Abstract
In the title adduct, C5H5N·I2, the N—I distance [2.424 (8) Å] is remarkably shorter than the sum of the van der Waals radii. The line through the I atoms forms an angle of 78.39 (16)° with the normal to the pyridine ring.
Keywords: pyridine, diiodine, halogen bonding, crystal structure
Related literature
For the structure of the pyridine–I2 1:2 adduct, see: Hassel & Hope (1961 ▸). For the crystal structures of pyridine with ICl and IBr, see: Rømming (1972 ▸); Dahl et al. (1967 ▸). For van der Walls radii, see: Bondi (1964 ▸). For the I—I distance of iodine, see: Buontempo et al. (1997 ▸). For I—I⋯N angles in halogen bonding, see: Desiraju et al. (2013 ▸).
Experimental
Crystal data
C5H5N·I2
M r = 332.90
Monoclinic,
a = 9.2432 (6) Å
b = 4.3392 (2) Å
c = 20.1953 (13) Å
β = 98.468 (3)°
V = 801.16 (8) Å3
Z = 4
Mo Kα radiation
μ = 7.76 mm−1
T = 120 K
0.09 × 0.07 × 0.02 mm
Data collection
Bruker KAPPA APEX II CCD diffractometer
Absorption correction: numerical (SADABS; Bruker,2012 ▸) T min = 0.574, T max = 0.902
6585 measured reflections
1853 independent reflections
1437 reflections with I > 2σ(I)
R int = 0.062
Refinement
R[F 2 > 2σ(F 2)] = 0.049
wR(F 2) = 0.091
S = 1.07
1853 reflections
73 parameters
H-atom parameters constrained
Δρmax = 1.11 e Å−3
Δρmin = −1.26 e Å−3
Data collection: Collect (Nonius, 2000 ▸); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997 ▸); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007 ▸; Palatinus & van der Lee, 2008 ▸; Palatinus et al., 2012 ▸); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▸); molecular graphics: OLEX2 (Dolomanov et al., 2009 ▸); software used to prepare material for publication: OLEX2.
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015010518/rz5157sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010518/rz5157Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015010518/rz5157Isup3.cml
. DOI: 10.1107/S2056989015010518/rz5157fig1.tif
The molecular structure of the title compound, with 50% probability displacement ellipsoids for non-H atoms.
CCDC reference: 1404151
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
Financial support provided by the Academy of Finland (project No. 129171) is gratefully acknowledged.
supplementary crystallographic information
S1. Comment
Diiodine is capable to act as halogen bond donor and form stable halogen bonds with Lewis bases, such as pyridine, due to the strong charge transfer. In the case of the pyridine-I2 1:2 adduct (Hassel & Hope, 1961), the interaction eventually results in the heterolytic cleavage of I2 and formaton of [py2I]+ I3- ion pairs. Although the crystal structures involving pyridine and interhalogens ICl and IBr are known (Rømming, 1972; Dahl et al., 1967), the title pyI2 1:1 adduct has not been reported earlier. The N1—I1 distance in pyI2 (2.425 (8) Å) is remarkably shorter than the sum of the van der Walls radii of iodine and nitrogen (3.53 Å; Bondi, 1964). The I—I distance (2.8043 (9) Å) is significantly longer than that observed in free diiodine in solid state (2.715 Å; Buontempo et al., 1997). The I—I···N angle is approximately linear (176.44 (18)°) as expected in halogen bonds (Desiraju et al., 2013).
S2. Experimental
The title compound was synthesized by dissolving iodine (200 mg) in ethanol (5 ml) and adding pyridine (1 ml) into this solution. The solution was left to evaporate unde ambient conditions and after a couple of days light yellow crystals were formed.
S3. Refinement
All H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å and with Uiso(H) = 1.2 Ueq(C).
Figures
Fig. 1.
The molecular structure of the title compound, with 50% probability displacement ellipsoids for non-H atoms.
Crystal data
C5H5N·I2 | F(000) = 592 |
Mr = 332.90 | Dx = 2.760 Mg m−3 |
Monoclinic, P2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.2432 (6) Å | Cell parameters from 1865 reflections |
b = 4.3392 (2) Å | θ = 1.0–27.5° |
c = 20.1953 (13) Å | µ = 7.76 mm−1 |
β = 98.468 (3)° | T = 120 K |
V = 801.16 (8) Å3 | Plate, clear light yellow |
Z = 4 | 0.09 × 0.07 × 0.02 mm |
Data collection
Bruker KAPPA APEX II CCD diffractometer | 1853 independent reflections |
Radiation source: fine-focus sealed tube | 1437 reflections with I > 2σ(I) |
Curved graphite crystal monochromator | Rint = 0.062 |
Detector resolution: 16 pixels mm-1 | θmax = 27.6°, θmin = 2.2° |
φ scans and ω scans with κ offset | h = −11→11 |
Absorption correction: numerical (SADABS; Bruker,2012) | k = −5→5 |
Tmin = 0.574, Tmax = 0.902 | l = −26→25 |
6585 measured reflections |
Refinement
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
wR(F2) = 0.091 | w = 1/[σ2(Fo2) + (0.0153P)2 + 9.3396P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
1853 reflections | Δρmax = 1.11 e Å−3 |
73 parameters | Δρmin = −1.26 e Å−3 |
0 restraints |
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
I1 | 0.27234 (6) | 0.59684 (13) | 0.54587 (3) | 0.02083 (16) | |
I2 | 0.32645 (6) | 0.35101 (14) | 0.67558 (3) | 0.02480 (18) | |
N1 | 0.2243 (7) | 0.8407 (18) | 0.4368 (4) | 0.0243 (18) | |
C5 | 0.3349 (9) | 0.933 (2) | 0.4053 (4) | 0.0207 (19) | |
H5 | 0.4323 | 0.8743 | 0.4223 | 0.025* | |
C3 | 0.1668 (10) | 1.198 (2) | 0.3214 (5) | 0.028 (2) | |
H3 | 0.1471 | 1.3178 | 0.2818 | 0.033* | |
C1 | 0.0849 (10) | 0.921 (2) | 0.4121 (5) | 0.030 (2) | |
H1 | 0.0069 | 0.8529 | 0.4342 | 0.035* | |
C2 | 0.0549 (10) | 1.098 (2) | 0.3558 (5) | 0.030 (2) | |
H2 | −0.0434 | 1.1533 | 0.3399 | 0.036* | |
C4 | 0.3076 (10) | 1.112 (2) | 0.3480 (5) | 0.030 (2) | |
H4 | 0.3872 | 1.1783 | 0.3266 | 0.036* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0189 (3) | 0.0224 (3) | 0.0212 (3) | −0.0010 (2) | 0.0027 (2) | −0.0016 (3) |
I2 | 0.0253 (3) | 0.0267 (3) | 0.0222 (4) | 0.0029 (2) | 0.0031 (3) | 0.0011 (3) |
N1 | 0.016 (4) | 0.032 (4) | 0.024 (4) | −0.003 (3) | 0.004 (3) | −0.007 (4) |
C5 | 0.017 (4) | 0.031 (5) | 0.013 (5) | −0.001 (4) | −0.001 (3) | 0.000 (4) |
C3 | 0.031 (5) | 0.035 (6) | 0.014 (5) | −0.002 (4) | −0.003 (4) | 0.004 (4) |
C1 | 0.019 (5) | 0.039 (6) | 0.031 (6) | −0.009 (4) | 0.007 (4) | 0.005 (5) |
C2 | 0.014 (4) | 0.049 (7) | 0.026 (6) | −0.002 (4) | −0.003 (4) | 0.002 (5) |
C4 | 0.025 (5) | 0.042 (6) | 0.022 (6) | −0.006 (4) | 0.005 (4) | 0.003 (5) |
Geometric parameters (Å, º)
I1—I2 | 2.8043 (9) | C5—C4 | 1.388 (13) |
I1—N1 | 2.425 (8) | C3—C2 | 1.397 (12) |
N1—C5 | 1.342 (10) | C3—C4 | 1.383 (13) |
N1—C1 | 1.357 (12) | C1—C2 | 1.364 (14) |
N1—I1—I2 | 176.44 (18) | C4—C3—C2 | 116.6 (9) |
C5—N1—I1 | 120.7 (6) | N1—C1—C2 | 121.1 (8) |
C5—N1—C1 | 119.8 (8) | C1—C2—C3 | 120.9 (9) |
C1—N1—I1 | 118.9 (6) | C3—C4—C5 | 121.2 (8) |
N1—C5—C4 | 120.3 (8) | ||
I1—N1—C5—C4 | −170.3 (7) | C5—N1—C1—C2 | −0.8 (15) |
I1—N1—C1—C2 | 170.4 (8) | C1—N1—C5—C4 | 0.8 (14) |
N1—C5—C4—C3 | −0.9 (15) | C2—C3—C4—C5 | 1.0 (15) |
N1—C1—C2—C3 | 1.0 (16) | C4—C3—C2—C1 | −1.0 (15) |
Footnotes
Supporting information for this paper is available from the IUCr electronic archives (Reference: RZ5157).
References
- Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
- Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Buontempo, U., DiCicco, A., Filipponi, A., Nardone, M. & Postorino, P. (1997). J. Chem. Phys. 107, 5720–5726.
- Dahl, T., Hassel, O. & Sky, K. (1967). Acta Chem. Scand. 21, 592–593.
- Desiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). Pure Appl. Chem. 85, 1711–1713.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Hassel, O. & Hope, H. (1961). Acta Chem. Scand. 15, 407–416.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
- Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.
- Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984.
- Rømming, C. (1972). Acta Chem. Scand. 26, 1555–1560.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015010518/rz5157sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010518/rz5157Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015010518/rz5157Isup3.cml
. DOI: 10.1107/S2056989015010518/rz5157fig1.tif
The molecular structure of the title compound, with 50% probability displacement ellipsoids for non-H atoms.
CCDC reference: 1404151
Additional supporting information: crystallographic information; 3D view; checkCIF report