Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 27;71(Pt 7):o519–o520. doi: 10.1107/S2056989015012013

Crystal structure of ethyl (4R)-2-amino-7-hy­droxy-4-phenyl-4H-chromene-3-carboxyl­ate

Joel T Mague a, Shaaban K Mohamed b,c, Mehmet Akkurt d, Sabry H H Younes e, Mustafa R Albayati f,*
PMCID: PMC4518989  PMID: 26279941

Abstract

In the title compound, C18H17NO4, the dihedral angle between the phenyl ring and the fused six-membered ring is 77.65 (4)°. The conformation of the mol­ecule is determined in part by an intra­molecular N—H⋯O hydrogen bond between the amino H atom and the carbonyl O atom, forming an S(6) motif. In the crystal, mol­ecules are linked into N—H⋯O hydrogen-bonded inversion dimers which are then connected into chains along [001], forming a two-dimensional network parallel to (100) via O—H⋯O hydrogen bonds. C—H⋯O interactions further contribute to the crystal stability. The ethyl group is disordered over two sets of sites in a 0.801 (5):0.199 (5) ratio.

Keywords: crystal structure, amino chromenes, 4H-chromene, hydrogen bonding

Related literature  

For background to the synthesis and biological activity of mol­ecules having a 4H-chromene or 4H-benzochromene residue, see: Kiyani & Ghorbani (2014); Kale et al. (2013); Sabry et al. (2011); Kidwai et al. (2010); Mungra et al. (2011); Cingolani et al. (1969); Wu et al. (2003); Perrella et al. (1994); Patil et al. (1993); Emmadi et al. (2012); Wang et al. (2003); Armesto et al. (1989).graphic file with name e-71-0o519-scheme1.jpg

Experimental  

Crystal data  

  • C18H17NO4

  • M r = 311.32

  • Monoclinic, Inline graphic

  • a = 31.5071 (7) Å

  • b = 5.8582 (1) Å

  • c = 21.2249 (5) Å

  • β = 130.180 (1)°

  • V = 2993.11 (11) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.81 mm−1

  • T = 150 K

  • 0.22 × 0.18 × 0.02 mm

Data collection  

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014) T min = 0.91, T max = 0.98

  • 11241 measured reflections

  • 2891 independent reflections

  • 2348 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.101

  • S = 1.05

  • 2891 reflections

  • 227 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a ); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b ); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015012013/qm2111sup1.cif

e-71-0o519-sup1.cif (364.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015012013/qm2111Isup2.hkl

e-71-0o519-Isup2.hkl (231.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015012013/qm2111Isup3.cml

. DOI: 10.1107/S2056989015012013/qm2111fig1.tif

The title mol­ecule with labeling scheme and 50% probability ellipsoids. Only one orientation of the disordered ethyl group is shown.

b . DOI: 10.1107/S2056989015012013/qm2111fig2.tif

Packing viewed down the b axis. N—H⋯O and O—H⋯O hydrogen bonds are shown, respectively as blue and red dotted lines.

CCDC reference: 1408238

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C11H11AO2i 0.99 2.58 3.312(3) 131
C6H6O1ii 0.95 2.56 3.4736(17) 163
N1H1BO3 0.88(2) 1.998(19) 2.6840(18) 133.7(16)
N1H1AO2ii 0.93(2) 2.15(2) 3.0710(18) 169.6(17)
O2H2AO3iii 0.90(2) 1.83(2) 2.7331(15) 179(2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The support of NSF–MRI (grant No. 1228232) for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

supplementary crystallographic information

S1. Comment

Besides the various biological properties of 2-Amino-4H-Chromenes, they also act as important synthetic building blocks for various bio-active molecules (Kiyani & Ghorbani, 2014; Kale et al., 2013; Sabry et al., 2011; Kidwai et al., 2010). During the last decade, such compounds had shown interesting pharmacological properties such as antimicrobial and anti-tuberculosis agents (Mungra et al., 2011), anticoagulant (Cingolani et al., 1969), anticancer (Wu et al., 2003), antitumour (Perrella, et al., 1994), cytotoxic and anti-HIV activities (Patil et al., 1993; Emmadi, et al., 2012). Also, chromenes are also structural features of various natural products (Wang et al., 2003) and possess useful photochemical properties (Armesto et al., 1989).

In the title molecule, the dihedral angle between the phenyl ring (C13–C18) and the C2–C7 ring is 77.65 (4)°. A puckering analysis of the heterocyclic ring gave Q = 0.118 (2) Å, θ = 95.1 (8)° and φ = 352.0 (8)°. The conformation of the molecule is determined in part by an intramolecular N1—H1B···O3 hydrogen bond. Pairwise N1—H1A···O2i (i: 1 - x, -y, 1 - z) hydrogen bonds form dimers which are then connected into chains via O2—H2A···O3ii (ii: x, 1 - y, -1/2 + z) hydrogen bonds (Table 1 and Fig. 2).

S2. Experimental

The title compound was synthesized by the reaction of (E)-ethyl 3-(phenyl)-2-cyanoacrylate (1 mmol, 201 mg) and 1,3-Benzenediol (1 mmol, 110 mg) catalyzed by Et3N in 10 ml e thanol at the refuxing temperature. After cooling, the solvent was removed under reduced pressure and the residue was washed with cold ethanol and recrystallized from ethanol to afford pure colourless crystals suitable for X-ray diffraction in 92% yeild and M.p 491 K.

S3. Refinement

H-atoms were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms. The ethyl group (C11,C12) is disordered over two sites. The components of the disorder were refined subject to restraints that their geometries be approximately the same.

Figures

Fig. 1.

Fig. 1.

The title molecule with labeling scheme and 50% probability ellipsoids. Only one orientation of the disordered ethyl group is shown.

Fig. 2.

Fig. 2.

Packing viewed down the b axis. N—H···O and O—H···O hydrogen bonds are shown, respectively as blue and red dotted lines.

Crystal data

C18H17NO4 F(000) = 1312
Mr = 311.32 Dx = 1.382 Mg m3
Monoclinic, C2/c Cu Kα radiation, λ = 1.54178 Å
a = 31.5071 (7) Å Cell parameters from 6704 reflections
b = 5.8582 (1) Å θ = 3.7–72.2°
c = 21.2249 (5) Å µ = 0.81 mm1
β = 130.180 (1)° T = 150 K
V = 2993.11 (11) Å3 Plate, colourless
Z = 8 0.22 × 0.18 × 0.02 mm

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer 2891 independent reflections
Radiation source: INCOATEC IµS micro–focus source 2348 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.033
ω scans θmax = 72.2°, θmin = 3.7°
Absorption correction: multi-scan (SADABS; Bruker, 2014) h = −38→36
Tmin = 0.91, Tmax = 0.98 k = −6→7
11241 measured reflections l = −24→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: mixed
wR(F2) = 0.101 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.049P)2 + 1.7699P] where P = (Fo2 + 2Fc2)/3
2891 reflections (Δ/σ)max < 0.001
227 parameters Δρmax = 0.27 e Å3
2 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms. The ethyl group (C11,C12) is disordered over two sites. The components of the disorder were refined subject to restraints that their geometries be approximately the same.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.45362 (4) 0.22755 (17) 0.51953 (6) 0.0270 (2)
O2 0.46127 (4) 0.21959 (19) 0.30568 (6) 0.0302 (3)
H2A 0.4494 (9) 0.294 (4) 0.2598 (14) 0.056 (6)*
O3 0.42602 (4) 0.5543 (2) 0.66661 (6) 0.0340 (3)
O4 0.37668 (5) 0.82032 (19) 0.56697 (6) 0.0338 (3)
N1 0.46907 (5) 0.2182 (3) 0.63712 (8) 0.0305 (3)
H1A 0.4890 (8) 0.084 (4) 0.6479 (12) 0.049 (5)*
H1B 0.4647 (8) 0.277 (3) 0.6709 (12) 0.039 (5)*
C1 0.38998 (6) 0.6527 (2) 0.46364 (8) 0.0242 (3)
H1 0.4037 0.8139 0.4768 0.029*
C2 0.40953 (5) 0.5419 (2) 0.42173 (8) 0.0228 (3)
C3 0.39849 (6) 0.6388 (3) 0.35231 (8) 0.0256 (3)
H3 0.3789 0.7795 0.3318 0.031*
C4 0.41512 (6) 0.5365 (3) 0.31246 (8) 0.0260 (3)
H4 0.4070 0.6063 0.2654 0.031*
C5 0.44383 (6) 0.3298 (2) 0.34225 (8) 0.0241 (3)
C6 0.45583 (6) 0.2297 (2) 0.41125 (8) 0.0243 (3)
H6 0.4754 0.0892 0.4320 0.029*
C7 0.43866 (5) 0.3386 (2) 0.44957 (8) 0.0227 (3)
C8 0.44500 (6) 0.3350 (3) 0.56735 (8) 0.0244 (3)
C9 0.41527 (5) 0.5333 (3) 0.54438 (8) 0.0248 (3)
C10 0.40769 (6) 0.6307 (3) 0.59859 (9) 0.0274 (3)
C11 0.35861 (16) 0.9101 (9) 0.60985 (17) 0.0450 (8) 0.801 (5)
H11A 0.3904 0.9738 0.6641 0.054* 0.801 (5)
H11B 0.3409 0.7892 0.6185 0.054* 0.801 (5)
C12 0.31703 (14) 1.0965 (6) 0.55374 (19) 0.0619 (10) 0.801 (5)
H12A 0.3029 1.1656 0.5791 0.093* 0.801 (5)
H12B 0.3353 1.2137 0.5456 0.093* 0.801 (5)
H12C 0.2861 1.0303 0.5003 0.093* 0.801 (5)
C11A 0.3518 (6) 0.940 (5) 0.5958 (8) 0.0450 (8) 0.199 (5)
H11C 0.3677 1.0951 0.6149 0.054* 0.199 (5)
H11D 0.3586 0.8561 0.6421 0.054* 0.199 (5)
C12A 0.2899 (5) 0.953 (3) 0.5230 (7) 0.0619 (10) 0.199 (5)
H12D 0.2712 1.0330 0.5397 0.093* 0.199 (5)
H12E 0.2838 1.0361 0.4777 0.093* 0.199 (5)
H12F 0.2748 0.7983 0.5047 0.093* 0.199 (5)
C13 0.32653 (6) 0.6603 (2) 0.40441 (8) 0.0248 (3)
C14 0.29555 (6) 0.4724 (3) 0.39345 (9) 0.0289 (3)
H14 0.3139 0.3368 0.4240 0.035*
C15 0.23796 (6) 0.4812 (3) 0.33820 (10) 0.0369 (4)
H15 0.2171 0.3520 0.3314 0.044*
C16 0.21071 (7) 0.6774 (3) 0.29294 (10) 0.0415 (4)
H16 0.1713 0.6836 0.2555 0.050*
C17 0.24104 (7) 0.8635 (3) 0.30240 (10) 0.0399 (4)
H17 0.2225 0.9975 0.2707 0.048*
C18 0.29867 (7) 0.8557 (3) 0.35817 (9) 0.0328 (3)
H18 0.3193 0.9854 0.3648 0.039*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0334 (5) 0.0318 (5) 0.0209 (5) 0.0037 (4) 0.0198 (4) 0.0024 (4)
O2 0.0346 (6) 0.0392 (6) 0.0237 (5) 0.0060 (5) 0.0220 (5) 0.0032 (5)
O3 0.0372 (6) 0.0470 (7) 0.0225 (5) 0.0043 (5) 0.0214 (5) 0.0005 (5)
O4 0.0401 (6) 0.0395 (6) 0.0287 (5) 0.0059 (5) 0.0254 (5) −0.0007 (5)
N1 0.0331 (7) 0.0414 (8) 0.0214 (6) 0.0060 (6) 0.0196 (6) 0.0041 (6)
C1 0.0266 (7) 0.0270 (7) 0.0210 (7) −0.0031 (6) 0.0163 (6) −0.0034 (6)
C2 0.0209 (6) 0.0280 (7) 0.0191 (6) −0.0036 (6) 0.0127 (5) −0.0033 (6)
C3 0.0240 (7) 0.0293 (7) 0.0235 (7) −0.0011 (6) 0.0153 (6) 0.0008 (6)
C4 0.0264 (7) 0.0328 (8) 0.0208 (7) −0.0026 (6) 0.0161 (6) 0.0015 (6)
C5 0.0216 (6) 0.0334 (8) 0.0192 (6) −0.0036 (6) 0.0140 (5) −0.0044 (6)
C6 0.0227 (7) 0.0287 (7) 0.0202 (7) 0.0003 (6) 0.0134 (6) 0.0001 (6)
C7 0.0221 (6) 0.0297 (7) 0.0156 (6) −0.0045 (5) 0.0118 (5) −0.0011 (5)
C8 0.0221 (7) 0.0349 (8) 0.0174 (6) −0.0044 (6) 0.0132 (6) −0.0036 (6)
C9 0.0220 (7) 0.0334 (8) 0.0182 (6) −0.0026 (6) 0.0127 (6) −0.0031 (6)
C10 0.0241 (7) 0.0358 (8) 0.0225 (7) −0.0031 (6) 0.0151 (6) −0.0042 (6)
C11 0.0614 (14) 0.050 (2) 0.0456 (14) 0.0246 (12) 0.0448 (12) 0.0156 (16)
C12 0.079 (2) 0.074 (2) 0.0624 (18) 0.0394 (17) 0.0588 (18) 0.0292 (16)
C11A 0.0614 (14) 0.050 (2) 0.0456 (14) 0.0246 (12) 0.0448 (12) 0.0156 (16)
C12A 0.079 (2) 0.074 (2) 0.0624 (18) 0.0394 (17) 0.0588 (18) 0.0292 (16)
C13 0.0276 (7) 0.0305 (7) 0.0194 (6) 0.0023 (6) 0.0166 (6) −0.0012 (6)
C14 0.0298 (7) 0.0344 (8) 0.0252 (7) 0.0014 (6) 0.0190 (6) −0.0008 (6)
C15 0.0302 (8) 0.0528 (10) 0.0314 (8) −0.0043 (7) 0.0216 (7) −0.0079 (8)
C16 0.0257 (8) 0.0665 (12) 0.0272 (8) 0.0113 (8) 0.0148 (7) −0.0040 (8)
C17 0.0418 (9) 0.0470 (10) 0.0285 (8) 0.0186 (8) 0.0216 (7) 0.0054 (7)
C18 0.0407 (9) 0.0333 (8) 0.0283 (8) 0.0068 (7) 0.0241 (7) 0.0021 (7)

Geometric parameters (Å, º)

O1—C8 1.3622 (16) C9—C10 1.4358 (19)
O1—C7 1.3954 (16) C11—C12 1.521 (4)
O2—C5 1.3679 (17) C11—H11A 0.9900
O2—H2A 0.90 (2) C11—H11B 0.9900
O3—C10 1.2419 (18) C12—H12A 0.9800
O4—C10 1.3387 (18) C12—H12B 0.9800
O4—C11 1.448 (2) C12—H12C 0.9800
O4—C11A 1.448 (4) C11A—C12A 1.519 (6)
N1—C8 1.3366 (19) C11A—H11C 0.9900
N1—H1A 0.93 (2) C11A—H11D 0.9900
N1—H1B 0.88 (2) C12A—H12D 0.9800
C1—C2 1.5164 (18) C12A—H12E 0.9800
C1—C9 1.5165 (19) C12A—H12F 0.9800
C1—C13 1.5284 (19) C13—C14 1.388 (2)
C1—H1 1.0000 C13—C18 1.390 (2)
C2—C7 1.382 (2) C14—C15 1.387 (2)
C2—C3 1.3976 (19) C14—H14 0.9500
C3—C4 1.386 (2) C15—C16 1.384 (2)
C3—H3 0.9500 C15—H15 0.9500
C4—C5 1.395 (2) C16—C17 1.376 (3)
C4—H4 0.9500 C16—H16 0.9500
C5—C6 1.3846 (19) C17—C18 1.388 (2)
C6—C7 1.3886 (19) C17—H17 0.9500
C6—H6 0.9500 C18—H18 0.9500
C8—C9 1.369 (2)
C8—O1—C7 118.99 (11) O4—C11—H11A 110.8
C5—O2—H2A 110.5 (14) C12—C11—H11A 110.8
C10—O4—C11 116.23 (19) O4—C11—H11B 110.8
C10—O4—C11A 127.5 (10) C12—C11—H11B 110.8
C8—N1—H1A 120.8 (12) H11A—C11—H11B 108.8
C8—N1—H1B 115.2 (12) C11—C12—H12A 109.5
H1A—N1—H1B 124.0 (17) C11—C12—H12B 109.5
C2—C1—C9 110.43 (12) H12A—C12—H12B 109.5
C2—C1—C13 109.92 (11) C11—C12—H12C 109.5
C9—C1—C13 113.43 (11) H12A—C12—H12C 109.5
C2—C1—H1 107.6 H12B—C12—H12C 109.5
C9—C1—H1 107.6 O4—C11A—C12A 106.5 (7)
C13—C1—H1 107.6 O4—C11A—H11C 110.4
C7—C2—C3 116.48 (12) C12A—C11A—H11C 110.4
C7—C2—C1 121.82 (12) O4—C11A—H11D 110.4
C3—C2—C1 121.69 (13) C12A—C11A—H11D 110.4
C4—C3—C2 122.18 (14) H11C—C11A—H11D 108.6
C4—C3—H3 118.9 C11A—C12A—H12D 109.5
C2—C3—H3 118.9 C11A—C12A—H12E 109.5
C3—C4—C5 119.26 (13) H12D—C12A—H12E 109.5
C3—C4—H4 120.4 C11A—C12A—H12F 109.5
C5—C4—H4 120.4 H12D—C12A—H12F 109.5
O2—C5—C6 117.71 (13) H12E—C12A—H12F 109.5
O2—C5—C4 122.20 (12) C14—C13—C18 118.64 (14)
C6—C5—C4 120.09 (13) C14—C13—C1 121.35 (13)
C5—C6—C7 118.79 (13) C18—C13—C1 119.98 (14)
C5—C6—H6 120.6 C15—C14—C13 120.48 (15)
C7—C6—H6 120.6 C15—C14—H14 119.8
C2—C7—C6 123.19 (12) C13—C14—H14 119.8
C2—C7—O1 122.14 (12) C16—C15—C14 120.31 (16)
C6—C7—O1 114.67 (12) C16—C15—H15 119.8
N1—C8—O1 110.23 (13) C14—C15—H15 119.8
N1—C8—C9 126.67 (13) C17—C16—C15 119.66 (15)
O1—C8—C9 123.09 (12) C17—C16—H16 120.2
C8—C9—C10 118.78 (13) C15—C16—H16 120.2
C8—C9—C1 122.26 (12) C16—C17—C18 120.10 (16)
C10—C9—C1 118.96 (13) C16—C17—H17 119.9
O3—C10—O4 121.56 (13) C18—C17—H17 119.9
O3—C10—C9 126.52 (14) C17—C18—C13 120.79 (16)
O4—C10—C9 111.92 (12) C17—C18—H18 119.6
O4—C11—C12 105.0 (2) C13—C18—H18 119.6
C9—C1—C2—C7 9.72 (18) C13—C1—C9—C8 115.70 (15)
C13—C1—C2—C7 −116.18 (14) C2—C1—C9—C10 171.99 (12)
C9—C1—C2—C3 −170.99 (12) C13—C1—C9—C10 −64.11 (17)
C13—C1—C2—C3 63.11 (17) C11—O4—C10—O3 −9.3 (3)
C7—C2—C3—C4 0.7 (2) C11A—O4—C10—O3 −11.6 (12)
C1—C2—C3—C4 −178.58 (13) C11—O4—C10—C9 169.8 (3)
C2—C3—C4—C5 0.0 (2) C11A—O4—C10—C9 167.5 (12)
C3—C4—C5—O2 179.81 (13) C8—C9—C10—O3 0.7 (2)
C3—C4—C5—C6 −0.5 (2) C1—C9—C10—O3 −179.51 (14)
O2—C5—C6—C7 179.87 (12) C8—C9—C10—O4 −178.39 (12)
C4—C5—C6—C7 0.1 (2) C1—C9—C10—O4 1.43 (18)
C3—C2—C7—C6 −1.1 (2) C10—O4—C11—C12 −170.7 (3)
C1—C2—C7—C6 178.23 (13) C10—O4—C11A—C12A −123.6 (13)
C3—C2—C7—O1 178.25 (12) C2—C1—C13—C14 82.33 (16)
C1—C2—C7—O1 −2.4 (2) C9—C1—C13—C14 −41.85 (18)
C5—C6—C7—C2 0.7 (2) C2—C1—C13—C18 −95.55 (15)
C5—C6—C7—O1 −178.71 (12) C9—C1—C13—C18 140.28 (13)
C8—O1—C7—C2 −7.73 (19) C18—C13—C14—C15 −0.8 (2)
C8—O1—C7—C6 171.67 (11) C1—C13—C14—C15 −178.73 (13)
C7—O1—C8—N1 −170.97 (11) C13—C14—C15—C16 0.4 (2)
C7—O1—C8—C9 9.47 (19) C14—C15—C16—C17 0.6 (2)
N1—C8—C9—C10 −0.6 (2) C15—C16—C17—C18 −1.2 (2)
O1—C8—C9—C10 178.86 (12) C16—C17—C18—C13 0.7 (2)
N1—C8—C9—C1 179.56 (13) C14—C13—C18—C17 0.3 (2)
O1—C8—C9—C1 −1.0 (2) C1—C13—C18—C17 178.21 (13)
C2—C1—C9—C8 −8.20 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C11—H11A···O2i 0.99 2.58 3.312 (3) 131
C6—H6···O1ii 0.95 2.56 3.4736 (17) 163
N1—H1B···O3 0.88 (2) 1.998 (19) 2.6840 (18) 133.7 (16)
N1—H1A···O2ii 0.93 (2) 2.15 (2) 3.0710 (18) 169.6 (17)
O2—H2A···O3iii 0.90 (2) 1.83 (2) 2.7331 (15) 179 (2)

Symmetry codes: (i) x, −y+1, z+1/2; (ii) −x+1, −y, −z+1; (iii) x, −y+1, z−1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: QM2111).

References

  1. Armesto, D., Horspool, W. M., Martin, N., Ramos, A. & Seoane, C. (1989). J. Org. Chem. 54, 3069–3072.
  2. Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2014). APEX2, SAINT, SADABS, SHELXT and SHELXTL, Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cingolani, G., Gualtieri, F. & Pigini, M. (1969). J. Med. Chem. 12, 531–532. [DOI] [PubMed]
  5. Emmadi, N. R., Atmakur, K., Chityal, G. K., Pombala, S. & Nanubolu, J. B. (2012). Bioorg. Med. Chem. Lett. 22, 7261–7264. [DOI] [PubMed]
  6. Kale, S. R., Kahandal, S. S., Burange, A. S., Gawande, M. B. & Jayaram, R. V. (2013). Catal. Sci. Technol. 3, 2050–2056.
  7. Kidwai, M., Poddar, R., Bhardwaj, S., Singh, S. & Luthra, M. P. (2010). Eur. J. Med. Chem. 45, 5031–5038. [DOI] [PubMed]
  8. Kiyani, H. & Ghorbani, F. (2014). J. Saudi Chem. Soc. 18, 689–701.
  9. Mungra, D. C., Patel, M. P., Rajani, D. P. & Patel, R. G. (2011). Eur. J. Med. Chem. 46, 4192–4200. [DOI] [PubMed]
  10. Patil, A. D., Freyer, A. J., Eggleston, D. S., Haltiwanger, R. C., Bean, M. F., Taylor, P. B., Caranfa, M. J., Breen, A. L., Bartus, H. R., Johnson, R. K., et al. (1993). J. Med. Chem. 36, 4131–4138. [DOI] [PubMed]
  11. Perrella, F. W., Chen, S. F., Behrens, D. L., Kaltenbach, R. F. & Seitz, S. P. (1994). J. Med. Chem. 37, 2232–2237. [DOI] [PubMed]
  12. Sabry, N. M., Mohamed, H. M., Khattab, E. S. A. E. H., Motlaq, S. & El-Agrody, A. M. (2011). Eur. J. Med. Chem. 46, 765–772. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  16. Wang, X. S., Shi, D. Q., Tu, S. T. & Yao, C. S. (2003). Synth. Commun. 33, 119–126.
  17. Wu, J. Y. C., Fong, W. F., Zhang, J. X., Leung, C. H., Kwong, H. L., Yang, M. S., Li, D. & Cheung, H. (2003). Eur. J. Pharmacol. 473, 9–17. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015012013/qm2111sup1.cif

e-71-0o519-sup1.cif (364.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015012013/qm2111Isup2.hkl

e-71-0o519-Isup2.hkl (231.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015012013/qm2111Isup3.cml

. DOI: 10.1107/S2056989015012013/qm2111fig1.tif

The title mol­ecule with labeling scheme and 50% probability ellipsoids. Only one orientation of the disordered ethyl group is shown.

b . DOI: 10.1107/S2056989015012013/qm2111fig2.tif

Packing viewed down the b axis. N—H⋯O and O—H⋯O hydrogen bonds are shown, respectively as blue and red dotted lines.

CCDC reference: 1408238

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES