Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 13;71(Pt 7):o463. doi: 10.1107/S2056989015010518

Crystal structure of the pyridine–diiodine (1/1) adduct

Matti Tuikka a, Matti Haukka a,*
PMCID: PMC4518975  PMID: 26279909

Abstract

In the title adduct, C5H5N·I2, the N—I distance [2.424 (8) Å] is remarkably shorter than the sum of the van der Waals radii. The line through the I atoms forms an angle of 78.39 (16)° with the normal to the pyridine ring.

Keywords: pyridine, diiodine, halogen bonding, crystal structure

Related literature  

For the structure of the pyridine–I2 1:2 adduct, see: Hassel & Hope (1961). For the crystal structures of pyridine with ICl and IBr, see: Rømming (1972); Dahl et al. (1967). For van der Walls radii, see: Bondi (1964). For the I—I distance of iodine, see: Buontempo et al. (1997). For I—IN angles in halogen bonding, see: Desiraju et al. (2013).graphic file with name e-71-0o463-scheme1.jpg

Experimental  

Crystal data  

  • C5H5N·I2

  • M r = 332.90

  • Monoclinic, Inline graphic

  • a = 9.2432 (6) Å

  • b = 4.3392 (2) Å

  • c = 20.1953 (13) Å

  • β = 98.468 (3)°

  • V = 801.16 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.76 mm−1

  • T = 120 K

  • 0.09 × 0.07 × 0.02 mm

Data collection  

  • Bruker KAPPA APEX II CCD diffractometer

  • Absorption correction: numerical (SADABS; Bruker,2012) T min = 0.574, T max = 0.902

  • 6585 measured reflections

  • 1853 independent reflections

  • 1437 reflections with I > 2σ(I)

  • R int = 0.062

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.091

  • S = 1.07

  • 1853 reflections

  • 73 parameters

  • H-atom parameters constrained

  • Δρmax = 1.11 e Å−3

  • Δρmin = −1.26 e Å−3

Data collection: Collect (Nonius, 2000); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015010518/rz5157sup1.cif

e-71-0o463-sup1.cif (137.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010518/rz5157Isup2.hkl

e-71-0o463-Isup2.hkl (102.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015010518/rz5157Isup3.cml

. DOI: 10.1107/S2056989015010518/rz5157fig1.tif

The mol­ecular structure of the title compound, with 50% probability displacement ellipsoids for non-H atoms.

CCDC reference: 1404151

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support provided by the Academy of Finland (project No. 129171) is gratefully acknowledged.

supplementary crystallographic information

S1. Comment

Diiodine is capable to act as halogen bond donor and form stable halogen bonds with Lewis bases, such as pyridine, due to the strong charge transfer. In the case of the pyridine-I2 1:2 adduct (Hassel & Hope, 1961), the interaction eventually results in the heterolytic cleavage of I2 and formaton of [py2I]+ I3- ion pairs. Although the crystal structures involving pyridine and interhalogens ICl and IBr are known (Rømming, 1972; Dahl et al., 1967), the title pyI2 1:1 adduct has not been reported earlier. The N1—I1 distance in pyI2 (2.425 (8) Å) is remarkably shorter than the sum of the van der Walls radii of iodine and nitrogen (3.53 Å; Bondi, 1964). The I—I distance (2.8043 (9) Å) is significantly longer than that observed in free diiodine in solid state (2.715 Å; Buontempo et al., 1997). The I—I···N angle is approximately linear (176.44 (18)°) as expected in halogen bonds (Desiraju et al., 2013).

S2. Experimental

The title compound was synthesized by dissolving iodine (200 mg) in ethanol (5 ml) and adding pyridine (1 ml) into this solution. The solution was left to evaporate unde ambient conditions and after a couple of days light yellow crystals were formed.

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å and with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with 50% probability displacement ellipsoids for non-H atoms.

Crystal data

C5H5N·I2 F(000) = 592
Mr = 332.90 Dx = 2.760 Mg m3
Monoclinic, P2/c Mo Kα radiation, λ = 0.71073 Å
a = 9.2432 (6) Å Cell parameters from 1865 reflections
b = 4.3392 (2) Å θ = 1.0–27.5°
c = 20.1953 (13) Å µ = 7.76 mm1
β = 98.468 (3)° T = 120 K
V = 801.16 (8) Å3 Plate, clear light yellow
Z = 4 0.09 × 0.07 × 0.02 mm

Data collection

Bruker KAPPA APEX II CCD diffractometer 1853 independent reflections
Radiation source: fine-focus sealed tube 1437 reflections with I > 2σ(I)
Curved graphite crystal monochromator Rint = 0.062
Detector resolution: 16 pixels mm-1 θmax = 27.6°, θmin = 2.2°
φ scans and ω scans with κ offset h = −11→11
Absorption correction: numerical (SADABS; Bruker,2012) k = −5→5
Tmin = 0.574, Tmax = 0.902 l = −26→25
6585 measured reflections

Refinement

Refinement on F2 Primary atom site location: iterative
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0153P)2 + 9.3396P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
1853 reflections Δρmax = 1.11 e Å3
73 parameters Δρmin = −1.26 e Å3
0 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.27234 (6) 0.59684 (13) 0.54587 (3) 0.02083 (16)
I2 0.32645 (6) 0.35101 (14) 0.67558 (3) 0.02480 (18)
N1 0.2243 (7) 0.8407 (18) 0.4368 (4) 0.0243 (18)
C5 0.3349 (9) 0.933 (2) 0.4053 (4) 0.0207 (19)
H5 0.4323 0.8743 0.4223 0.025*
C3 0.1668 (10) 1.198 (2) 0.3214 (5) 0.028 (2)
H3 0.1471 1.3178 0.2818 0.033*
C1 0.0849 (10) 0.921 (2) 0.4121 (5) 0.030 (2)
H1 0.0069 0.8529 0.4342 0.035*
C2 0.0549 (10) 1.098 (2) 0.3558 (5) 0.030 (2)
H2 −0.0434 1.1533 0.3399 0.036*
C4 0.3076 (10) 1.112 (2) 0.3480 (5) 0.030 (2)
H4 0.3872 1.1783 0.3266 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.0189 (3) 0.0224 (3) 0.0212 (3) −0.0010 (2) 0.0027 (2) −0.0016 (3)
I2 0.0253 (3) 0.0267 (3) 0.0222 (4) 0.0029 (2) 0.0031 (3) 0.0011 (3)
N1 0.016 (4) 0.032 (4) 0.024 (4) −0.003 (3) 0.004 (3) −0.007 (4)
C5 0.017 (4) 0.031 (5) 0.013 (5) −0.001 (4) −0.001 (3) 0.000 (4)
C3 0.031 (5) 0.035 (6) 0.014 (5) −0.002 (4) −0.003 (4) 0.004 (4)
C1 0.019 (5) 0.039 (6) 0.031 (6) −0.009 (4) 0.007 (4) 0.005 (5)
C2 0.014 (4) 0.049 (7) 0.026 (6) −0.002 (4) −0.003 (4) 0.002 (5)
C4 0.025 (5) 0.042 (6) 0.022 (6) −0.006 (4) 0.005 (4) 0.003 (5)

Geometric parameters (Å, º)

I1—I2 2.8043 (9) C5—C4 1.388 (13)
I1—N1 2.425 (8) C3—C2 1.397 (12)
N1—C5 1.342 (10) C3—C4 1.383 (13)
N1—C1 1.357 (12) C1—C2 1.364 (14)
N1—I1—I2 176.44 (18) C4—C3—C2 116.6 (9)
C5—N1—I1 120.7 (6) N1—C1—C2 121.1 (8)
C5—N1—C1 119.8 (8) C1—C2—C3 120.9 (9)
C1—N1—I1 118.9 (6) C3—C4—C5 121.2 (8)
N1—C5—C4 120.3 (8)
I1—N1—C5—C4 −170.3 (7) C5—N1—C1—C2 −0.8 (15)
I1—N1—C1—C2 170.4 (8) C1—N1—C5—C4 0.8 (14)
N1—C5—C4—C3 −0.9 (15) C2—C3—C4—C5 1.0 (15)
N1—C1—C2—C3 1.0 (16) C4—C3—C2—C1 −1.0 (15)

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: RZ5157).

References

  1. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
  2. Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Buontempo, U., DiCicco, A., Filipponi, A., Nardone, M. & Postorino, P. (1997). J. Chem. Phys. 107, 5720–5726.
  4. Dahl, T., Hassel, O. & Sky, K. (1967). Acta Chem. Scand. 21, 592–593.
  5. Desiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). Pure Appl. Chem. 85, 1711–1713.
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Hassel, O. & Hope, H. (1961). Acta Chem. Scand. 15, 407–416.
  8. Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  10. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  11. Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.
  12. Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984.
  13. Rømming, C. (1972). Acta Chem. Scand. 26, 1555–1560.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015010518/rz5157sup1.cif

e-71-0o463-sup1.cif (137.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010518/rz5157Isup2.hkl

e-71-0o463-Isup2.hkl (102.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015010518/rz5157Isup3.cml

. DOI: 10.1107/S2056989015010518/rz5157fig1.tif

The mol­ecular structure of the title compound, with 50% probability displacement ellipsoids for non-H atoms.

CCDC reference: 1404151

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES