Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 27;71(Pt 7):864–866. doi: 10.1107/S2056989015012049

Crystal structure of 4-({5-[(E)-(3,5-di­fluoro­phen­yl)diazen­yl]-2-hy­droxy­benzyl­idene}amino)-2,2,6,6-tetra­methyl­piperidin-1-ox­yl

Ramazan Tatsız a, Veli T Kasumov a, Tuncay Tunc b, Tuncer Hökelek c,*
PMCID: PMC4518987  PMID: 26279887

The asymmetric unit of the title compound contains two crystallographically independent mol­ecules with the similar conformation, the piperidine rings in both mol­ecules adopt a similar distorted chair conformation and have pseudo mirror planes passing through the N—O bond.

Keywords: crystal structure, spin-labeled compounds, Schiff base compounds, hydrogen bonding, π–π stacking

Abstract

The asymmetric unit of the title compound, C22H25F2N4O2, contains two crystallographically independent mol­ecules. In one mol­ecule, the two benzene rings are oriented at a dihedral angle of 1.93 (10)° and in the other mol­ecule the corresponding dihedral angle is 7.19 (9)°. The piperidine rings in the two mol­ecules adopt a similar distorted chair conformation, and both have pseudo-mirror planes passing through the N—O bonds. An intra­molecular O—H⋯N hydrogen bond between the hy­droxy group and the imine N atom is observed in both mol­ecules. In the crystal, weak C—H⋯O and C—H⋯F hydrogen bonds, enclosing R 2 2(6) ring motifs, and weak π–π stacking inter­actions link the mol­ecules into a three-dimensional supra­molecular network, with centroid-to-centroid distances between the nearly parallel phenyl and benzene rings of adjacent mol­ecules of 3.975 (2) and 3.782 (2) Å.

Chemical context  

It is well known that the 4-amino-2,2,6,6-tetra­methyl­piperidine-1-oxyl (4-amino-TEMPO) free nitroxyl radical has been attached to various organic compounds (such as aldehydes, ketons, azo compounds and carb­oxy­lic and amino acids) and biomolecules (such as lipids, proteins, steroids and metalloenzymes) (Gallez et al. 1992; Berliner, 1976) to yield a wide variety of TEMPO-bearing mol­ecules named as spin-labeled compounds (Rosen et al., 1999; Gnewuch & Sosnovsky, 1986). These types of nitroxide free radicals have different applications such as magnetic resonance imaging (Likhtenstein et al., 2008), protection from oxidative stress and irradiative damage (Hahn et al., 1994), controlled ‘living’ free-radical polymerization (Hawker, 1997), spin trapping and spin-labeling in various fields of chemistry, biology and material sciences (Tretyakov & Ovcharenko, 2009). Our literature searches revealed that while a verity of TEMPO-labeled radicals with various imines, alcohol amines, carb­oxy­lic acids, salicyl­aldehydes, azo compounds, ketone derivatives have been designed, no TEMPO-labeled compound on the basis of phenyl­azo-salicyl­aldehyde compounds has been reported. We report herein the synthesis and structure of the new class title spin-labeled compound.

Structural commentary  

The asymmetric unit of the title compound contains two crystallographically independent mol­ecules (Fig. 1). The mol­ecules include short intra­molecular O—H ⋯ N hydrogen bonds (Table 1), which mean that the ligand is in the phenol–imine form. The C=N imine bond distances and C—N—C bond angles (Table 1) also indicate the existence of the phenol–imine tautomer, and they are comparable with the corresponding values of 1.276 (2), 1.279 (2) Å and 124.64 (17), 123.05 (16)° in 1,3-bis­[2-(2-hy­droxy­benzyl­idene-amino)­phen­oxy]propane (Hökelek et al., 2004).graphic file with name e-71-00864-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Intra­molecular O—H⋯N hydrogen bonds are shown as dashed lines. C-bound H atoms have been omitted for clarity.

Table 1. Selected geometric parameters (, ).

N3C13 1.270(3) N7C35 1.272(3)
       
C13N3C14 121.6(2) C35N7C36 117.9(2)
       
C17N4C16C15 33.9(4) N4C16C15C14 44.0(3)
C16N4C17C18 35.4(4) C14C18C17N4 46.1(3)
C39N8C38C37 36.8(3) C40C36C37C38 61.4(3)
C38N8C39C40 34.3(3) C37C36C40C39 59.0(3)
C18C14C15C16 58.4(3) N8C38C37C36 48.9(3)
C15C14C18C17 59.1(3) N8C39C40C36 44.0(3)

The phenyl [A (C1–C6) and D (C23–C28)] and benzene [B (C7–C12) and E (C29–C34)] rings are oriented at dihedral angles of A/B = 1.93 (10), A/D = 3.17 (10), A/E = 4.87 (10), B/D = 5.05 (9), B/E = 4.61 (9) and D/E = 7.19 (9)°. The six-membered rings (O1/H1/N3/C10/C11/C13) and (O3/H3/N7/C31/C32/C35) are almost planar, and they are oriented at dihedral angles of 0.83 (10) and 0.92 (9)°, respectively, to the adjacent benzene (B and E) rings.

The piperidine [C (N4/C14–C18) and F (N8/C36–C40)] rings are in distorted chair conformations [ϕ = −5.1 (9), θ = 21.7 (3)° (for ring C) and ϕ = −170.3 (8), θ = 157.9 (3)° (for ring F)] having total puckering amplitudes Q T of 0.491 (3) Å (for ring C) and 0.509 (3) Å (for ring F), and they have pseudo mirror planes passing through the N4—O2 (for ring C) and N8—O4 (for ring F) bonds.

Supra­molecular features  

In the crystal, strong intra­molecular O—H⋯N and weak inter­molecular C—H⋯O and C—H⋯F hydrogen bonds (Table 2) link the mol­ecules, enclosing Inline graphic(6) ring motifs (Bernstein et al., 1995) and forming layers parallel to (001), into a three-dimensional network (Fig. 2). The π–π stacking inter­actions between the phenyl and benzene rings, Cg1⋯Cg5i and Cg2⋯Cg4i [symmetry code: (i) x − 1, y, z, where Cg1, Cg2, Cg4 and Cg5 are the centroids of the rings A (C1–C6), B (C7–C12), D (C23–C28) and E (C29–C34), respectively], with centroid–centroid distances of 3.975 (2) and 3.782 (2) Å, respectively, may further stabilize the structure.

Table 2. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O1H1N3 1.03(5) 1.66(5) 2.585(3) 147(4)
O3H3N7 0.88(4) 1.85(4) 2.639(3) 148(4)
C13H13O4i 0.96(2) 2.44(2) 3.324(3) 154.5(2)
C15H15AF1ii 0.97 2.43 3.218(3) 138
C30H30O2iii 0.93 2.36 3.222(3) 154
C35H35O2iii 0.97(2) 2.44(2) 3.318(3) 150.5(2)
C37H37BF2 0.97 2.48 3.346(3) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

Part of the crystal structure, viewed down [001]. Intra­molecular O—H⋯N and inter­molecular C—H⋯O and C—H⋯F hydrogen bonds, which enclose Inline graphic(6) ring motifs, are shown as dashed lines. H atoms not involved in these hydrogen bonds have been omitted for clarity.

Synthesis and crystallization  

The title compound was synthesized by the reaction of 5-[(3,5-di­fluoro­phen­yl)diazen­yl]-2-hy­droxy­benzaldehyde (Ba & Ma­thias, 2013) with 4-amino-2,2,6,6-tetra­methyl­piperidine-1-oxyl (4-amino-TEMPO). 4-amino-TEMPO (171 mg, 1 mmol) in hexane (20 ml) was added to a stirred hexa­ne/CHCl3 (1:1) solution (70 ml) of 5-[(3,5-di­fluoro­phen­yl)diazen­yl]-2-hy­droxy­benzaldehyde (262 mg, 1 mmol), and heated at 333 K for 2 h. Then, the reaction mixture was left to slowly cool to room temperature. After one day, orange microcrystals were obtained (yield: 348 mg, 84%). Orange block-shaped crystals, suitable for X-ray analysis, were obtained by recrystallization from methanol/CHCl3 (1:1) solution by slow evaporation at room temperature after several days (m.p. 473–475 K).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. Atoms H1 and H3 (for OH) and H13 and H35 (for CH) were located in a difference Fourier map and were refined freely. The other C-bound H atoms were positioned geometrically with C—H = 0.93 Å (for aromatic CH), 0.96 Å (for CH3), 0.97 Å (for CH2) and 0.98 Å (for CH), and constrained to ride on their parent atoms, with U iso(H) = xU eq(C), where x = 1.5 for methyl H atoms and x = 1.2 for other H atoms.

Table 3. Experimental details.

Crystal data
Chemical formula C22H25F2N4O2
M r 415.46
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c () 13.5115(3), 23.1062(5), 13.8677(3)
() 100.639(3)
V (3) 4255.06(17)
Z 8
Radiation type Mo K
(mm1) 0.10
Crystal size (mm) 0.15 0.12 0.07
 
Data collection
Diffractometer Bruker SMART BREEZE CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012)
T min, T max 0.550, 0.746
No. of measured, independent and observed [I > 2(I)] reflections 73169, 10597, 5159
R int 0.101
(sin /)max (1) 0.669
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.073, 0.163, 1.08
No. of reflections 10597
No. of parameters 565
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.24, 0.26

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS97 and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015012049/xu5856sup1.cif

e-71-00864-sup1.cif (47.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015012049/xu5856Isup2.hkl

e-71-00864-Isup2.hkl (507.8KB, hkl)

CCDC reference: 1408338

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization).

supplementary crystallographic information

Crystal data

C22H25F2N4O2 F(000) = 1752
Mr = 415.46 Dx = 1.297 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9961 reflections
a = 13.5115 (3) Å θ = 3.0–25.5°
b = 23.1062 (5) Å µ = 0.10 mm1
c = 13.8677 (3) Å T = 296 K
β = 100.639 (3)° Block, orange
V = 4255.06 (17) Å3 0.15 × 0.12 × 0.07 mm
Z = 8

Data collection

Bruker SMART BREEZE CCD diffractometer 10597 independent reflections
Radiation source: fine-focus sealed tube 5159 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.101
φ and ω scans θmax = 28.4°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 2012) h = −18→15
Tmin = 0.550, Tmax = 0.746 k = −30→30
73169 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.038P)2 + 2.7618P] where P = (Fo2 + 2Fc2)/3
10597 reflections (Δ/σ)max < 0.001
565 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.15807 (13) 0.31895 (8) 0.67257 (16) 0.0571 (6)
H1 1.182 (3) 0.277 (2) 0.689 (3) 0.147 (17)*
O2 1.33270 (17) −0.00335 (9) 0.6821 (2) 0.1014 (10)
O3 0.35009 (14) 0.31846 (10) 0.84490 (19) 0.0700 (7)
H3 0.330 (3) 0.3547 (17) 0.837 (3) 0.110 (15)*
O4 0.10773 (14) 0.61906 (8) 0.74731 (15) 0.0621 (6)
N1 0.69757 (16) 0.36539 (9) 0.60396 (16) 0.0447 (5)
N2 0.74088 (15) 0.31783 (9) 0.61875 (16) 0.0436 (5)
N3 1.14968 (15) 0.20870 (8) 0.70174 (16) 0.0395 (5)
N4 1.28781 (16) 0.04498 (9) 0.6852 (2) 0.0555 (7)
N5 0.81042 (17) 0.26830 (10) 0.88903 (17) 0.0496 (6)
N6 0.76620 (16) 0.31481 (9) 0.87086 (16) 0.0458 (6)
N7 0.36191 (15) 0.43076 (9) 0.81433 (16) 0.0440 (5)
N8 0.16577 (15) 0.57475 (9) 0.76354 (16) 0.0413 (5)
F1 0.38227 (15) 0.26409 (9) 0.5857 (2) 0.1154 (9)
F2 0.38710 (13) 0.46381 (8) 0.54690 (17) 0.0887 (6)
F3 1.12098 (14) 0.37687 (9) 0.91031 (17) 0.0940 (7)
F4 1.12618 (13) 0.17533 (8) 0.93352 (14) 0.0785 (6)
C1 0.58988 (18) 0.36132 (11) 0.59137 (19) 0.0406 (6)
C2 0.53935 (19) 0.41297 (12) 0.5745 (2) 0.0476 (7)
H2 0.5743 0.4474 0.5714 0.057*
C3 0.4371 (2) 0.41268 (13) 0.5624 (2) 0.0542 (8)
C4 0.3814 (2) 0.36392 (14) 0.5667 (2) 0.0593 (8)
H4 0.3115 0.3649 0.5589 0.071*
C5 0.4345 (2) 0.31360 (14) 0.5831 (3) 0.0634 (9)
C6 0.5379 (2) 0.31004 (12) 0.5959 (2) 0.0552 (8)
H6 0.5712 0.2748 0.6071 0.066*
C7 0.84776 (17) 0.32118 (10) 0.63156 (18) 0.0370 (6)
C8 0.90275 (19) 0.37183 (11) 0.6247 (2) 0.0457 (7)
H8 0.8691 0.4068 0.6109 0.055*
C9 1.00523 (19) 0.37041 (11) 0.6379 (2) 0.0491 (7)
H9 1.0406 0.4045 0.6329 0.059*
C10 1.05804 (18) 0.31848 (10) 0.65898 (19) 0.0396 (6)
C11 1.00326 (17) 0.26725 (10) 0.66530 (17) 0.0326 (5)
C12 0.89906 (18) 0.26979 (10) 0.65085 (18) 0.0368 (6)
H12 0.8629 0.2359 0.6543 0.044*
C13 1.05423 (19) 0.21225 (11) 0.68549 (19) 0.0365 (6)
H13 1.0106 (17) 0.1798 (10) 0.6857 (17) 0.037 (7)*
C14 1.20161 (17) 0.15317 (10) 0.72328 (19) 0.0377 (6)
H14 1.2333 0.1528 0.7928 0.045*
C15 1.28355 (18) 0.15037 (11) 0.6628 (2) 0.0457 (7)
H15A 1.3253 0.1846 0.6763 0.055*
H15B 1.2525 0.1514 0.5939 0.055*
C16 1.35082 (18) 0.09733 (11) 0.6807 (2) 0.0444 (7)
C17 1.19288 (19) 0.04364 (11) 0.7258 (2) 0.0475 (7)
C18 1.13575 (18) 0.09998 (10) 0.7027 (2) 0.0416 (6)
H18A 1.1040 0.1000 0.6340 0.050*
H18B 1.0828 0.1020 0.7412 0.050*
C19 1.4049 (2) 0.08989 (14) 0.5944 (3) 0.0702 (9)
H19A 1.3563 0.0836 0.5355 0.105*
H19B 1.4494 0.0572 0.6060 0.105*
H19C 1.4431 0.1241 0.5872 0.105*
C20 1.4281 (2) 0.10201 (14) 0.7758 (2) 0.0651 (9)
H20A 1.4610 0.0654 0.7901 0.098*
H20B 1.3947 0.1126 0.8285 0.098*
H20C 1.4772 0.1309 0.7684 0.098*
C21 1.2180 (2) 0.03272 (14) 0.8364 (3) 0.0711 (10)
H21A 1.2575 0.0643 0.8679 0.107*
H21B 1.2555 −0.0026 0.8489 0.107*
H21C 1.1568 0.0296 0.8618 0.107*
C22 1.1290 (2) −0.00633 (12) 0.6769 (3) 0.0732 (10)
H22A 1.1649 −0.0420 0.6919 0.110*
H22B 1.1151 −0.0006 0.6072 0.110*
H22C 1.0668 −0.0078 0.7009 0.110*
C23 0.91854 (18) 0.27444 (12) 0.89988 (18) 0.0422 (6)
C24 0.9677 (2) 0.32733 (12) 0.8995 (2) 0.0493 (7)
H24 0.9322 0.3620 0.8917 0.059*
C25 1.0708 (2) 0.32625 (13) 0.9110 (2) 0.0552 (8)
C26 1.1267 (2) 0.27622 (14) 0.9232 (2) 0.0548 (8)
H26 1.1966 0.2766 0.9310 0.066*
C27 1.0737 (2) 0.22591 (13) 0.9234 (2) 0.0509 (7)
C28 0.9715 (2) 0.22356 (12) 0.91185 (19) 0.0464 (7)
H28 0.9384 0.1883 0.9121 0.056*
C29 0.65870 (18) 0.31143 (11) 0.86313 (19) 0.0410 (6)
C30 0.60837 (18) 0.36318 (11) 0.84394 (18) 0.0385 (6)
H30 0.6449 0.3962 0.8348 0.046*
C31 0.50519 (17) 0.36772 (10) 0.83778 (18) 0.0364 (6)
C32 0.45009 (19) 0.31767 (11) 0.8503 (2) 0.0479 (7)
C33 0.5006 (2) 0.26487 (12) 0.8682 (2) 0.0594 (8)
H33 0.4645 0.2314 0.8757 0.071*
C34 0.6032 (2) 0.26191 (12) 0.8748 (2) 0.0558 (8)
H34 0.6360 0.2265 0.8871 0.067*
C35 0.45585 (19) 0.42366 (11) 0.81786 (19) 0.0386 (6)
H35 0.4994 (18) 0.4552 (11) 0.8064 (17) 0.042 (7)*
C36 0.32030 (18) 0.48883 (10) 0.79230 (19) 0.0399 (6)
H36 0.3724 0.5145 0.7756 0.048*
C37 0.23279 (19) 0.48515 (11) 0.7065 (2) 0.0446 (7)
H37A 0.1816 0.4599 0.7242 0.054*
H37B 0.2562 0.4679 0.6510 0.054*
C38 0.18551 (18) 0.54383 (11) 0.67565 (19) 0.0403 (6)
C39 0.23265 (19) 0.57273 (12) 0.8622 (2) 0.0453 (7)
C40 0.2808 (2) 0.51305 (12) 0.8792 (2) 0.0498 (7)
H40A 0.3361 0.5152 0.9347 0.060*
H40B 0.2314 0.4863 0.8963 0.060*
C41 0.2535 (2) 0.58093 (13) 0.6231 (2) 0.0565 (8)
H41A 0.2251 0.6189 0.6115 0.085*
H41B 0.2587 0.5633 0.5615 0.085*
H41C 0.3193 0.5838 0.6633 0.085*
C42 0.0843 (2) 0.53434 (13) 0.6073 (2) 0.0603 (8)
H42A 0.0554 0.5711 0.5855 0.090*
H42B 0.0396 0.5141 0.6420 0.090*
H42C 0.0943 0.5119 0.5517 0.090*
C43 0.1667 (2) 0.58384 (14) 0.9378 (2) 0.0681 (9)
H43A 0.1417 0.6228 0.9311 0.102*
H43B 0.2056 0.5785 1.0024 0.102*
H43C 0.1111 0.5573 0.9276 0.102*
C44 0.3117 (2) 0.62071 (13) 0.8681 (2) 0.0645 (9)
H44A 0.2788 0.6570 0.8503 0.097*
H44B 0.3566 0.6121 0.8239 0.097*
H44C 0.3492 0.6231 0.9339 0.097*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0320 (10) 0.0402 (11) 0.0952 (17) −0.0017 (8) 0.0016 (10) 0.0106 (11)
O2 0.0688 (15) 0.0378 (12) 0.210 (3) 0.0163 (11) 0.0583 (18) −0.0083 (15)
O3 0.0347 (11) 0.0505 (14) 0.124 (2) 0.0017 (10) 0.0142 (11) 0.0242 (13)
O4 0.0562 (12) 0.0607 (13) 0.0693 (14) 0.0315 (10) 0.0110 (10) 0.0061 (11)
N1 0.0413 (12) 0.0410 (13) 0.0513 (15) 0.0057 (10) 0.0071 (10) 0.0037 (11)
N2 0.0415 (12) 0.0403 (13) 0.0482 (14) 0.0103 (10) 0.0064 (10) 0.0032 (10)
N3 0.0353 (12) 0.0284 (11) 0.0544 (14) 0.0073 (9) 0.0070 (10) 0.0030 (10)
N4 0.0425 (13) 0.0309 (12) 0.096 (2) 0.0084 (10) 0.0204 (13) −0.0069 (12)
N5 0.0479 (13) 0.0463 (14) 0.0537 (15) 0.0086 (11) 0.0073 (11) 0.0015 (11)
N6 0.0426 (13) 0.0445 (14) 0.0483 (14) 0.0113 (11) 0.0031 (10) −0.0030 (11)
N7 0.0337 (12) 0.0378 (12) 0.0587 (15) 0.0054 (9) 0.0040 (10) 0.0087 (10)
N8 0.0340 (11) 0.0410 (12) 0.0489 (14) 0.0107 (10) 0.0079 (10) 0.0039 (10)
F1 0.0722 (14) 0.0731 (14) 0.202 (3) −0.0253 (11) 0.0276 (15) 0.0178 (15)
F2 0.0584 (11) 0.0752 (13) 0.1328 (19) 0.0288 (10) 0.0188 (11) 0.0253 (12)
F3 0.0672 (13) 0.0775 (14) 0.1341 (19) −0.0210 (11) 0.0101 (12) −0.0166 (13)
F4 0.0702 (12) 0.0810 (13) 0.0842 (14) 0.0358 (10) 0.0138 (10) 0.0009 (11)
C1 0.0326 (13) 0.0491 (16) 0.0398 (16) 0.0013 (12) 0.0053 (11) 0.0009 (12)
C2 0.0402 (15) 0.0459 (16) 0.0566 (18) 0.0028 (12) 0.0089 (13) 0.0054 (13)
C3 0.0427 (16) 0.060 (2) 0.059 (2) 0.0133 (15) 0.0092 (14) 0.0072 (15)
C4 0.0343 (15) 0.073 (2) 0.070 (2) 0.0052 (15) 0.0078 (14) 0.0078 (17)
C5 0.0500 (18) 0.060 (2) 0.081 (2) −0.0142 (16) 0.0127 (16) 0.0053 (17)
C6 0.0504 (18) 0.0455 (17) 0.069 (2) 0.0062 (14) 0.0094 (15) 0.0054 (15)
C7 0.0332 (13) 0.0385 (14) 0.0379 (15) 0.0063 (11) 0.0034 (11) 0.0007 (11)
C8 0.0448 (15) 0.0291 (14) 0.0585 (18) 0.0106 (12) −0.0026 (13) 0.0034 (12)
C9 0.0420 (16) 0.0272 (14) 0.073 (2) −0.0025 (11) −0.0017 (14) 0.0053 (13)
C10 0.0340 (14) 0.0337 (14) 0.0484 (17) 0.0014 (11) 0.0003 (12) 0.0008 (12)
C11 0.0343 (13) 0.0295 (13) 0.0326 (14) 0.0047 (10) 0.0028 (10) 0.0001 (10)
C12 0.0357 (13) 0.0308 (13) 0.0434 (15) 0.0011 (11) 0.0066 (11) 0.0024 (11)
C13 0.0361 (14) 0.0300 (14) 0.0440 (16) 0.0027 (11) 0.0089 (12) 0.0013 (11)
C14 0.0343 (13) 0.0302 (13) 0.0480 (16) 0.0084 (11) 0.0063 (12) 0.0038 (11)
C15 0.0398 (15) 0.0368 (15) 0.0619 (19) 0.0014 (12) 0.0130 (13) 0.0043 (13)
C16 0.0345 (14) 0.0349 (14) 0.0651 (19) 0.0039 (11) 0.0130 (13) −0.0025 (13)
C17 0.0381 (15) 0.0299 (14) 0.076 (2) 0.0043 (11) 0.0143 (14) 0.0031 (13)
C18 0.0325 (13) 0.0316 (13) 0.0618 (18) 0.0054 (11) 0.0113 (12) 0.0047 (12)
C19 0.0532 (19) 0.073 (2) 0.091 (3) 0.0033 (16) 0.0298 (18) −0.0120 (19)
C20 0.0453 (17) 0.064 (2) 0.082 (2) 0.0101 (15) 0.0013 (16) −0.0037 (17)
C21 0.068 (2) 0.058 (2) 0.088 (3) 0.0116 (16) 0.0157 (19) 0.0267 (18)
C22 0.061 (2) 0.0371 (17) 0.125 (3) −0.0043 (15) 0.025 (2) −0.0098 (18)
C23 0.0338 (14) 0.0590 (18) 0.0333 (15) 0.0040 (13) 0.0044 (11) −0.0050 (13)
C24 0.0477 (17) 0.0505 (17) 0.0482 (18) 0.0114 (13) 0.0053 (13) −0.0076 (13)
C25 0.0466 (17) 0.0594 (19) 0.058 (2) −0.0081 (15) 0.0056 (14) −0.0132 (15)
C26 0.0318 (14) 0.080 (2) 0.0496 (18) 0.0062 (15) 0.0013 (13) −0.0148 (16)
C27 0.0465 (17) 0.068 (2) 0.0379 (16) 0.0199 (15) 0.0064 (13) −0.0033 (14)
C28 0.0475 (16) 0.0498 (17) 0.0412 (16) 0.0055 (13) 0.0067 (13) −0.0011 (13)
C29 0.0340 (14) 0.0429 (15) 0.0445 (16) 0.0069 (12) 0.0028 (12) 0.0002 (12)
C30 0.0336 (13) 0.0372 (14) 0.0432 (16) −0.0006 (11) 0.0031 (11) 0.0018 (12)
C31 0.0316 (13) 0.0345 (14) 0.0414 (15) 0.0048 (11) 0.0026 (11) 0.0030 (11)
C32 0.0341 (15) 0.0428 (16) 0.065 (2) 0.0024 (12) 0.0056 (13) 0.0085 (14)
C33 0.0492 (18) 0.0355 (16) 0.093 (2) 0.0006 (13) 0.0113 (16) 0.0163 (15)
C34 0.0498 (17) 0.0384 (16) 0.078 (2) 0.0133 (13) 0.0080 (15) 0.0102 (15)
C35 0.0346 (14) 0.0349 (14) 0.0450 (16) 0.0011 (12) 0.0036 (12) 0.0031 (12)
C36 0.0332 (13) 0.0321 (14) 0.0529 (17) 0.0047 (11) 0.0040 (12) 0.0066 (12)
C37 0.0415 (15) 0.0403 (15) 0.0508 (17) 0.0056 (12) 0.0055 (13) −0.0010 (13)
C38 0.0359 (14) 0.0439 (15) 0.0400 (15) 0.0070 (11) 0.0039 (11) 0.0020 (12)
C39 0.0427 (15) 0.0477 (16) 0.0438 (16) 0.0106 (12) 0.0037 (12) −0.0016 (13)
C40 0.0493 (16) 0.0521 (17) 0.0442 (17) 0.0091 (13) −0.0009 (13) 0.0049 (13)
C41 0.0529 (17) 0.0591 (19) 0.060 (2) 0.0108 (14) 0.0168 (15) 0.0153 (15)
C42 0.0532 (18) 0.0578 (19) 0.062 (2) 0.0071 (15) −0.0084 (15) 0.0037 (15)
C43 0.074 (2) 0.076 (2) 0.057 (2) 0.0174 (18) 0.0183 (17) −0.0042 (17)
C44 0.0556 (19) 0.0546 (19) 0.079 (2) 0.0012 (15) 0.0027 (17) −0.0122 (17)

Geometric parameters (Å, º)

O1—C10 1.330 (3) C19—H19A 0.9600
O1—H1 1.03 (5) C19—H19B 0.9600
O3—C32 1.339 (3) C19—H19C 0.9600
O3—H3 0.88 (4) C20—H20A 0.9600
O4—N8 1.284 (2) C20—H20B 0.9600
N1—C1 1.436 (3) C20—H20C 0.9600
N2—N1 1.244 (3) C21—H21A 0.9600
N2—C7 1.424 (3) C21—H21B 0.9600
N3—C13 1.270 (3) C21—H21C 0.9600
N3—C14 1.466 (3) C22—H22A 0.9600
N4—O2 1.275 (3) C22—H22B 0.9600
N4—C16 1.487 (3) C22—H22C 0.9600
N4—C17 1.493 (3) C23—C24 1.392 (4)
N5—C23 1.448 (3) C23—C28 1.370 (4)
N6—N5 1.233 (3) C24—C25 1.373 (4)
N6—C29 1.439 (3) C24—H24 0.9300
N7—C35 1.272 (3) C26—C25 1.374 (4)
N7—C36 1.465 (3) C26—H26 0.9300
N8—C38 1.479 (3) C27—C26 1.365 (4)
N8—C39 1.495 (3) C28—C27 1.362 (4)
F1—C5 1.348 (3) C28—H28 0.9300
F2—C3 1.358 (3) C29—C34 1.393 (4)
F3—C25 1.353 (3) C30—C29 1.377 (3)
F4—C27 1.360 (3) C30—H30 0.9300
C1—C2 1.373 (3) C31—C30 1.385 (3)
C1—C6 1.385 (4) C31—C32 1.403 (3)
C2—C3 1.360 (4) C32—C33 1.398 (4)
C2—H2 0.9300 C33—H33 0.9300
C3—C4 1.363 (4) C34—C33 1.374 (4)
C4—C5 1.363 (4) C34—H34 0.9300
C4—H4 0.9300 C35—C31 1.457 (3)
C6—C5 1.377 (4) C35—H35 0.97 (2)
C6—H6 0.9300 C36—C37 1.517 (3)
C7—C8 1.399 (3) C36—C40 1.512 (4)
C8—C9 1.363 (3) C36—H36 0.9800
C8—H8 0.9300 C37—H37A 0.9700
C9—H9 0.9300 C37—H37B 0.9700
C10—C9 1.399 (3) C38—C37 1.526 (3)
C11—C10 1.408 (3) C38—C41 1.536 (4)
C11—C12 1.386 (3) C38—C42 1.529 (4)
C11—C13 1.448 (3) C39—C40 1.525 (3)
C12—C7 1.376 (3) C39—C43 1.517 (4)
C12—H12 0.9300 C39—C44 1.531 (4)
C13—H13 0.96 (2) C40—H40A 0.9700
C14—C15 1.509 (3) C40—H40B 0.9700
C14—C18 1.513 (3) C41—H41A 0.9600
C14—H14 0.9800 C41—H41B 0.9600
C15—H15A 0.9700 C41—H41C 0.9600
C15—H15B 0.9700 C42—H42A 0.9600
C16—C15 1.519 (3) C42—H42B 0.9600
C16—C19 1.523 (4) C42—H42C 0.9600
C16—C20 1.528 (4) C43—H43A 0.9600
C17—C21 1.528 (4) C43—H43B 0.9600
C17—C22 1.524 (4) C43—H43C 0.9600
C18—C17 1.517 (3) C44—H44A 0.9600
C18—H18A 0.9700 C44—H44B 0.9600
C18—H18B 0.9700 C44—H44C 0.9600
C10—O1—H1 107 (2) H21B—C21—H21C 109.5
C32—O3—H3 108 (3) C17—C22—H22A 109.5
N2—N1—C1 113.4 (2) C17—C22—H22B 109.5
N1—N2—C7 114.1 (2) C17—C22—H22C 109.5
C13—N3—C14 121.6 (2) H22A—C22—H22B 109.5
O2—N4—C16 115.5 (2) H22A—C22—H22C 109.5
O2—N4—C17 116.2 (2) H22B—C22—H22C 109.5
C16—N4—C17 124.8 (2) C24—C23—N5 124.0 (2)
N6—N5—C23 112.2 (2) C28—C23—N5 115.0 (2)
N5—N6—C29 114.4 (2) C28—C23—C24 121.0 (2)
C35—N7—C36 117.9 (2) C23—C24—H24 121.4
O4—N8—C38 116.0 (2) C25—C24—C23 117.3 (3)
O4—N8—C39 115.6 (2) C25—C24—H24 121.4
C38—N8—C39 124.67 (19) F3—C25—C24 118.8 (3)
C2—C1—N1 115.1 (2) F3—C25—C26 117.6 (3)
C2—C1—C6 120.7 (2) C24—C25—C26 123.5 (3)
C6—C1—N1 124.2 (2) C25—C26—H26 121.9
C1—C2—H2 120.7 C27—C26—C25 116.1 (3)
C3—C2—C1 118.6 (3) C27—C26—H26 122.0
C3—C2—H2 120.7 F4—C27—C28 118.4 (3)
F2—C3—C2 118.7 (3) F4—C27—C26 117.9 (3)
F2—C3—C4 117.6 (3) C28—C27—C26 123.7 (3)
C2—C3—C4 123.8 (3) C23—C28—H28 120.8
C3—C4—C5 115.7 (3) C27—C28—C23 118.4 (3)
C3—C4—H4 122.1 C27—C28—H28 120.8
C5—C4—H4 122.1 C30—C29—N6 115.0 (2)
F1—C5—C4 117.8 (3) C30—C29—C34 118.6 (2)
F1—C5—C6 118.0 (3) C34—C29—N6 126.4 (2)
C4—C5—C6 124.2 (3) C29—C30—C31 122.2 (2)
C1—C6—H6 121.5 C29—C30—H30 118.9
C5—C6—C1 117.0 (3) C31—C30—H30 118.9
C5—C6—H6 121.5 C30—C31—C32 118.7 (2)
C8—C7—N2 125.2 (2) C30—C31—C35 119.9 (2)
C12—C7—N2 116.1 (2) C32—C31—C35 121.3 (2)
C12—C7—C8 118.7 (2) O3—C32—C31 122.3 (2)
C7—C8—H8 119.7 O3—C32—C33 118.5 (2)
C9—C8—C7 120.6 (2) C33—C32—C31 119.2 (2)
C9—C8—H8 119.7 C32—C33—H33 119.7
C8—C9—C10 121.0 (2) C34—C33—C32 120.6 (3)
C8—C9—H9 119.5 C34—C33—H33 119.7
C10—C9—H9 119.5 C29—C34—H34 119.7
O1—C10—C9 119.2 (2) C33—C34—C29 120.6 (2)
O1—C10—C11 122.0 (2) C33—C34—H34 119.7
C9—C10—C11 118.7 (2) N7—C35—C31 122.7 (2)
C10—C11—C13 120.9 (2) N7—C35—H35 122.0 (14)
C12—C11—C10 119.1 (2) C31—C35—H35 115.3 (14)
C12—C11—C13 120.0 (2) N7—C36—C40 110.6 (2)
C7—C12—C11 121.8 (2) N7—C36—C37 109.0 (2)
C7—C12—H12 119.1 N7—C36—H36 109.8
C11—C12—H12 119.1 C37—C36—H36 109.8
N3—C13—C11 121.5 (2) C40—C36—C37 107.9 (2)
N3—C13—H13 123.8 (14) C40—C36—H36 109.8
C11—C13—H13 114.7 (14) C36—C37—C38 113.3 (2)
N3—C14—C15 107.3 (2) C36—C37—H37A 108.9
N3—C14—C18 115.44 (19) C36—C37—H37B 108.9
N3—C14—H14 108.3 C38—C37—H37A 108.9
C15—C14—C18 109.0 (2) C38—C37—H37B 108.9
C15—C14—H14 108.3 H37A—C37—H37B 107.7
C18—C14—H14 108.3 N8—C38—C37 109.2 (2)
C14—C15—C16 115.0 (2) N8—C38—C42 107.6 (2)
C14—C15—H15A 108.5 N8—C38—C41 109.7 (2)
C14—C15—H15B 108.5 C37—C38—C42 109.1 (2)
C16—C15—H15A 108.5 C37—C38—C41 111.9 (2)
C16—C15—H15B 108.5 C42—C38—C41 109.3 (2)
H15A—C15—H15B 107.5 N8—C39—C43 107.1 (2)
N4—C16—C15 109.5 (2) N8—C39—C40 109.7 (2)
N4—C16—C19 107.7 (2) N8—C39—C44 108.9 (2)
N4—C16—C20 109.0 (2) C43—C39—C40 109.6 (2)
C15—C16—C19 108.8 (2) C43—C39—C44 109.5 (2)
C15—C16—C20 112.1 (2) C40—C39—C44 111.9 (2)
C19—C16—C20 109.6 (2) C36—C40—C39 114.6 (2)
N4—C17—C18 109.9 (2) C36—C40—H40A 108.6
N4—C17—C22 107.7 (2) C36—C40—H40B 108.6
N4—C17—C21 109.5 (2) C39—C40—H40A 108.6
C18—C17—C22 109.4 (2) C39—C40—H40B 108.6
C18—C17—C21 111.4 (2) H40A—C40—H40B 107.6
C22—C17—C21 108.9 (2) C38—C41—H41A 109.5
C14—C18—C17 113.5 (2) C38—C41—H41B 109.5
C14—C18—H18A 108.9 C38—C41—H41C 109.5
C14—C18—H18B 108.9 H41A—C41—H41B 109.5
C17—C18—H18A 108.9 H41A—C41—H41C 109.5
C17—C18—H18B 108.9 H41B—C41—H41C 109.5
H18A—C18—H18B 107.7 C38—C42—H42A 109.5
C16—C19—H19A 109.5 C38—C42—H42B 109.5
C16—C19—H19B 109.5 C38—C42—H42C 109.5
C16—C19—H19C 109.5 H42A—C42—H42B 109.5
H19A—C19—H19B 109.5 H42A—C42—H42C 109.5
H19A—C19—H19C 109.5 H42B—C42—H42C 109.5
H19B—C19—H19C 109.5 C39—C43—H43A 109.5
C16—C20—H20A 109.5 C39—C43—H43B 109.5
C16—C20—H20B 109.5 C39—C43—H43C 109.5
C16—C20—H20C 109.5 H43A—C43—H43B 109.5
H20A—C20—H20B 109.5 H43A—C43—H43C 109.5
H20A—C20—H20C 109.5 H43B—C43—H43C 109.5
H20B—C20—H20C 109.5 C39—C44—H44A 109.5
C17—C21—H21A 109.5 C39—C44—H44B 109.5
C17—C21—H21B 109.5 C39—C44—H44C 109.5
C17—C21—H21C 109.5 H44A—C44—H44B 109.5
H21A—C21—H21B 109.5 H44A—C44—H44C 109.5
H21A—C21—H21C 109.5 H44B—C44—H44C 109.5
N2—N1—C1—C2 −179.8 (2) C12—C11—C10—O1 179.7 (2)
N2—N1—C1—C6 0.6 (4) C12—C11—C10—C9 −0.2 (4)
C7—N2—N1—C1 −179.9 (2) C13—C11—C10—O1 −1.0 (4)
N1—N2—C7—C8 −2.7 (4) C13—C11—C10—C9 179.1 (2)
N1—N2—C7—C12 178.3 (2) C10—C11—C12—C7 −0.7 (4)
C14—N3—C13—C11 179.3 (2) C13—C11—C12—C7 180.0 (2)
C13—N3—C14—C15 134.9 (3) C10—C11—C13—N3 2.7 (4)
C13—N3—C14—C18 13.1 (4) C12—C11—C13—N3 −178.0 (2)
O2—N4—C16—C15 167.8 (3) C11—C12—C7—N2 −179.6 (2)
O2—N4—C16—C19 49.6 (3) C11—C12—C7—C8 1.2 (4)
O2—N4—C16—C20 −69.2 (3) N3—C14—C15—C16 175.9 (2)
C17—N4—C16—C15 −33.9 (4) C18—C14—C15—C16 −58.4 (3)
C17—N4—C16—C19 −152.1 (3) N3—C14—C18—C17 179.9 (2)
C17—N4—C16—C20 89.1 (3) C15—C14—C18—C17 59.1 (3)
O2—N4—C17—C18 −166.4 (3) N4—C16—C15—C14 44.0 (3)
O2—N4—C17—C21 70.9 (3) C19—C16—C15—C14 161.5 (2)
O2—N4—C17—C22 −47.4 (4) C20—C16—C15—C14 −77.1 (3)
C16—N4—C17—C18 35.4 (4) C14—C18—C17—N4 −46.1 (3)
C16—N4—C17—C21 −87.3 (3) C14—C18—C17—C21 75.5 (3)
C16—N4—C17—C22 154.5 (3) C14—C18—C17—C22 −164.1 (2)
N6—N5—C23—C24 5.9 (4) N5—C23—C24—C25 179.7 (2)
N6—N5—C23—C28 −174.7 (2) C28—C23—C24—C25 0.3 (4)
C29—N6—N5—C23 −177.7 (2) N5—C23—C28—C27 −179.5 (2)
N5—N6—C29—C30 179.3 (2) C24—C23—C28—C27 0.0 (4)
N5—N6—C29—C34 0.5 (4) C23—C24—C25—F3 179.6 (3)
C36—N7—C35—C31 −179.1 (2) C23—C24—C25—C26 −0.3 (4)
C35—N7—C36—C37 126.6 (3) C27—C26—C25—F3 −179.9 (3)
C35—N7—C36—C40 −115.0 (3) C27—C26—C25—C24 0.1 (4)
O4—N8—C38—C37 −166.1 (2) F4—C27—C26—C25 178.9 (2)
O4—N8—C38—C41 71.0 (3) C28—C27—C26—C25 0.3 (4)
O4—N8—C38—C42 −47.9 (3) C23—C28—C27—F4 −178.9 (2)
C39—N8—C38—C37 36.8 (3) C23—C28—C27—C26 −0.3 (4)
C39—N8—C38—C41 −86.1 (3) N6—C29—C34—C33 178.2 (3)
C39—N8—C38—C42 155.1 (2) C30—C29—C34—C33 −0.6 (4)
O4—N8—C39—C40 168.5 (2) C31—C30—C29—N6 −177.7 (2)
O4—N8—C39—C43 49.6 (3) C31—C30—C29—C34 1.3 (4)
O4—N8—C39—C44 −68.6 (3) C32—C31—C30—C29 −0.8 (4)
C38—N8—C39—C40 −34.3 (3) C35—C31—C30—C29 179.6 (2)
C38—N8—C39—C43 −153.2 (2) C30—C31—C32—O3 −179.6 (3)
C38—N8—C39—C44 88.5 (3) C30—C31—C32—C33 −0.2 (4)
N1—C1—C2—C3 −179.6 (2) C35—C31—C32—O3 −0.1 (4)
C6—C1—C2—C3 0.1 (4) C35—C31—C32—C33 179.3 (3)
N1—C1—C6—C5 179.4 (3) O3—C32—C33—C34 −179.7 (3)
C2—C1—C6—C5 −0.2 (4) C31—C32—C33—C34 0.9 (5)
C1—C2—C3—F2 179.2 (3) C29—C34—C33—C32 −0.4 (5)
C1—C2—C3—C4 0.4 (5) N7—C35—C31—C30 −177.8 (3)
F2—C3—C4—C5 −179.5 (3) N7—C35—C31—C32 2.7 (4)
C2—C3—C4—C5 −0.7 (5) N7—C36—C37—C38 −178.5 (2)
C3—C4—C5—F1 −178.6 (3) C40—C36—C37—C38 61.4 (3)
C3—C4—C5—C6 0.6 (5) N7—C36—C40—C39 −178.1 (2)
C1—C6—C5—F1 179.0 (3) C37—C36—C40—C39 −59.0 (3)
C1—C6—C5—C4 −0.1 (5) N8—C38—C37—C36 −48.9 (3)
N2—C7—C8—C9 −179.8 (3) C41—C38—C37—C36 72.6 (3)
C12—C7—C8—C9 −0.8 (4) C42—C38—C37—C36 −166.3 (2)
C7—C8—C9—C10 −0.2 (4) N8—C39—C40—C36 44.0 (3)
O1—C10—C9—C8 −179.2 (3) C43—C39—C40—C36 161.4 (2)
C11—C10—C9—C8 0.7 (4) C44—C39—C40—C36 −77.0 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N3 1.03 (5) 1.66 (5) 2.585 (3) 147 (4)
O3—H3···N7 0.88 (4) 1.85 (4) 2.639 (3) 148 (4)
C13—H13···O4i 0.96 (2) 2.44 (2) 3.324 (3) 154.5 (2)
C15—H15A···F1ii 0.97 2.43 3.218 (3) 138
C30—H30···O2iii 0.93 2.36 3.222 (3) 154
C35—H35···O2iii 0.97 (2) 2.44 (2) 3.318 (3) 150.5 (2)
C37—H37B···F2 0.97 2.48 3.346 (3) 148

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x+1, y, z; (iii) −x+2, y+1/2, −z+3/2.

References

  1. Ba, Y. & Mathias, E. V. (2013). Patent Appl. Publ. US 20120065230A1.
  2. Berliner, L. J. (1976). Editor. In Spin Labeling: Theory and Applications. New York: Academic Press.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Gallez, B., Demeure, R., Debuyst, R., Leonard, D., Dejehet, F. & Dumont, P. (1992). Magn. Reson. Imaging, 10, 445–455. [DOI] [PubMed]
  7. Gnewuch, T. & Sosnovsky, G. (1986). Chem. Rev. 86, 203–238.
  8. Hahn, S. M., Krishna, C. M., Samuni, A., DeGraff, W., Cuscela, D. O., Johnstone, P. & Mitchell, J. B. (1994). Cancer Res. 54, 2006–2010. [PubMed]
  9. Hawker, C. J. (1997). Acc. Chem. Res. 30, 373–382.
  10. Hökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60, o803–o805. [DOI] [PubMed]
  11. Likhtenstein, G. I., Yamauchi, J., Nakatsuji, S., Smirnov, A. I. & Tamura, R. (2008). Nitroxides, pp. 331–399. Weinheim: Wiley-VCH.
  12. Rosen, G. M., Britigan, B. E., Halpern, H. J. & Pou, S. (1999). In Free Radicals: Biology and Detection by Spin Trapping. New York: Oxford University Press Inc.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Tretyakov, E. V. & Ovcharenko, V. I. (2009). Russ. Chem. Rev. 78, 971–1012.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015012049/xu5856sup1.cif

e-71-00864-sup1.cif (47.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015012049/xu5856Isup2.hkl

e-71-00864-Isup2.hkl (507.8KB, hkl)

CCDC reference: 1408338

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES