Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 10;71(Pt 7):763–765. doi: 10.1107/S2056989015010774

Crystal structure of 3-(thio­phen-2-yl)-5-p-tolyl-4,5-di­hydro-1H-pyrazole-1-carbo­thio­amide

S Naveen a, G Pavithra b, Muneer Abdoh c,*, K Ajay Kumar b, Ismail Warad d, N K Lokanath e
PMCID: PMC4518985  PMID: 26279862

In the title compound, the central pyrazole ring adopts a twisted conformation on the –CH—CH2– bond and its mean plane makes dihedral angles of 7.19 (12) and 71.13 (11)° with the attached thio­phene and toluene rings, respectively. In the crystal, mol­ecules are linked by N—H⋯S hydrogen bonds, forming chains propagating along [010].

Keywords: crystal structure, pyrazole, thio­phene, carbo­thio­amide, C—H⋯S hydrogen bonds, N—H⋯π inter­actions, π–π inter­actions

Abstract

In the title compound, C15H15N3S2, the central pyrazole ring adopts a twisted conformation on the –CH—CH2– bond. Its mean plane makes dihedral angles of 7.19 (12) and 71.13 (11)° with those of the thio­phene and toluene rings, respectively. The carbothi­amide group [C(=S)—N] is inclined to the pyrazole ring mean plane by 16.8 (2)°. In the crystal, mol­ecules are linked by N—H⋯S hydrogen bonds, forming chains propagating along [010]. Within the chains, there are N—H⋯π inter­actions present. Between the chains there are weak parallel slipped π–π inter­actions involving inversion-related thio­phene and pyrazole rings [inter-centroid distance = 3.7516 (14) Å; inter-planar distance = 3.5987 (10) Å; slippage = 1.06 Å].

Chemical context  

Five-membered heterocyclic pyrazole analogues have been used extensively as building blocks in organic synthesis. They have been transformed efficiently into mol­ecules of potential medicinal and pharmaceutical important. Pyrazole derivatives have known to exhibit diverse biological applications such as anti­diabetic,anaesthetic, anti­microbial and anti­oxidant. In addition, they have also shown potential anti­cancer and anti­amoebic activity and to be potent and selective inhibitors of tissue-nonspecific alkaline phosphatase (Sidique et al. 2009). Earlier we synthesized α and β-unsaturated compounds which served as useful inter­mediates for the synthesis of pyrazolines (Manjula et al., 2013) and thia­zepines (Manjunath et al., 2014). As part of our ongoing research on pyrazole analogues, the title compound was synthesized and we report herein on its crystal structure. Studies of the biological activity of the title compound are underway and will be reported elsewhere.graphic file with name e-71-00763-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is illustrated in Fig. 1. The central pyrazole ring (N7/N8/C8–C10) adopts a twisted conformation with respect to the C9—C10 bond and its mean plane makes dihedral angles of 7.19 (12) and 71.13 (11)° with the thio­phene (S1/C2–C5) and toluene (C14–C19) rings, respectively. The carbothi­amide group [C11(=S13)N12] lies in the plane of the pyrazole ring, as indicated by the torsion angles N12—C11—N8—N7 = 0.6 (3) and S13—C11—N8—N7 = 179.96 (16)°, and adopts +syn-periplanar and +anti-periplanar conformations, respectively. The title compound possess a chiral center at atom C9 but crystallized as a racemate.

Figure 1.

Figure 1

View of the mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal, mol­ecules are linked by N—H⋯S hydrogen bonds, forming chains propagating along [010]. Within the chains there are N—H⋯π inter­actions involving the toluene ring (Fig. 2 and Table 1). Between the chains there are weak parallel slipped π–π inter­actions involving inversion-related thio­phene and pyrazole rings [Cg1⋯Cg2i = 3.7516 (14) Å; inter-planar distance = 3.5987 (10) Å; slippage = 1.06 Å; Cg1 and Cg2 are the centroids of rings S1/C2–C5 and N7/N8/C8–C10, respectively; symmetry code: (i) −x + 2, −y + 1, −z + 1].

Figure 2.

Figure 2

A view along the a axis of the crystal packing of the title compound. The hydrogen bonds and C—H⋯π inter­actions are shown as dashed lines (see Table 1 for details). C-bound H atoms have been omitted for clarity.

Table 1. Hydrogen-bond geometry (, ).

Cg3 is the centroid of the benzene ring C14C19.

DHA DH HA D A DHA
N12H12AS13i 0.86 2.83 3.620(2) 154
N12H12B Cg3i 0.86 2.81 3.443(2) 132

Symmetry code: (i) Inline graphic.

Database survey  

A search of the Cambridge Structural Database (Version 5.36, May 2015; Groom & Allen, 2014) revealed seven structures containing the 3-(thio­phen-2-yl)-pyrazole unit. Amongst these are two thio­amides; the phenyl derivative of the title compound, 5-phenyl-3-(2-thien­yl)-2-pyrazoline-1-thio­amide (HEFXEW; Işık et al., 2006), and 1-(N-ethyl­thio­carbamo­yl)-3,5-bis­(2-thien­yl)-2-pyrazoline (YINFUX; Köysal et al., 2007). In these two compounds, the pyrazole rings have envelope conformations with the methine C atom as the flap, and the mean planes of the two rings are inclined to one another by 11.98 and 10.13°, respectively. This is in contrast to the situation in the title compound where the pyrazole ring has a twisted conformation on the –CH–CH2– bond and its mean plane is inclined to the thio­phene ring by 7.19 (12)°. In the crystal of the phenyl derivative (HEFXEW), mol­ecules are also linked by N—H⋯S hydrogen bonds, forming chains.

Synthesis and crystallization  

A mixture of 3-(4-methyl­phen­yl)-1-(thio­phen-2-yl)prop-2-en-1-one (0.001 mol) and thio­semicarbazine hydro­chloride (0.01 mol) and potassium hydroxide (0.02 mol) in ethyl alcohol (20 ml) was refluxed on a water bath for 6–8 h. The progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was poured into ice-cold water and stirred. The solid that separated was filtered, and washed with ice-cold water. The product was recrystallized from ethyl alcohol to give the title compound as rectangular yellow crystals. Analysis calculated for C15H15N3S2: C, 59.77; H, 5.02; N, 13.94%; found: C, 59.74; H, 5.06; N, 13.88%. 1H NMR (CDCl3): δ 2.297 (s, 3H, CH3), (dd, 1H, C4—Hb: J = 18.0, 8.5 Hz), (dd, 1H, C4—Hb: J 18.0, 8.5 Hz), 5.976–6.013 (dd, 1H, C—Ha: J = 18.0, 12.0 Hz), 6.163–7.169 (m, 7H, Ar—H and thio­phene ring-H), 7.330 (s, 2H, –NH2). 13C NMR (CDCl3): δ 43.77, 1 C, C-4), 63.34 (1 C, C-5), 125.35 (2C, Ar—C), 127.88 (1C, 5 m ring-C), 129.57 (1C, Ar—C), 129.67 (1C, Ar—C), 129.72 (1C, 5 m ring-C), 130.01 (1C, 5 m ring-C), 134.12, (1C, 5 m ring-C), 137.31 (1C, Ar—C), 138.67 (1C, Ar—C), 151.38 (1C, C-3), 176.36 (1C, C=S). MS (m/z): 303 (M+2, 10) 302 (M+1, 18), 301 (M+, 100), 284 (40), 161 (15).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were fixed geometrically and allowed to ride on their parent atoms: C—H = 0.93–0.98 Å with U iso(H) = 1.5U eq(C) for methyl H atoms and 1.2U eq(C) for other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C15H15N3S2
M r 301.44
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c () 8.1035(4), 12.0193(5), 15.1312(7)
() 94.347(2)
V (3) 1469.52(12)
Z 4
Radiation type Cu K
(mm1) 3.22
Crystal size (mm) 0.27 0.25 0.24
 
Data collection
Diffractometer Bruker X8 Proteum
Absorption correction Multi-scan (SADABS; Bruker, 2013)
T min, T max 0.477, 0.512
No. of measured, independent and observed [I > 2(I)] reflections 11926, 2397, 2262
R int 0.044
(sin /)max (1) 0.583
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.046, 0.127, 1.07
No. of reflections 2397
No. of parameters 183
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.37, 0.44

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXS97 and SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015010774/su5147sup1.cif

e-71-00763-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010774/su5147Isup2.hkl

e-71-00763-Isup2.hkl (117.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015010774/su5147Isup3.cml

CCDC reference: 1404788

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are thankful to the IOE, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffraction facility. IW is grateful to An-Najah National University and Zamala (fellowship program for the development of university education) for financial support.

supplementary crystallographic information

Crystal data

C15H15N3S2 F(000) = 632
Mr = 301.44 Dx = 1.362 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybc Cell parameters from 2262 reflections
a = 8.1035 (4) Å θ = 5.5–64.1°
b = 12.0193 (5) Å µ = 3.22 mm1
c = 15.1312 (7) Å T = 296 K
β = 94.347 (2)° Rectangle, yellow
V = 1469.52 (12) Å3 0.27 × 0.25 × 0.24 mm
Z = 4

Data collection

Bruker X8 Proteum diffractometer 2397 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode 2262 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.044
Detector resolution: 18.4 pixels mm-1 θmax = 64.1°, θmin = 5.5°
φ and ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Bruker, 2013) k = −13→13
Tmin = 0.477, Tmax = 0.512 l = −16→17
11926 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.074P)2 + 0.626P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
2397 reflections Δρmax = 0.37 e Å3
183 parameters Δρmin = −0.44 e Å3
0 restraints Extinction correction: SHELXL, FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0160 (12)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.83886 (8) 0.35843 (5) 0.55113 (4) 0.0527 (2)
S13 0.41488 (9) 0.76951 (5) 0.77019 (4) 0.0611 (3)
N7 0.6560 (2) 0.55350 (14) 0.63166 (11) 0.0396 (5)
N8 0.5837 (2) 0.65224 (14) 0.65865 (11) 0.0418 (6)
N12 0.5024 (3) 0.55813 (17) 0.77851 (13) 0.0572 (7)
C2 0.9012 (3) 0.3098 (2) 0.45389 (18) 0.0561 (8)
C3 0.8661 (3) 0.3801 (2) 0.38623 (17) 0.0613 (9)
C4 0.7858 (3) 0.4794 (2) 0.41081 (15) 0.0494 (8)
C5 0.7627 (3) 0.47817 (18) 0.50124 (13) 0.0400 (6)
C6 0.6841 (2) 0.56438 (17) 0.54966 (13) 0.0368 (6)
C9 0.5786 (3) 0.73914 (17) 0.58990 (13) 0.0381 (6)
C10 0.6257 (3) 0.67214 (18) 0.50885 (13) 0.0417 (6)
C11 0.5039 (3) 0.65429 (18) 0.73411 (14) 0.0438 (7)
C14 0.6974 (2) 0.83434 (15) 0.61077 (13) 0.0326 (5)
C15 0.8130 (3) 0.83437 (18) 0.68204 (14) 0.0421 (7)
C16 0.9258 (3) 0.92083 (19) 0.69439 (15) 0.0469 (7)
C17 0.9243 (3) 1.00979 (18) 0.63663 (14) 0.0437 (7)
C18 0.8065 (3) 1.00989 (18) 0.56564 (15) 0.0470 (7)
C19 0.6951 (3) 0.92360 (18) 0.55243 (14) 0.0419 (6)
C20 1.0453 (4) 1.1050 (2) 0.65103 (19) 0.0688 (10)
H2 0.95400 0.24170 0.44810 0.0670*
H3 0.89180 0.36530 0.32850 0.0740*
H4 0.75340 0.53690 0.37220 0.0590*
H9 0.46560 0.76780 0.57940 0.0460*
H10A 0.53080 0.66110 0.46670 0.0500*
H10B 0.71300 0.70870 0.47930 0.0500*
H12A 0.55020 0.50040 0.75860 0.0690*
H12B 0.45370 0.55400 0.82700 0.0690*
H15 0.81560 0.77590 0.72240 0.0500*
H16 1.00410 0.91880 0.74260 0.0560*
H18 0.80230 1.06920 0.52610 0.0560*
H19 0.61750 0.92520 0.50390 0.0500*
H20A 0.98990 1.16790 0.67420 0.1030*
H20B 1.08790 1.12470 0.59560 0.1030*
H20C 1.13490 1.08270 0.69240 0.1030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0578 (4) 0.0494 (4) 0.0530 (4) −0.0001 (3) 0.0172 (3) −0.0061 (2)
S13 0.0750 (5) 0.0495 (4) 0.0628 (4) −0.0051 (3) 0.0306 (3) −0.0180 (3)
N7 0.0483 (10) 0.0317 (9) 0.0408 (9) −0.0044 (7) 0.0164 (7) −0.0045 (7)
N8 0.0561 (11) 0.0321 (9) 0.0395 (9) −0.0044 (8) 0.0188 (8) −0.0026 (7)
N12 0.0786 (14) 0.0492 (12) 0.0478 (11) −0.0064 (10) 0.0304 (10) 0.0030 (9)
C2 0.0557 (14) 0.0474 (14) 0.0681 (16) −0.0092 (11) 0.0240 (12) −0.0190 (12)
C3 0.0728 (17) 0.0637 (16) 0.0506 (14) −0.0182 (13) 0.0258 (12) −0.0257 (13)
C4 0.0583 (14) 0.0489 (13) 0.0429 (12) −0.0148 (11) 0.0156 (10) −0.0163 (10)
C5 0.0403 (11) 0.0424 (12) 0.0386 (10) −0.0145 (9) 0.0112 (8) −0.0087 (9)
C6 0.0377 (10) 0.0362 (11) 0.0372 (10) −0.0118 (8) 0.0084 (8) −0.0055 (8)
C9 0.0409 (11) 0.0348 (11) 0.0391 (11) −0.0036 (8) 0.0070 (8) −0.0004 (8)
C10 0.0509 (12) 0.0387 (11) 0.0357 (10) −0.0121 (9) 0.0050 (9) −0.0036 (9)
C11 0.0491 (12) 0.0444 (12) 0.0398 (11) −0.0122 (10) 0.0157 (9) −0.0080 (9)
C14 0.0362 (10) 0.0275 (9) 0.0349 (9) 0.0015 (8) 0.0087 (8) −0.0029 (7)
C15 0.0504 (12) 0.0342 (11) 0.0410 (11) 0.0016 (9) −0.0004 (9) 0.0053 (8)
C16 0.0491 (12) 0.0474 (13) 0.0430 (11) −0.0019 (10) −0.0040 (9) −0.0065 (10)
C17 0.0495 (12) 0.0371 (12) 0.0459 (11) −0.0077 (9) 0.0137 (9) −0.0128 (9)
C18 0.0642 (14) 0.0324 (11) 0.0451 (11) −0.0070 (10) 0.0090 (10) 0.0057 (9)
C19 0.0508 (12) 0.0375 (11) 0.0366 (10) −0.0002 (9) −0.0010 (9) 0.0022 (8)
C20 0.0790 (19) 0.0592 (17) 0.0697 (17) −0.0309 (15) 0.0151 (14) −0.0182 (14)

Geometric parameters (Å, º)

S1—C2 1.695 (3) C15—C16 1.387 (3)
S1—C5 1.718 (2) C16—C17 1.381 (3)
S13—C11 1.672 (2) C17—C18 1.382 (3)
N7—N8 1.398 (2) C17—C20 1.512 (4)
N7—C6 1.285 (3) C18—C19 1.380 (3)
N8—C9 1.473 (3) C2—H2 0.9300
N8—C11 1.354 (3) C3—H3 0.9300
N12—C11 1.337 (3) C4—H4 0.9300
N12—H12B 0.8600 C9—H9 0.9800
N12—H12A 0.8600 C10—H10A 0.9700
C2—C3 1.341 (4) C10—H10B 0.9700
C3—C4 1.422 (3) C15—H15 0.9300
C4—C5 1.395 (3) C16—H16 0.9300
C5—C6 1.445 (3) C18—H18 0.9300
C6—C10 1.496 (3) C19—H19 0.9300
C9—C14 1.513 (3) C20—H20A 0.9600
C9—C10 1.539 (3) C20—H20B 0.9600
C14—C19 1.389 (3) C20—H20C 0.9600
C14—C15 1.374 (3)
C2—S1—C5 91.62 (11) C18—C17—C20 120.9 (2)
N8—N7—C6 107.73 (16) C17—C18—C19 121.2 (2)
N7—N8—C9 112.69 (15) C14—C19—C18 120.8 (2)
N7—N8—C11 119.94 (17) S1—C2—H2 124.00
C9—N8—C11 126.37 (17) C3—C2—H2 124.00
H12A—N12—H12B 120.00 C2—C3—H3 123.00
C11—N12—H12A 120.00 C4—C3—H3 123.00
C11—N12—H12B 120.00 C3—C4—H4 125.00
S1—C2—C3 112.67 (19) C5—C4—H4 125.00
C2—C3—C4 113.8 (2) N8—C9—H9 110.00
C3—C4—C5 110.2 (2) C10—C9—H9 110.00
S1—C5—C4 111.68 (17) C14—C9—H9 110.00
S1—C5—C6 122.38 (15) C6—C10—H10A 111.00
C4—C5—C6 125.9 (2) C6—C10—H10B 111.00
N7—C6—C10 114.39 (17) C9—C10—H10A 111.00
N7—C6—C5 122.27 (18) C9—C10—H10B 111.00
C5—C6—C10 123.33 (17) H10A—C10—H10B 109.00
N8—C9—C10 101.33 (16) C14—C15—H15 120.00
N8—C9—C14 113.93 (17) C16—C15—H15 120.00
C10—C9—C14 111.69 (18) C15—C16—H16 119.00
C6—C10—C9 102.35 (16) C17—C16—H16 119.00
N8—C11—N12 115.5 (2) C17—C18—H18 119.00
S13—C11—N12 122.08 (18) C19—C18—H18 119.00
S13—C11—N8 122.39 (16) C14—C19—H19 120.00
C9—C14—C15 123.31 (18) C18—C19—H19 120.00
C9—C14—C19 118.29 (18) C17—C20—H20A 109.00
C15—C14—C19 118.32 (18) C17—C20—H20B 109.00
C14—C15—C16 120.6 (2) C17—C20—H20C 109.00
C15—C16—C17 121.4 (2) H20A—C20—H20B 110.00
C16—C17—C20 121.4 (2) H20A—C20—H20C 109.00
C16—C17—C18 117.7 (2) H20B—C20—H20C 110.00
C5—S1—C2—C3 −0.2 (2) C4—C5—C6—N7 174.6 (2)
C2—S1—C5—C4 0.1 (2) C4—C5—C6—C10 −4.2 (3)
C2—S1—C5—C6 179.6 (2) C5—C6—C10—C9 −171.56 (19)
C6—N7—N8—C9 −5.9 (2) N7—C6—C10—C9 9.6 (2)
C6—N7—N8—C11 163.41 (18) C10—C9—C14—C15 −107.0 (2)
N8—N7—C6—C5 178.34 (17) C10—C9—C14—C19 69.6 (2)
N8—N7—C6—C10 −2.8 (2) N8—C9—C14—C19 −176.34 (18)
C11—N8—C9—C14 82.7 (3) N8—C9—C10—C6 −11.5 (2)
C9—N8—C11—N12 168.3 (2) C14—C9—C10—C6 110.18 (18)
N7—N8—C11—S13 179.96 (16) N8—C9—C14—C15 7.1 (3)
N7—N8—C9—C10 11.3 (2) C9—C14—C15—C16 175.7 (2)
C11—N8—C9—C10 −157.2 (2) C19—C14—C15—C16 −0.9 (3)
N7—N8—C11—N12 0.6 (3) C9—C14—C19—C18 −176.6 (2)
N7—N8—C9—C14 −108.84 (18) C15—C14—C19—C18 0.2 (3)
C9—N8—C11—S13 −12.4 (3) C14—C15—C16—C17 0.9 (4)
S1—C2—C3—C4 0.3 (3) C15—C16—C17—C18 −0.1 (4)
C2—C3—C4—C5 −0.3 (3) C15—C16—C17—C20 178.9 (2)
C3—C4—C5—S1 0.1 (3) C16—C17—C18—C19 −0.6 (3)
C3—C4—C5—C6 −179.4 (2) C20—C17—C18—C19 −179.6 (2)
S1—C5—C6—N7 −4.9 (3) C17—C18—C19—C14 0.6 (3)
S1—C5—C6—C10 176.33 (17)

Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the benzene ring C14–C19.

D—H···A D—H H···A D···A D—H···A
N12—H12A···S13i 0.86 2.83 3.620 (2) 154
N12—H12B···Cg3i 0.86 2.81 3.443 (2) 132

Symmetry code: (i) −x+1, y−1/2, −z+3/2.

References

  1. Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  3. Işık, S., Köysal, Y., Özdemir, Z. & Bilgin, A. A. (2006). Acta Cryst. E62, o491–o493.
  4. Köysal, Y., Işık, S., Özdemir, Z. & Bilgin, A. A. (2007). Anal. Sci. 23, x193–x194.
  5. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  6. Manjula, M., Jayaroopa, P., Manjunath, B. C., Ajay kumar, K. & Lokanath, N. K. (2013). Acta Cryst. E69, o602. [DOI] [PMC free article] [PubMed]
  7. Manjunath, B. C., Manjula, M., Raghavendra, K. R., Shashikanth, S., Ajay Kumar, K. & Lokanath, N. K. (2014). Acta Cryst. E70, o121. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sidique, S., Ardecky, R., Su, Y., Narisawa, S., Brown, B., Millán, J. L., Sergienko, E. & Cosford, N. D. P. (2009). Bioorg. Med. Chem. Lett. 19, 222–225. [DOI] [PMC free article] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015010774/su5147sup1.cif

e-71-00763-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010774/su5147Isup2.hkl

e-71-00763-Isup2.hkl (117.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015010774/su5147Isup3.cml

CCDC reference: 1404788

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES