Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 13;71(Pt 7):783–785. doi: 10.1107/S2056989015010737

Crystal structure of 1,10-phenanthrolinium 3-hy­droxy-2,4,6-tri­nitro­phenolate

Selvarasu Muthulakshmi a, Doraisamyraja Kalaivani a,*
PMCID: PMC4518991  PMID: 26279867

The 1,10-phenanthrolinium cation and 3-hy­droxy-2,4,6-tri­nitro­phenolate anion are held together through an N—H⋯O hydrogen bond. In the crystal, cation–anion pairs are connected by C—H⋯O hydrogen bonds, forming a chain structure along [101]. Spectroscopic data also support the formation of a mol­ecular salt. Sensitivity tests and thermal testing indicate that it is an insensitive high energy density material (IHEDM).

Keywords: crystal structure, spectroscopic characterization, sensitivity test, thermal testing, high energy density material, IHDEM

Abstract

In the title molecular salt, C12H9N2 +·C6H2N3O8 , the cation and anion are connected by an N—H⋯O hydrogen bond. In the anion, an intra­molecular O—H⋯O hydrogen bond with an S(6) ring motif is observed. The planes of two of the nitro groups are approximately parallel to the plane of the benzene ring, making dihedral angles of 3.9 (2) and 15.3 (2)°, while the third nitro group is almost perpendicular to the benzene ring, with a dihedral angle of 78.6 (3)°. In the crystal, cation–anion pairs related by an n-glide plane are connected by C—H⋯O hydrogen bonds, forming a chain structure along [101]. Sensitivity tests and thermal testing indicate that the title salt is an insensitive high-energy-density material (IHEDM).

Chemical context  

2,4,6-Tri­nitro­benzene-1,3-diol (styphnic acid) is an energetic mol­ecule, which forms complexes with metal ions (Liu et al., 2009; Zhang et al., 2011; Zhu et al., 2009) and salts with organic amines (Kalaivani & Malarvizhi, 2010; Kalaivani et al., 2011; Muthulakshmi & Kalaivani, 2015; Srinivas et al., 2014). 1,10-Phenanthroline is a well-known heterocyclic chelating agent (Goel & Singh, 2013; MacDonnell et al., 1999). It also shows good anticancer activity (Sastri et al., 2003). It is observed in the present study that although styphnic acid contains two acidic phenolic hydrogen atoms and 1,10-phenanthroline contains two basic tertiary nitro­gen atoms, they form only the monoprotonated title mol­ecular salt with 1:1 stoichiometry upon mixing of their ethano­lic solutions. graphic file with name e-71-00783-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title mol­ecular salt is depicted in Fig. 1. The acidic hydrogen atom of the phenolic group in styphnic acid protonates the nitro­gen atom of 1,10-phenanthroline, making it a cation. An S(6) ring motif is formed in the anion by an intra­molecular O—H⋯O hydrogen bond (Table 1). Of the three nitro groups present in the anion, the plane of the one which is involved in the intra­molecular hydrogen bond deviates only slightly from the plane of benzene ring [dihedral angle 3.94 (8)°] to which it is attached. The nitro group flanked between the C—O group and the O—H group deviates to a greater extent [dihedral angle 78.62 (1)°] than the remaining nitro group which is oriented between the C—H and C—O groups [dihedral angle 15.27 (7)°].

Figure 1.

Figure 1

A view of the mol­ecular structure of the title mol­ecular salt, with the atom labelling. Displacement ellipsoids are drawn at the 40% probability level. The N—H⋯O hydrogen bond is shown as a dashed line.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C10H10O7i 0.93 2.52 3.398(2) 158
N2H2AO7 0.94(2) 1.87(2) 2.702(2) 146.7(17)
O8H8AO5 0.82 1.88 2.579(2) 143

Symmetry code: (i) Inline graphic.

Supra­molecular features  

In the crystal, the C—O (acceptor) group of the phenolate anion and the N—H (donor) of the cation form an N—H⋯O hydrogen bond (Table 1 and Fig. 1). A weak C—H⋯O hydrogen bond is also observed in the crystal, forming a chain structure along [101] (Table 1 and Figs. 2 and 3).

Figure 2.

Figure 2

The crystal packing of the title mol­ecular salt viewed along the a axis. Hydrogen bonds are shown as dotted lines.

Figure 3.

Figure 3

The crystal packing of the title mol­ecular salt viewed along the b axis. Hydrogen bonds are shown as dotted lines.

Database survey  

A search of the Cambridge Structural Database (Version 5.35, May 2014; Groom & Allen, 2014) for 3-hy­droxy-2,4,6-tri­nitro­phenolates gave 14 hits. Six concern metal-complex cations and eight organic cations. Amongst the latter are two compounds, referred to above in §1 for their high thermal stability, viz. 2-meth­oxy­anilinium 3-hy­droxy-2,4,6-tri­nitro­phenolate (Kalaivani et al., 2011), morpholinium 3-hy­droxy-2,4,6-tri­nitro­phenolate (Kalaivani & Malarvizhi, 2010) while the crystal structure and thermal behaviour of pyridinium styphnate is reported by Muthulakshmi & Kalaivani (2015).

Synthesis and crystallization  

Equimolar solutions of each of styphnic acid (2.45 g, 0.01 mol, 40 mL) and 1,10-phenanthroline monohydrate (1.98 g, 0.01 mol, 30 mL) in ethanol were mixed and shaken well for 3 h. On standing at 298 K for two h, the mixture yielded a yellow solid which was ground, washed well with dry ether and recrystallized from a ethanol–water mixture. Shining yellow single crystals were obtained from the mother liquor by slow evaporation (m.p. 395 K, yield 80%). Although the monoprotonated salt is obtained in good yield, several attempts to prepare the diprotonated salt from styphnic acid and 1,10-phenanthroline by mixing them in different concentrations in solvents of different polarity were not successful. The title mol­ecular salt is produced due to a proton-transfer reaction in which one of the two phenolic group hydrogen atoms is transferred to one of the tertiary nitro­gen atoms of 1,10-phenanthroline. This type of inter­action is also evidenced by the spectroscopic data [IR: 1532 (N—O asym. str.), 1297 (N—O sym. str.), 2200–3500, 461 (amine salt) cm−1 (Silverstein & Webster, 2004; Ramachandran et al. 2007); 1H NMR: δ 8.52 p.p.m. (s, C—H proton of phenolate moiety), 9.28–8.19 p.p.m. (m, ring proton of cation), 7.0–5.5 p.p.m. (broad, time-averaged signal of OH and NH protons); 13C NMR: δ 156.0, 148.1, 142.2, 138.0, 135.3, 129.9, 127.9, 126.1 and 126.0 p.p.m.].

Sensitivity testing and thermal studies  

The title mol­ecular salt has three nitro groups attached to the benzene ring and hence it was subjected to sensitivity testing (impact sensitivity and friction sensitivity) and thermal studies (TGA/DTA). The mol­ecular salt is insensitive towards impact and friction (Meyer et al., 2007). The activation energy for the decomposition of the title mol­ecular salt was determined from TGA/DTA curves obtained at four different heating rates (5, 10, 15 and 20 K min−1) applying Ozawa and Kissinger methods (Kissinger, 1957; Ozawa, 1965). The activation energy determined was 459 kJ mol−1 from the Ozawa plot and 478 kcal mol−1 from the Kissinger plot. The sensitivity tests and thermal studies indicate that this mol­ecular salt is an insensitive high-energy-density material (IHEDM).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. C- and O-bound H atoms were positioned geometrically with C—H = 0.93 Å and O—H = 0.82 Å, and were refined as riding with U iso(H) = 1.2U eq(C) and 1.5U eq(O). The N-bound H atom was located in a difference Fourier map and refined freely [N—H = 0.94 (2) Å].

Table 2. Experimental details.

