▸). The Sr2+ cation and one of the water molecules (O4) are located on special positions with site symmetry 2. The bond lengths involving the carboxylate atoms and the protonation of the amino group reveal a zwitterionic form for the glycine ligand in (I). The Sr2+ ion is nine-coordinated by three oxygen atoms [Sr—O = 2.526 (4)–2.661 (2) Å] of water molecules and six carboxylate oxygen atoms of four glycine ligands [Sr—O = 2.605 (2)–2.703 (2) Å]. The glycine ligands coordinate each cation in a bis-bidentate and bis-monodentate way and simultaneously bridge two alkaline earth cations. As shown in Fig. 2 ▸, this coordination mode leads to the formation of polymeric chains running parallel to [001]. Adjacent Sr2+ ions are separated by 4.3497 (3) Å within a chain and the shortest Sr⋯Sr distance between neighbouring chains is 9.4960 (3) Å.
Figure 1.
The coordination environment of Sr2+ in the crystal structure of (I). Displacement ellipsoids are drawn at the 40% probability level. [Symmetry codes: (a) −x, y,
− z; (b) −x, 1 − y, 1 − z; (c) x, 1 − y, −
+ z].
Figure 2.
The crystal packing of (I) projected along [010]. H atoms have been omitted for clarity.
Supramolecular features
The crystal structure of (I) contains an intricate network of intermolecular N—H⋯O, N—H⋯Br, O—H⋯O and O—H⋯Br hydrogen bonds (Table 1 ▸). The protonated N atom of the glycine molecule is capable of forming three hydrogen-bonding interactions. One of them is the characteristic head-to-tail sequence in which amino acids are self-assembled through their amino and carboxylate groups (Sharma et al., 2006 ▸; Selvaraj et al., 2007 ▸; Balakrishnan et al., 2013 ▸). In (I), the zwitterionic glycine molecules are arranged in linear arrays that run parallel to the [110] direction (Fig. 3 ▸), and adjacent glycine molecules are interconnected by an intermolecular N1—H1A⋯O1 hydrogen bond. This interaction can be described as a head-to-tail sequence having a C(5) graph-set motif (Bernstein et al., 1995 ▸). In each array, the Br− counter anions bridge neighbouring glycines. Taken together, these three interactions form a hydrogen-bonded sheet extending parallel to (100). One of the water molecules (O3) acts as a donor for two different Br− anions. These intermolecular O—H⋯Br interactions result in a cyclic dibromide motif as observed in the crystal structure of N,N′-dibenzyl-N,N,N′,N′-tetramethylethylenediammonium dibromide dihydrate (Srinivasan et al., 2006 ▸). Within this motif, the distance between Br anions is 5.3398 (3) Å, and the distance between water oxygen atoms (O3⋯O3′) is 3.932 (4) Å. Adjacent cylic dibromide motifs, which are parallel to [001], are interconnected by another water molecule (O4) (Table 1 ▸ and Fig. 4 ▸).
Table 1. Hydrogen-bond geometry (, ).
| DHA | DH | HA | D A | DHA |
|---|---|---|---|---|
| N1H1AO1i | 0.88(5) | 2.00(5) | 2.879(4) | 175(4) |
| N1H1BBr1ii | 0.88(4) | 2.58(4) | 3.450(3) | 179(4) |
| N1H1CBr1iii | 0.89(4) | 2.51(4) | 3.321(3) | 152(3) |
| O4H4O3iv | 0.83(2) | 2.01(2) | 2.828(3) | 166(5) |
| O3H3ABr1ii | 0.84(5) | 2.50(5) | 3.335(3) | 170(4) |
| O3H3BBr1v | 0.84(2) | 2.55(3) | 3.296(3) | 148(4) |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
.
Figure 3.
Zwitterionic glycine molecules are interconnected by intermolecular N—H⋯O and N—H⋯Br hydrogen bonds into (100) sheets.
Figure 4.

Cyclic dibromide motifs are interconnected by intermolecular O—H⋯O interactions.
Synthesis and crystallization
Crystals of (I) were grown from an aqueous solution by slow solvent evaporation at room temperature. Analytical grade reagents glycine (Merck) and strontium bromide hexahydrate (Sigma–Aldrich) were taken in a 2:1 molar ratio, dissolved in double-distilled water and stirred well for 4 h using a temperature-controlled magnetic stirrer to yield a homogeneous mixture. The solution was finally filtered using Whatman filter paper. The beaker containing the solution was closed with a polythene sheet with two (or) three perforations and kept in a dust-free atmosphere for slow evaporation. Single crystals were harvested after a growth period of 20 days.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. The positions of the amino and water H atoms were located from difference Fourier maps. The O3—H3B and O4—H4 distances of the water molecules were restrained to 0.85 (2) Å. The remaining hydrogen atoms were placed in geometrically idealized positions (C—H = 0.97 Å) with U iso(H) = 1.2U eq(C) and were constrained to ride on their parent atoms.
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | [Sr(C2H5NO2)2(H2O)3]Br2 |
| M r | 451.63 |
| Crystal system, space group | Orthorhombic, P b c n |
| Temperature (K) | 296 |
| a, b, c () | 16.4198(9), 9.5438(5), 8.2402(4) |
| V (3) | 1291.30(12) |
| Z | 4 |
| Radiation type | Mo K |
| (mm1) | 10.38 |
| Crystal size (mm) | 0.15 0.10 0.10 |
| Data collection | |
| Diffractometer | Bruker Kappa APEXII CCD |
| Absorption correction | Multi-scan (SADABS; Bruker, 1999) |
| T min, T max | 0.251, 0.410 |
| No. of measured, independent and observed [I > 2(I)] reflections | 22178, 1564, 1244 |
| R int | 0.070 |
| (sin /)max (1) | 0.661 |
| Refinement | |
| R[F 2 > 2(F 2)], wR(F 2), S | 0.023, 0.057, 1.14 |
| No. of reflections | 1564 |
| No. of parameters | 99 |
| No. of restraints | 2 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| max, min (e 3) | 0.86, 0.68 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015012219/wm5177sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015012219/wm5177Isup2.hkl
CCDC reference: 1408767
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
TB and PR acknowledge the Tamil Nadu State Council for Science and Technology, Tamil Nadu, for providing funding as a Major Research Project Scheme (TNSCST/S&T project/PS/RJ/2013–2014). ST is very grateful to the management of SASTRA University for infrastructural and financial support (Professor TRR grant).
supplementary crystallographic information
Crystal data
| [Sr(C2H5NO2)2(H2O)3]Br2 | Dx = 2.323 Mg m−3 |
| Mr = 451.63 | Mo Kα radiation, λ = 0.71073 Å |
| Orthorhombic, Pbcn | Cell parameters from 6100 reflections |
| a = 16.4198 (9) Å | θ = 2.5–27.8° |
| b = 9.5438 (5) Å | µ = 10.38 mm−1 |
| c = 8.2402 (4) Å | T = 296 K |
| V = 1291.30 (12) Å3 | Block, colourless |
| Z = 4 | 0.15 × 0.10 × 0.10 mm |
| F(000) = 872 |
Data collection
| Bruker Kappa APEXII CCD diffractometer | 1244 reflections with I > 2σ(I) |
| Radiation source: Sealed tube | Rint = 0.070 |
| ω and φ scan | θmax = 28.0°, θmin = 2.5° |
| Absorption correction: multi-scan (SADABS; Bruker, 1999) | h = −21→21 |
| Tmin = 0.251, Tmax = 0.410 | k = −12→12 |
| 22178 measured reflections | l = −9→10 |
| 1564 independent reflections |
Refinement
| Refinement on F2 | Hydrogen site location: mixed |
| Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
| R[F2 > 2σ(F2)] = 0.023 | w = 1/[σ2(Fo2) + (0.0169P)2 + 1.7773P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.057 | (Δ/σ)max = 0.001 |
| S = 1.14 | Δρmax = 0.86 e Å−3 |
| 1564 reflections | Δρmin = −0.67 e Å−3 |
| 99 parameters | Extinction correction: SHELXL2014 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| 2 restraints | Extinction coefficient: 0.0086 (3) |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.14184 (17) | 0.5997 (3) | 0.4781 (4) | 0.0178 (6) | |
| C2 | 0.1901 (2) | 0.6557 (3) | 0.6205 (4) | 0.0232 (7) | |
| H2A | 0.1529 | 0.6963 | 0.6989 | 0.028* | |
| H2B | 0.2183 | 0.5788 | 0.6729 | 0.028* | |
| N1 | 0.2500 (2) | 0.7627 (3) | 0.5708 (4) | 0.0263 (6) | |
| O1 | 0.15044 (13) | 0.6537 (2) | 0.3416 (2) | 0.0224 (5) | |
| O2 | 0.09257 (13) | 0.5034 (2) | 0.5090 (3) | 0.0251 (5) | |
| O3 | −0.00732 (17) | 0.8029 (3) | 0.4322 (3) | 0.0308 (6) | |
| O4 | 0.0000 | 0.3083 (4) | 0.2500 | 0.0331 (8) | |
| Br1 | 0.14700 (2) | 0.97766 (4) | 0.86395 (4) | 0.02908 (12) | |
| Sr2 | 0.0000 | 0.57306 (4) | 0.2500 | 0.01637 (12) | |
| H1A | 0.279 (3) | 0.793 (5) | 0.654 (6) | 0.062 (15)* | |
| H1B | 0.224 (2) | 0.830 (4) | 0.520 (5) | 0.046 (13)* | |
| H1C | 0.287 (3) | 0.726 (4) | 0.505 (5) | 0.044 (12)* | |
| H4 | −0.007 (3) | 0.264 (4) | 0.164 (4) | 0.064 (15)* | |
| H3A | 0.033 (3) | 0.853 (5) | 0.404 (5) | 0.059 (15)* | |
| H3B | −0.0497 (19) | 0.852 (4) | 0.444 (6) | 0.067 (16)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0131 (14) | 0.0216 (15) | 0.0186 (14) | 0.0022 (11) | 0.0002 (12) | −0.0025 (12) |
| C2 | 0.0231 (17) | 0.0283 (18) | 0.0183 (16) | −0.0036 (13) | −0.0017 (13) | −0.0028 (13) |
| N1 | 0.0224 (15) | 0.0283 (17) | 0.0283 (15) | −0.0035 (13) | −0.0052 (14) | −0.0055 (14) |
| O1 | 0.0204 (11) | 0.0284 (12) | 0.0184 (11) | −0.0046 (9) | −0.0007 (9) | 0.0022 (9) |
| O2 | 0.0259 (12) | 0.0277 (12) | 0.0216 (11) | −0.0084 (9) | −0.0011 (9) | 0.0018 (9) |
| O3 | 0.0295 (14) | 0.0273 (14) | 0.0356 (14) | −0.0015 (12) | 0.0082 (12) | −0.0045 (11) |
| O4 | 0.044 (2) | 0.031 (2) | 0.0248 (19) | 0.000 | 0.0019 (18) | 0.000 |
| Br1 | 0.02717 (19) | 0.0276 (2) | 0.0325 (2) | 0.00143 (14) | 0.00329 (15) | 0.00078 (14) |
| Sr2 | 0.01582 (19) | 0.0194 (2) | 0.01391 (19) | 0.000 | −0.00064 (16) | 0.000 |
Geometric parameters (Å, º)
| C1—O1 | 1.246 (4) | O2—Sr2 | 2.703 (2) |
| C1—O2 | 1.251 (3) | O3—Sr2 | 2.661 (2) |
| C1—C2 | 1.513 (4) | O3—H3A | 0.84 (5) |
| C1—Sr2 | 3.004 (3) | O3—H3B | 0.842 (19) |
| C2—N1 | 1.477 (4) | O4—Sr2 | 2.526 (4) |
| C2—H2A | 0.9700 | O4—H4 | 0.833 (19) |
| C2—H2B | 0.9700 | Sr2—O2ii | 2.605 (2) |
| N1—H1A | 0.88 (5) | Sr2—O2i | 2.605 (2) |
| N1—H1B | 0.88 (4) | Sr2—O3iii | 2.661 (2) |
| N1—H1C | 0.89 (4) | Sr2—O1iii | 2.695 (2) |
| O1—Sr2 | 2.695 (2) | Sr2—O2iii | 2.703 (2) |
| O2—Sr2i | 2.605 (2) | Sr2—C1iii | 3.004 (3) |
| O1—C1—O2 | 124.1 (3) | O1iii—Sr2—O1 | 146.83 (10) |
| O1—C1—C2 | 119.7 (3) | O4—Sr2—O2iii | 75.77 (4) |
| O2—C1—C2 | 116.1 (3) | O2ii—Sr2—O2iii | 69.96 (8) |
| O1—C1—Sr2 | 63.74 (15) | O2i—Sr2—O2iii | 101.82 (7) |
| O2—C1—Sr2 | 64.13 (16) | O3iii—Sr2—O2iii | 77.44 (7) |
| C2—C1—Sr2 | 157.1 (2) | O3—Sr2—O2iii | 128.53 (7) |
| N1—C2—C1 | 112.2 (3) | O1iii—Sr2—O2iii | 48.23 (6) |
| N1—C2—H2A | 109.2 | O1—Sr2—O2iii | 143.76 (6) |
| C1—C2—H2A | 109.2 | O4—Sr2—O2 | 75.77 (4) |
| N1—C2—H2B | 109.2 | O2ii—Sr2—O2 | 101.82 (7) |
| C1—C2—H2B | 109.2 | O2i—Sr2—O2 | 69.96 (8) |
| H2A—C2—H2B | 107.9 | O3iii—Sr2—O2 | 128.53 (7) |
| C2—N1—H1A | 111 (3) | O3—Sr2—O2 | 77.44 (7) |
| C2—N1—H1B | 108 (3) | O1iii—Sr2—O2 | 143.76 (6) |
| H1A—N1—H1B | 113 (4) | O1—Sr2—O2 | 48.23 (6) |
| C2—N1—H1C | 111 (3) | O2iii—Sr2—O2 | 151.53 (9) |
| H1A—N1—H1C | 104 (4) | O4—Sr2—C1iii | 94.86 (6) |
| H1B—N1—H1C | 109 (4) | O2ii—Sr2—C1iii | 89.95 (7) |
| C1—O1—Sr2 | 91.77 (17) | O2i—Sr2—C1iii | 92.77 (7) |
| C1—O2—Sr2i | 137.62 (19) | O3iii—Sr2—C1iii | 67.17 (8) |
| C1—O2—Sr2 | 91.27 (18) | O3—Sr2—C1iii | 104.38 (8) |
| Sr2i—O2—Sr2 | 110.04 (8) | O1iii—Sr2—C1iii | 24.49 (7) |
| Sr2—O3—H3A | 106 (3) | O1—Sr2—C1iii | 149.51 (7) |
| Sr2—O3—H3B | 124 (3) | O2iii—Sr2—C1iii | 24.60 (7) |
| H3A—O3—H3B | 111 (4) | O2—Sr2—C1iii | 161.97 (7) |
| Sr2—O4—H4 | 120 (3) | O4—Sr2—C1 | 94.86 (6) |
| O4—Sr2—O2ii | 73.73 (5) | O2ii—Sr2—C1 | 92.77 (7) |
| O4—Sr2—O2i | 73.73 (5) | O2i—Sr2—C1 | 89.95 (7) |
| O2ii—Sr2—O2i | 147.46 (10) | O3iii—Sr2—C1 | 104.38 (8) |
| O4—Sr2—O3iii | 145.52 (6) | O3—Sr2—C1 | 67.17 (8) |
| O2ii—Sr2—O3iii | 76.97 (7) | O1iii—Sr2—C1 | 149.51 (7) |
| O2i—Sr2—O3iii | 133.43 (8) | O1—Sr2—C1 | 24.49 (7) |
| O4—Sr2—O3 | 145.52 (6) | O2iii—Sr2—C1 | 161.97 (7) |
| O2ii—Sr2—O3 | 133.43 (8) | O2—Sr2—C1 | 24.60 (7) |
| O2i—Sr2—O3 | 76.96 (7) | C1iii—Sr2—C1 | 170.29 (11) |
| O3iii—Sr2—O3 | 68.96 (11) | O4—Sr2—Sr2iv | 71.300 (10) |
| O4—Sr2—O1iii | 106.59 (5) | O2ii—Sr2—Sr2iv | 35.72 (5) |
| O2ii—Sr2—O1iii | 113.67 (6) | O2i—Sr2—Sr2iv | 129.21 (5) |
| O2i—Sr2—O1iii | 76.03 (7) | O3iii—Sr2—Sr2iv | 74.32 (6) |
| O3iii—Sr2—O1iii | 69.40 (8) | O3—Sr2—Sr2iv | 143.02 (6) |
| O3—Sr2—O1iii | 83.18 (8) | O1iii—Sr2—Sr2iv | 80.00 (4) |
| O4—Sr2—O1 | 106.59 (5) | O1—Sr2—Sr2iv | 110.90 (4) |
| O2ii—Sr2—O1 | 76.03 (7) | O2iii—Sr2—Sr2iv | 34.24 (5) |
| O2i—Sr2—O1 | 113.67 (6) | O2—Sr2—Sr2iv | 131.99 (5) |
| O3iii—Sr2—O1 | 83.18 (8) | C1iii—Sr2—Sr2iv | 55.55 (6) |
| O3—Sr2—O1 | 69.40 (8) | C1—Sr2—Sr2iv | 128.31 (6) |
| O1—C1—C2—N1 | −6.2 (4) | O1—C1—O2—Sr2i | −144.8 (2) |
| O2—C1—C2—N1 | 176.5 (3) | C2—C1—O2—Sr2i | 32.3 (4) |
| Sr2—C1—C2—N1 | −98.5 (5) | Sr2—C1—O2—Sr2i | −122.2 (3) |
| O2—C1—O1—Sr2 | 22.7 (3) | O1—C1—O2—Sr2 | −22.6 (3) |
| C2—C1—O1—Sr2 | −154.3 (2) | C2—C1—O2—Sr2 | 154.5 (2) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, −y+1, z−1/2; (iii) −x, y, −z+1/2; (iv) −x, −y+1, −z.
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1A···O1v | 0.88 (5) | 2.00 (5) | 2.879 (4) | 175 (4) |
| N1—H1B···Br1vi | 0.88 (4) | 2.58 (4) | 3.450 (3) | 179 (4) |
| N1—H1C···Br1vii | 0.89 (4) | 2.51 (4) | 3.321 (3) | 152 (3) |
| O4—H4···O3ii | 0.83 (2) | 2.01 (2) | 2.828 (3) | 166 (5) |
| O3—H3A···Br1vi | 0.84 (5) | 2.50 (5) | 3.335 (3) | 170 (4) |
| O3—H3B···Br1viii | 0.84 (2) | 2.55 (3) | 3.296 (3) | 148 (4) |
Symmetry codes: (ii) x, −y+1, z−1/2; (v) −x+1/2, −y+3/2, z+1/2; (vi) x, −y+2, z−1/2; (vii) −x+1/2, −y+3/2, z−1/2; (viii) −x, y, −z+3/2.
References
- Altomare, A., Burla, M. C., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G. & Polidori, G. (1995). J. Appl. Cryst. 28, 842–846.
- Balakrishnan, T., Ramamurthi, K., Jeyakanthan, J. & Thamotharan, S. (2013). Acta Cryst. E69, m60–m61. [DOI] [PMC free article] [PubMed]
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fleck, M., Schwendtner, K. & Hensler, A. (2006). Acta Cryst. C62, m122–m125. [DOI] [PubMed]
- Lyhs, B., Bläser, D., Wölper, C., Haack, R., Jansen, G. & Schulz, S. (2012). Eur. J. Inorg. Chem. pp. 4350–4355. [DOI] [PubMed]
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Sathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015a). Spectrochim. Acta Part A , 138, 187–194. [DOI] [PubMed]
- Sathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015b). Acta Cryst. E71, 217–219. [DOI] [PMC free article] [PubMed]
- Selvaraj, M., Thamotharan, S., Roy, S. & Vijayan, M. (2007). Acta Cryst. B63, 459–468. [DOI] [PubMed]
- Sharma, A., Thamotharan, S., Roy, S. & Vijayan, M. (2006). Acta Cryst. C62, o148–o152. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Srinivasan, B. R., Dhuri, S. N., Sawant, J. V., Näther, C. & Bensch, W. (2006). J. Chem. Sci. 118, 211–218.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015012219/wm5177sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015012219/wm5177Isup2.hkl
CCDC reference: 1408767
Additional supporting information: crystallographic information; 3D view; checkCIF report