Crystal data
Chemical formula C12H9N2 +C6H2N3O8
M r 425.32
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c () 10.0984(7), 19.0072(14), 10.5124(7)
() 118.419(2)
V (3) 1774.6(2)
Z 4
Radiation type Mo K
(mm1) 0.13
Crystal size (mm) 0.35 0.30 0.25
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004)
T min, T max 0.952, 0.970
No. of measured, independent and observed [I > 2(I)] reflections 35336, 4007, 2551
R int 0.040
(sin /)max (1) 0.648
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.042, 0.125, 1.01
No. of reflections 4007
No. of parameters 284
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.24, 0.22

Computer programs: APEX2 and SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015010737/is5402sup1.cif

e-71-00783-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010737/is5402Isup2.hkl

e-71-00783-Isup2.hkl (319.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015010737/is5402Isup3.cml

CCDC reference: 1050845

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are thankful to the UGC for financial support, to the SAIF, IIT Madras, for the spectroscopic and single-crystal XRD data collection, and to B. S. Abdur, Rahman University, Chennai-46, for the TGA/DTA studies.

supplementary crystallographic information

Crystal data

C12H9N2+·C6H2N3O8 F(000) = 872
Mr = 425.32 Dx = 1.592 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 10.0984 (7) Å Cell parameters from 8729 reflections
b = 19.0072 (14) Å θ = 2.3–26.0°
c = 10.5124 (7) Å µ = 0.13 mm1
β = 118.419 (2)° T = 296 K
V = 1774.6 (2) Å3 Plate, yellow
Z = 4 0.35 × 0.30 × 0.25 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 4007 independent reflections
Radiation source: fine-focus sealed tube 2551 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.040
ω and φ scan θmax = 27.4°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −13→13
Tmin = 0.952, Tmax = 0.970 k = −24→24
35336 measured reflections l = −13→13

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0575P)2 + 0.5078P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
4007 reflections Δρmax = 0.24 e Å3
284 parameters Δρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7553 (2) 0.19947 (11) 0.2956 (2) 0.0454 (5)
H1 0.7460 0.2332 0.3549 0.054*
C2 0.8951 (2) 0.17090 (12) 0.3325 (2) 0.0528 (5)
H2 0.9799 0.1855 0.4160 0.063*
C3 0.9067 (2) 0.12136 (12) 0.2455 (2) 0.0494 (5)
H3 1.0001 0.1016 0.2703 0.059*
C4 0.78005 (19) 0.09958 (10) 0.1189 (2) 0.0394 (4)
C5 0.7858 (2) 0.04786 (11) 0.0239 (2) 0.0518 (5)
H5 0.8777 0.0280 0.0436 0.062*
C6 0.6600 (3) 0.02750 (11) −0.0938 (2) 0.0518 (5)
H6 0.6664 −0.0065 −0.1544 0.062*
C7 0.5170 (2) 0.05664 (10) −0.1282 (2) 0.0412 (4)
C8 0.3825 (2) 0.03423 (11) −0.2468 (2) 0.0512 (5)
H8 0.3837 −0.0012 −0.3071 0.061*
C9 0.2506 (2) 0.06479 (12) −0.2725 (2) 0.0548 (6)
H9 0.1604 0.0501 −0.3499 0.066*
C10 0.2520 (2) 0.11849 (11) −0.1817 (2) 0.0518 (5)
H10 0.1608 0.1394 −0.2021 0.062*
C11 0.50613 (19) 0.10956 (9) −0.04079 (19) 0.0350 (4)
C12 0.64071 (18) 0.13032 (9) 0.08508 (18) 0.0331 (4)
N1 0.37497 (16) 0.14143 (8) −0.06844 (17) 0.0422 (4)
N2 0.63483 (17) 0.17898 (8) 0.17614 (16) 0.0370 (4)
H2A 0.542 (2) 0.1997 (11) 0.155 (2) 0.049 (6)*
C13 0.20014 (19) 0.22681 (10) 0.12247 (19) 0.0372 (4)
C14 0.30718 (19) 0.28269 (10) 0.14818 (18) 0.0368 (4)
C15 0.23831 (19) 0.35056 (10) 0.11961 (19) 0.0391 (4)
C16 0.0886 (2) 0.36441 (10) 0.06754 (19) 0.0408 (4)
C17 −0.00782 (19) 0.30634 (11) 0.0441 (2) 0.0427 (5)
C18 0.0499 (2) 0.23906 (11) 0.07130 (19) 0.0420 (4)
H18 −0.0146 0.2012 0.0545 0.050*
N3 0.24894 (18) 0.15442 (9) 0.15365 (17) 0.0425 (4)
N4 0.33779 (19) 0.41089 (9) 0.1449 (2) 0.0517 (4)
N5 −0.16493 (18) 0.31559 (11) −0.00773 (18) 0.0539 (5)
O1 0.15283 (17) 0.10808 (8) 0.10657 (19) 0.0679 (5)
O2 0.38275 (15) 0.14144 (7) 0.22911 (15) 0.0511 (4)
O3 0.4138 (2) 0.43000 (11) 0.2680 (2) 0.0912 (6)
O4 0.3418 (2) 0.43695 (11) 0.0422 (2) 0.0951 (7)
O5 −0.21917 (15) 0.37586 (9) −0.04103 (16) 0.0630 (4)
O6 −0.24439 (17) 0.26421 (11) −0.0213 (2) 0.0863 (6)
O7 0.44347 (13) 0.27585 (7) 0.18477 (15) 0.0483 (4)
O8 0.04242 (15) 0.43111 (7) 0.04180 (16) 0.0577 (4)
H8A −0.0489 0.4327 0.0110 0.087*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0381 (10) 0.0461 (12) 0.0484 (11) −0.0042 (8) 0.0178 (9) −0.0046 (9)
C2 0.0317 (10) 0.0658 (14) 0.0502 (12) −0.0055 (9) 0.0109 (9) −0.0016 (11)
C3 0.0292 (9) 0.0600 (13) 0.0577 (12) 0.0085 (9) 0.0196 (9) 0.0102 (10)
C4 0.0335 (9) 0.0398 (10) 0.0486 (11) 0.0076 (8) 0.0224 (8) 0.0089 (9)
C5 0.0480 (12) 0.0521 (13) 0.0637 (13) 0.0191 (10) 0.0333 (11) 0.0081 (10)
C6 0.0645 (14) 0.0421 (12) 0.0583 (13) 0.0117 (10) 0.0369 (12) −0.0003 (10)
C7 0.0482 (11) 0.0351 (10) 0.0435 (10) 0.0012 (8) 0.0245 (9) 0.0034 (8)
C8 0.0637 (14) 0.0454 (12) 0.0458 (11) −0.0074 (10) 0.0270 (10) −0.0058 (9)
C9 0.0484 (12) 0.0593 (14) 0.0453 (12) −0.0129 (10) 0.0129 (10) −0.0050 (10)
C10 0.0338 (10) 0.0539 (13) 0.0577 (13) −0.0006 (9) 0.0136 (10) 0.0035 (10)
C11 0.0334 (9) 0.0328 (9) 0.0399 (10) 0.0014 (7) 0.0184 (8) 0.0053 (8)
C12 0.0310 (9) 0.0300 (9) 0.0404 (9) 0.0024 (7) 0.0186 (8) 0.0047 (8)
N1 0.0295 (8) 0.0429 (9) 0.0490 (9) 0.0024 (7) 0.0146 (7) 0.0011 (7)
N2 0.0287 (8) 0.0375 (9) 0.0438 (9) 0.0027 (7) 0.0164 (7) 0.0008 (7)
C13 0.0345 (9) 0.0380 (10) 0.0394 (10) 0.0043 (8) 0.0177 (8) 0.0016 (8)
C14 0.0305 (9) 0.0415 (10) 0.0358 (9) 0.0038 (8) 0.0137 (8) −0.0018 (8)
C15 0.0324 (9) 0.0386 (10) 0.0428 (10) 0.0034 (8) 0.0150 (8) −0.0016 (8)
C16 0.0371 (10) 0.0436 (11) 0.0384 (10) 0.0112 (8) 0.0153 (8) 0.0025 (8)
C17 0.0295 (9) 0.0572 (13) 0.0405 (10) 0.0098 (9) 0.0158 (8) 0.0063 (9)
C18 0.0344 (9) 0.0514 (12) 0.0410 (10) −0.0001 (8) 0.0185 (8) 0.0033 (9)
N3 0.0415 (9) 0.0420 (9) 0.0492 (9) 0.0023 (7) 0.0257 (8) 0.0008 (7)
N4 0.0406 (10) 0.0412 (10) 0.0687 (12) 0.0036 (8) 0.0221 (9) −0.0038 (9)
N5 0.0327 (9) 0.0761 (14) 0.0513 (10) 0.0101 (9) 0.0187 (8) 0.0090 (9)
O1 0.0523 (9) 0.0437 (9) 0.1065 (13) −0.0066 (7) 0.0367 (9) −0.0094 (8)
O2 0.0416 (8) 0.0498 (8) 0.0574 (8) 0.0109 (6) 0.0200 (7) 0.0091 (7)
O3 0.0767 (12) 0.0996 (15) 0.0885 (13) −0.0341 (11) 0.0323 (11) −0.0422 (11)
O4 0.0991 (15) 0.0829 (14) 0.0965 (14) −0.0256 (11) 0.0410 (12) 0.0204 (11)
O5 0.0387 (8) 0.0775 (12) 0.0660 (10) 0.0230 (8) 0.0194 (7) 0.0057 (8)
O6 0.0357 (8) 0.0942 (14) 0.1205 (16) 0.0024 (9) 0.0304 (9) 0.0257 (12)
O7 0.0296 (7) 0.0430 (8) 0.0689 (9) 0.0042 (6) 0.0206 (6) −0.0054 (7)
O8 0.0441 (8) 0.0482 (9) 0.0739 (10) 0.0189 (7) 0.0225 (7) 0.0038 (7)

Geometric parameters (Å, º)

C1—N2 1.325 (2) C11—C12 1.429 (2)
C1—C2 1.384 (3) C12—N2 1.353 (2)
C1—H1 0.9300 N2—H2A 0.94 (2)
C2—C3 1.356 (3) C13—C18 1.367 (2)
C2—H2 0.9300 C13—N3 1.446 (2)
C3—C4 1.399 (3) C13—C14 1.446 (3)
C3—H3 0.9300 C14—O7 1.247 (2)
C4—C12 1.404 (2) C14—C15 1.428 (3)
C4—C5 1.422 (3) C15—C16 1.366 (2)
C5—C6 1.341 (3) C15—N4 1.463 (3)
C5—H5 0.9300 C16—O8 1.333 (2)
C6—C7 1.424 (3) C16—C17 1.414 (3)
C6—H6 0.9300 C17—C18 1.378 (3)
C7—C11 1.402 (3) C17—N5 1.422 (2)
C7—C8 1.403 (3) C18—H18 0.9300
C8—C9 1.357 (3) N3—O2 1.2230 (19)
C8—H8 0.9300 N3—O1 1.227 (2)
C9—C10 1.393 (3) N4—O3 1.204 (2)
C9—H9 0.9300 N4—O4 1.207 (3)
C10—N1 1.320 (2) N5—O6 1.228 (2)
C10—H10 0.9300 N5—O5 1.246 (2)
C11—N1 1.356 (2) O8—H8A 0.8200
N2—C1—C2 120.31 (19) N2—C12—C11 120.09 (15)
N2—C1—H1 119.8 C4—C12—C11 121.09 (16)
C2—C1—H1 119.8 C10—N1—C11 116.72 (17)
C3—C2—C1 119.13 (18) C1—N2—C12 122.82 (16)
C3—C2—H2 120.4 C1—N2—H2A 117.7 (12)
C1—C2—H2 120.4 C12—N2—H2A 119.4 (12)
C2—C3—C4 120.94 (18) C18—C13—N3 116.50 (17)
C2—C3—H3 119.5 C18—C13—C14 122.64 (17)
C4—C3—H3 119.5 N3—C13—C14 120.85 (15)
C3—C4—C12 118.00 (18) O7—C14—C15 120.97 (17)
C3—C4—C5 123.26 (17) O7—C14—C13 126.74 (17)
C12—C4—C5 118.74 (17) C15—C14—C13 112.22 (15)
C6—C5—C4 120.69 (18) C16—C15—C14 126.41 (17)
C6—C5—H5 119.7 C16—C15—N4 117.07 (16)
C4—C5—H5 119.7 C14—C15—N4 116.50 (15)
C5—C6—C7 121.53 (19) O8—C16—C15 118.55 (18)
C5—C6—H6 119.2 O8—C16—C17 124.17 (16)
C7—C6—H6 119.2 C15—C16—C17 117.28 (17)
C11—C7—C8 117.12 (18) C18—C17—C16 120.00 (16)
C11—C7—C6 119.94 (18) C18—C17—N5 118.63 (19)
C8—C7—C6 122.93 (19) C16—C17—N5 121.37 (18)
C9—C8—C7 119.38 (19) C13—C18—C17 121.38 (18)
C9—C8—H8 120.3 C13—C18—H18 119.3
C7—C8—H8 120.3 C17—C18—H18 119.3
C8—C9—C10 119.21 (19) O2—N3—O1 122.31 (16)
C8—C9—H9 120.4 O2—N3—C13 119.42 (16)
C10—C9—H9 120.4 O1—N3—C13 118.22 (16)
N1—C10—C9 123.93 (19) O3—N4—O4 124.2 (2)
N1—C10—H10 118.0 O3—N4—C15 117.6 (2)
C9—C10—H10 118.0 O4—N4—C15 118.16 (19)
N1—C11—C7 123.58 (17) O6—N5—O5 121.52 (17)
N1—C11—C12 118.47 (16) O6—N5—C17 119.63 (19)
C7—C11—C12 117.95 (16) O5—N5—C17 118.84 (19)
N2—C12—C4 118.80 (16) C16—O8—H8A 109.5
N2—C1—C2—C3 −0.5 (3) N3—C13—C14—O7 6.9 (3)
C1—C2—C3—C4 0.7 (3) C18—C13—C14—C15 2.4 (3)
C2—C3—C4—C12 −0.3 (3) N3—C13—C14—C15 −176.13 (15)
C2—C3—C4—C5 −180.0 (2) O7—C14—C15—C16 174.20 (18)
C3—C4—C5—C6 178.0 (2) C13—C14—C15—C16 −2.9 (3)
C12—C4—C5—C6 −1.7 (3) O7—C14—C15—N4 −3.9 (3)
C4—C5—C6—C7 0.1 (3) C13—C14—C15—N4 178.93 (16)
C5—C6—C7—C11 2.2 (3) C14—C15—C16—O8 −177.46 (17)
C5—C6—C7—C8 −177.0 (2) N4—C15—C16—O8 0.7 (3)
C11—C7—C8—C9 1.0 (3) C14—C15—C16—C17 2.4 (3)
C6—C7—C8—C9 −179.84 (19) N4—C15—C16—C17 −179.48 (17)
C7—C8—C9—C10 0.9 (3) O8—C16—C17—C18 178.77 (17)
C8—C9—C10—N1 −1.2 (3) C15—C16—C17—C18 −1.1 (3)
C8—C7—C11—N1 −2.8 (3) O8—C16—C17—N5 −1.2 (3)
C6—C7—C11—N1 178.01 (17) C15—C16—C17—N5 178.99 (17)
C8—C7—C11—C12 176.54 (17) N3—C13—C18—C17 177.12 (16)
C6—C7—C11—C12 −2.7 (3) C14—C13—C18—C17 −1.4 (3)
C3—C4—C12—N2 −0.4 (3) C16—C17—C18—C13 0.7 (3)
C5—C4—C12—N2 179.32 (17) N5—C17—C18—C13 −179.38 (17)
C3—C4—C12—C11 −178.65 (17) C18—C13—N3—O2 −163.44 (16)
C5—C4—C12—C11 1.1 (3) C14—C13—N3—O2 15.1 (3)
N1—C11—C12—N2 2.2 (2) C18—C13—N3—O1 14.3 (2)
C7—C11—C12—N2 −177.13 (16) C14—C13—N3—O1 −167.14 (17)
N1—C11—C12—C4 −179.56 (16) C16—C15—N4—O3 103.1 (2)
C7—C11—C12—C4 1.1 (2) C14—C15—N4—O3 −78.6 (2)
C9—C10—N1—C11 −0.5 (3) C16—C15—N4—O4 −79.0 (2)
C7—C11—N1—C10 2.5 (3) C14—C15—N4—O4 99.3 (2)
C12—C11—N1—C10 −176.79 (16) C18—C17—N5—O6 3.0 (3)
C2—C1—N2—C12 −0.2 (3) C16—C17—N5—O6 −177.05 (19)
C4—C12—N2—C1 0.6 (3) C18—C17—N5—O5 −175.60 (17)
C11—C12—N2—C1 178.89 (17) C16—C17—N5—O5 4.3 (3)
C18—C13—C14—O7 −174.58 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C10—H10···O7i 0.93 2.52 3.398 (2) 158
N2—H2A···O7 0.94 (2) 1.87 (2) 2.702 (2) 146.7 (17)
O8—H8A···O5 0.82 1.88 2.579 (2) 143

Symmetry code: (i) x−1/2, −y+1/2, z−1/2.

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  2. Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Goel, N. & Singh, U. P. (2013). J. Phys. Chem. A, 117, 10428–10437. [DOI] [PubMed]
  5. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  6. Kalaivani, D. & Malarvizhi, R. (2010). Acta Cryst. E66, o2698. [DOI] [PMC free article] [PubMed]
  7. Kalaivani, D., Malarvizhi, R., Thanigaimani, K. & Muthiah, P. T. (2011). Acta Cryst. E67, o686. [DOI] [PMC free article] [PubMed]
  8. Kissinger, H. E. (1957). Anal. Chem. 29, 1702–1706.
  9. Liu, J. W., Zhang, J. G., Zhang, T. L., Zheng, H., Yang, L. & Yu, K. B. (2009). Struct. Chem. 20, 387–392.
  10. MacDonnell, F. M., Kim, M. J. & Bodige, S. (1999). Coord. Chem. Rev. 185–186, 535–549.
  11. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  12. Meyer, R., Köhler, J. & Homburg, A. (2007). Explosives, 6th, completely revised ed., Weinheim: Wiley-VCH Verlag.
  13. Muthulakshmi, S. & Kalaivani, D. (2015). Acta Cryst. E71, 117–120. [DOI] [PMC free article] [PubMed]
  14. Ozawa, T. (1965). Bull. Chem. Soc. Jpn, 38, 1881–1886.
  15. Ramachandran, E., Baskaran, K. & Natarajan, S. (2007). Cryst. Res. Technol. 42, 73–77.
  16. Sastri, C. V., Eswaramoorthy, D., Giribabu, L. & Maiya, B. G. (2003). J. Inorg. Biochem. 94, 138–145. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  18. Silverstein, R. M. & Webster, F. X. (2004). Spectrometric Identification of Organic Compounds, pp. 103–104. New York: John Wiley and Sons.
  19. Srinivas, D., Ghule, V. D. & Muralidharan, K. (2014). New J. Chem. 38, 3699–3707.
  20. Zhang, J. G., Wang, K., Li, Z. M., Zheng, H., Zhang, T. L. & Yang, L. (2011). Main Group Chem. 10, 205–213.
  21. Zhu, W. & Xiao, H. (2009). J. Phys. Chem. B, 113, 10315–10321. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015010737/is5402sup1.cif

e-71-00783-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010737/is5402Isup2.hkl

e-71-00783-Isup2.hkl (319.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015010737/is5402Isup3.cml

CCDC reference: 1050845

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES