Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 20;71(Pt 7):813–815. doi: 10.1107/S205698901501155X

Crystal structure of alluaudite-type NaMg3(HPO4)2(PO4)

Ahmed Ould Saleck a,b,*, Abderrazzak Assani a, Mohamed Saadi a, Cyrille Mercier b, Claudine Follet b, Lahcen El Ammari a
PMCID: PMC4518993  PMID: 26279874

NaMg3(PO4)(HPO4)2 crystallizes in the alluaudite-type structure. Two types of [MgO6] octa­hedra, one [NaO10] polyhedron, one orthophosphate and one hydrogenphosphate tetra­hedron form the structural set-up.

Keywords: crystal structure, transition metal phosphates, alluaudite structure type, hydro­thermal synthesis, hydrogen bonding

Abstract

The title compound, sodium trimagnesium bis­(hydrogen phosphate) phosphate, was obtained under hydro­thermal conditions. In the crystal, two types of [MgO6] octa­hedra, one with point group symmetry 2, share edges to build chains extending parallel to [10-1]. These chains are linked together by two kinds of phosphate tetra­hedra, HPO4 and PO4, the latter with point group symmetry 2. The three-dimensional framework delimits two different types of channels extending along [001]. One channel hosts the Na+ cations (site symmetry 2) surrounded by eight O atoms, with Na—O bond lengths varying between 2.2974 (13) and 2.922 (2) Å. The OH group of the HPO4 tetra­hedron points into the other type of channel and exhibits a strong hydrogen bond to an O atom of the PO4 tetra­hedron on the opposite side.

Chemical context  

By means of hydro­thermal processes (Demazeau, 2008; Yoshimura & Byrappa, 2008), we have previously succeeded in the isolation of the mixed-valence manganese phosphates MMnII 2MnIII(PO4)3 (M = Ba, Pb, Sr) adopting the α-CrPO4 structure type (Assani et al., 2013; Alhakmi et al., 2013a ,b ). In addition, within the pseudo-ternary systems Ag2O–MO–P2O5, hydro­thermal syntheses have allowed us to obtain other α-CrPO4 isotype phosphates, viz. Ag2 M 3(HPO4)(PO4)2 (M = Co, Ni) while AgMg3(HPO4)2(PO4) is found to adopt the alluaudite structure type (Assani et al., 2011a ,b ,c ). Other hydro­thermally grown phosphates with the alluaudite structure include AgCo3(HPO4)2(PO4) (Guesmi & Driss, 2002), AgNi3(HPO4)2(PO4) (Ben Smail & Jouini, 2002), AMn3(HPO4)2(PO4) (A = Na, Ag) (Leroux et al., 1995a ,b ) and NaCo3(HPO4)2(PO4) (Lii & Shih, 1994). Phosphates belonging to either the α-CrPO4 or alluaudite structure type or derivatives thereof are still in the focus of research owing to their promising applications as battery materials (Trad et al., 2010; Essehli et al., 2015a ,b ; Huang et al., 2015).

The crystal structures of alluaudite-type phosphates exhibit channels in which the monovalent cations are localized. Indeed, this is strongly required for conductivity properties. The crystal structure of alluaudite can be formulated by the general formula (A1)(A2)(M1)(M2)2(PO4)3, (Moore & Ito, 1979). The two A sites can be occupied by either mono- or divalent medium-sized cations while the two M cationic sites correspond to an octa­hedral environment generally occupied by transition metal cations. On the basis of literature research, it has been shown that the hydro­thermal process allows, in general, stoechiometric phases to be obtained while solid-state reactions give rather a statistical distribution of cations on either the A or M sites, leading to non-stoechiometric compounds (Bouraima et al., 2015; Khmiyas et al., 2015).

In line with our focus of inter­est, we hydro­thermally synthesized the compound NaMg3(PO4)(HPO4)2 and report here its crystal structure.

Structural commentary  

The principal building units of the allaudite structure of the title compound are represented in Fig. 1. The three atoms Mg1, Na1 and P1 are located on a twofold rotation axis (Wyckoff position 4e). Selected inter­atomic distances are compiled in Table 1. The three-dimensional framework of this structure consists of kinked chains of edge-sharing MgO6 octa­hedra running parallel to [10Inline graphic]. The chains are held together by regular P1O4 phosphate groups, forming sheets perpendicular to [010], as shown in Fig. 2. The stacked sheets delimit two types of channels along [001]. One of the channels is occupied by Na+ cations surrounded by eight oxygen atoms (Table 1), whereas the second channel contains the hydrogen atoms of the HP2O4 tetra­hedra, as shown in Fig. 3. They form strong hydrogen bonds (Table 2, Figs. 1 and 3) with one of the oxygen atoms of PO4 tetra­hedra on opposite sides.

Figure 1.

Figure 1

The principal building units in the structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are indicated by dashed lines [Symmetry codes: (i) x + Inline graphic, y + Inline graphic, z; (ii) −x + Inline graphic, y + Inline graphic, −z + Inline graphic; (iii) −x + Inline graphic, −y + Inline graphic, −z + 1; (iv) −x + Inline graphic, −y + Inline graphic, −z; (v) −x + 1, −y + 1, −z; (vi) −x + 1, y, −z + Inline graphic; (vii) x, −y + 1, z + Inline graphic; (viii) x − Inline graphic, −y + Inline graphic, z − Inline graphic; (ix) −x + 2, y, −z + Inline graphic; (x) −x + 2, −y + 1, −z + 1; (xi) x + Inline graphic, −y + Inline graphic, z + Inline graphic; (xii) −x + Inline graphic, −y + Inline graphic, −z + 1; (xiii) x, −y + 1, z − Inline graphic.]

Table 1. Selected bond lengths ().

Mg1O3i 2.1224(13) Na1O3 2.8840(19)
Mg1O1ii 2.1312(12) Na1O1vii 2.922(2)
Mg1O4 2.1669(14) P1O1viii 1.5372(12)
Mg2O6 2.0234(13) P1O1 1.5372(12)
Mg2O3ii 2.0686(13) P1O2viii 1.5476(13)
Mg2O2 2.0696(14) P1O2 1.5476(13)
Mg2O5iii 2.0729(13) P2O5 1.5234(12)
Mg2O5iv 2.0955(13) P2O6 1.5263(12)
Mg2O1v 2.1153(14) P2O3 1.5349(13)
Na1O6 2.2974(13) P2O4 1.5806(13)
Na1O6vi 2.4386(13)    

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Figure 2.

Figure 2

A sheet resulting from the linkage of kinked chains via vertices of PO4 tetra­hedra.

Figure 3.

Figure 3

Polyhedral representation of the NaMg3(HPO4)2(PO4) structure showing channels along [001]. The O—H⋯O hydrogen bonds are indicated by dashed lines.

Table 2. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O4H4O2 0.93 1.57 2.4932(17) 174

Synthesis and crystallization  

Colourless parallelepiped-shaped crystals of the title compound were grown under hydro­thermal conditions, starting from a mixture of Na4P2O7·10H2O, MgO and H3PO4 (85 wt%) in the molar ratio Na4P2O7·10H2O:MgO:H3PO4 = 1:3:3. The hydro­thermal reaction was conducted in a 23 ml Teflon-lined autoclave, filled to 50% with distilled water and under autogenous pressure at 483 K for four days.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The minimum and maximum electron densities are located 0.71 and 0.17 Å from O5 and H4, respectively. The O–bound H atom was initially located in a difference map and refined with an O—H distance restraint of 0.93 Å, and with U iso(H) = 1.5U eq(O).

Table 3. Experimental details.

Crystal data
Chemical formula NaMg3(HPO4)2(PO4)
M r 382.85
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c () 11.8064(6), 12.0625(7), 6.4969(4)
() 113.805(2)
V (3) 846.54(8)
Z 4
Radiation type Mo K
(mm1) 1.06
Crystal size (mm) 0.36 0.24 0.18
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Bruker, 2009)
T min, T max 0.504, 0.748
No. of measured, independent and observed [I > 2(I)] reflections 9797, 1291, 1138
R int 0.038
(sin /)max (1) 0.714
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.025, 0.072, 1.09
No. of reflections 1291
No. of parameters 88
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.57, 0.54

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012). DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901501155X/wm5174sup1.cif

e-71-00813-sup1.cif (340KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901501155X/wm5174Isup2.hkl

e-71-00813-Isup2.hkl (71.4KB, hkl)

CCDC reference: 1406819

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Mohammed V University, Rabat, Morocco, for financial support.

supplementary crystallographic information

Crystal data

NaMg3(HPO4)2(PO4) F(000) = 760
Mr = 382.85 Dx = 3.004 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 11.8064 (6) Å Cell parameters from 1291 reflections
b = 12.0625 (7) Å θ = 2.5–30.5°
c = 6.4969 (4) Å µ = 1.06 mm1
β = 113.805 (2)° T = 296 K
V = 846.54 (8) Å3 Block, colourless
Z = 4 0.36 × 0.24 × 0.18 mm

Data collection

Bruker X8 APEX diffractometer 1291 independent reflections
Radiation source: fine-focus sealed tube 1138 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.038
φ and ω scans θmax = 30.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −16→16
Tmin = 0.504, Tmax = 0.748 k = −17→17
9797 measured reflections l = −9→8

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0362P)2 + 1.4203P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
1291 reflections Δρmax = 0.57 e Å3
88 parameters Δρmin = −0.54 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mg1 0.0000 0.27947 (7) 0.2500 0.00857 (18)
Mg2 0.29000 (6) 0.66219 (5) 0.37489 (10) 0.00643 (14)
Na1 0.5000 0.52321 (14) 0.7500 0.0308 (4)
P1 0.0000 0.68659 (5) 0.2500 0.00564 (14)
P2 0.28093 (4) 0.38887 (3) 0.38603 (7) 0.00494 (11)
O1 0.03662 (11) 0.75858 (10) 0.4624 (2) 0.0078 (2)
O2 0.10795 (12) 0.61003 (10) 0.2634 (2) 0.0084 (2)
O3 0.34567 (12) 0.32859 (10) 0.6116 (2) 0.0073 (2)
O4 0.14051 (11) 0.40754 (10) 0.3420 (2) 0.0085 (2)
H4 0.1241 0.4816 0.3033 0.013*
O5 0.28443 (11) 0.32046 (10) 0.1916 (2) 0.0068 (2)
O6 0.34273 (12) 0.50140 (10) 0.4000 (2) 0.0076 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mg1 0.0081 (4) 0.0088 (4) 0.0094 (4) 0.000 0.0041 (3) 0.000
Mg2 0.0073 (3) 0.0057 (3) 0.0067 (3) 0.0004 (2) 0.0031 (2) 0.0001 (2)
Na1 0.0118 (6) 0.0691 (11) 0.0091 (6) 0.000 0.0016 (5) 0.000
P1 0.0051 (3) 0.0063 (3) 0.0044 (3) 0.000 0.0007 (2) 0.000
P2 0.0060 (2) 0.00431 (19) 0.0043 (2) −0.00006 (14) 0.00177 (16) −0.00011 (14)
O1 0.0063 (6) 0.0110 (5) 0.0054 (5) −0.0010 (4) 0.0014 (5) −0.0022 (4)
O2 0.0060 (6) 0.0073 (5) 0.0114 (6) 0.0010 (4) 0.0031 (5) −0.0007 (4)
O3 0.0086 (6) 0.0080 (5) 0.0049 (5) 0.0020 (4) 0.0024 (5) 0.0016 (4)
O4 0.0073 (6) 0.0058 (5) 0.0131 (6) 0.0009 (4) 0.0048 (5) 0.0004 (5)
O5 0.0077 (6) 0.0077 (5) 0.0052 (5) 0.0003 (4) 0.0028 (5) −0.0009 (4)
O6 0.0083 (6) 0.0051 (5) 0.0093 (6) −0.0014 (4) 0.0035 (5) −0.0002 (4)

Geometric parameters (Å, º)

Mg1—O3i 2.1224 (13) Na1—O6x 2.4386 (13)
Mg1—O3ii 2.1224 (13) Na1—O3 2.8840 (19)
Mg1—O1iii 2.1312 (12) Na1—O3ix 2.8840 (19)
Mg1—O1iv 2.1312 (12) Na1—O1xi 2.922 (2)
Mg1—O4v 2.1669 (14) Na1—O1viii 2.922 (2)
Mg1—O4 2.1669 (14) P1—O1v 1.5372 (12)
Mg2—O6 2.0234 (13) P1—O1 1.5372 (12)
Mg2—O3iii 2.0686 (13) P1—O2v 1.5476 (13)
Mg2—O2 2.0696 (14) P1—O2 1.5476 (13)
Mg2—O5vi 2.0729 (13) P2—O5 1.5234 (12)
Mg2—O5vii 2.0955 (13) P2—O6 1.5263 (12)
Mg2—O1viii 2.1153 (14) P2—O3 1.5349 (13)
Na1—O6 2.2974 (13) P2—O4 1.5806 (13)
Na1—O6ix 2.2974 (13) O4—H4 0.9269
Na1—O6vii 2.4386 (13)
O3i—Mg1—O3ii 104.23 (8) O6vii—Na1—O6x 166.01 (10)
O3i—Mg1—O1iii 86.53 (5) O6—Na1—O3 56.06 (5)
O3ii—Mg1—O1iii 78.23 (5) O6ix—Na1—O3 111.84 (7)
O3i—Mg1—O1iv 78.23 (5) O6vii—Na1—O3 62.51 (5)
O3ii—Mg1—O1iv 86.53 (5) O6x—Na1—O3 105.27 (6)
O1iii—Mg1—O1iv 155.13 (8) O6—Na1—O3ix 111.84 (7)
O3i—Mg1—O4v 83.70 (5) O6ix—Na1—O3ix 56.06 (5)
O3ii—Mg1—O4v 170.20 (5) O6vii—Na1—O3ix 105.27 (6)
O1iii—Mg1—O4v 108.38 (5) O6x—Na1—O3ix 62.51 (5)
O1iv—Mg1—O4v 89.53 (5) O3—Na1—O3ix 71.02 (6)
O3i—Mg1—O4 170.20 (5) O6—Na1—O1xi 118.48 (6)
O3ii—Mg1—O4 83.70 (5) O6ix—Na1—O1xi 74.30 (5)
O1iii—Mg1—O4 89.53 (5) O6vii—Na1—O1xi 84.97 (5)
O1iv—Mg1—O4 108.38 (5) O6x—Na1—O1xi 107.88 (6)
O4v—Mg1—O4 89.05 (7) O3—Na1—O1xi 146.62 (4)
O6—Mg2—O3iii 85.88 (5) O3ix—Na1—O1xi 129.17 (3)
O6—Mg2—O2 88.80 (5) O6—Na1—O1viii 74.30 (5)
O3iii—Mg2—O2 111.03 (6) O6ix—Na1—O1viii 118.48 (7)
O6—Mg2—O5vi 172.05 (6) O6vii—Na1—O1viii 107.88 (6)
O3iii—Mg2—O5vi 91.58 (5) O6x—Na1—O1viii 84.97 (5)
O2—Mg2—O5vi 85.07 (5) O3—Na1—O1viii 129.17 (3)
O6—Mg2—O5vii 98.45 (5) O3ix—Na1—O1viii 146.62 (4)
O3iii—Mg2—O5vii 162.38 (6) O1xi—Na1—O1viii 51.46 (6)
O2—Mg2—O5vii 86.23 (5) O1v—P1—O1 111.21 (10)
O5vi—Mg2—O5vii 86.22 (5) O1v—P1—O2v 111.07 (7)
O6—Mg2—O1viii 100.87 (6) O1—P1—O2v 108.34 (7)
O3iii—Mg2—O1viii 79.79 (5) O1v—P1—O2 108.34 (7)
O2—Mg2—O1viii 166.18 (6) O1—P1—O2 111.07 (7)
O5vi—Mg2—O1viii 86.06 (5) O2v—P1—O2 106.73 (10)
O5vii—Mg2—O1viii 82.62 (5) O5—P2—O6 111.03 (7)
O6—Na1—O6ix 166.85 (10) O5—P2—O3 111.42 (7)
O6—Na1—O6vii 86.56 (4) O6—P2—O3 108.82 (7)
O6ix—Na1—O6vii 91.84 (4) O5—P2—O4 107.74 (7)
O6—Na1—O6x 91.84 (4) O6—P2—O4 108.99 (7)
O6ix—Na1—O6x 86.56 (4) O3—P2—O4 108.78 (7)

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1/2, −y+1/2, −z+1; (iii) x, −y+1, z−1/2; (iv) −x, −y+1, −z+1; (v) −x, y, −z+1/2; (vi) −x+1/2, y+1/2, −z+1/2; (vii) x, −y+1, z+1/2; (viii) −x+1/2, −y+3/2, −z+1; (ix) −x+1, y, −z+3/2; (x) −x+1, −y+1, −z+1; (xi) x+1/2, −y+3/2, z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H4···O2 0.93 1.57 2.4932 (17) 174

References

  1. Alhakmi, G., Assani, A., Saadi, M. & El Ammari, L. (2013a). Acta Cryst. E69, i40. [DOI] [PMC free article] [PubMed]
  2. Alhakmi, G., Assani, A., Saadi, M., Follet, C. & El Ammari, L. (2013b). Acta Cryst. E69, i56. [DOI] [PMC free article] [PubMed]
  3. Assani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011a). Acta Cryst. E67, i41. [DOI] [PMC free article] [PubMed]
  4. Assani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011b). Acta Cryst. E67, i40. [DOI] [PMC free article] [PubMed]
  5. Assani, A., Saadi, M., Alhakmi, G., Houmadi, E. & El Ammari, L. (2013). Acta Cryst. E69, i60. [DOI] [PMC free article] [PubMed]
  6. Assani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2011c). Acta Cryst. E67, i5. [DOI] [PMC free article] [PubMed]
  7. Ben Smail, R. & Jouini, T. (2002). Acta Cryst. C58, i61–i62. [DOI] [PubMed]
  8. Bouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558–560. [DOI] [PMC free article] [PubMed]
  9. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  10. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  11. Demazeau, G. (2008). J. Mater. Sci. 43, 2104–2114.
  12. Essehli, R., Belharouak, I., Ben Yahia, H., Chamoun, R., Orayech, B., El Bali, B., Bouziane, K., Zhoue, X. L. & Zhoue, Z. (2015b). Dalton Trans. 44, 4526–4532. [DOI] [PubMed]
  13. Essehli, R., Belharouak, I., Ben Yahia, H., Maher, K., Abouimrane, A., Orayech, B., Calder, S., Zhou, X. L., Zhou, Z. & Sun, Y.-K. (2015a). Dalton Trans 44, 7881–7886. [DOI] [PubMed]
  14. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  15. Guesmi, A. & Driss, A. (2002). Acta Cryst. C58, i16–i17. [DOI] [PubMed]
  16. Huang, W., Li, B., Saleem, M. F., Wu, X., Li, J., Lin, J., Xia, D., Chu, W. & Wu, Z. (2015). Chem. Eur. J. 21, 851–860. [DOI] [PubMed]
  17. Khmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 690–692. [DOI] [PMC free article] [PubMed]
  18. Leroux, F., Mar, A., Guyomard, D. & Piffard, Y. (1995a). J. Solid State Chem. 117, 206–212.
  19. Leroux, F., Mar, A., Payen, C., Guyomard, D., Verbaere, A. & Piffard, Y. (1995b). J. Solid State Chem. 115, 240–246.
  20. Lii, K.-H. & Shih, P.-F. (1994). Inorg. Chem. 33, 3028–3031.
  21. Moore, P. B. & Ito, J. (1979). Mineral. Mag. 43, 227–35.
  22. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  23. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  24. Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Chem. Mater. 22, 5554–5562. [DOI] [PubMed]
  25. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  26. Yoshimura, M. & Byrappa, K. (2008). J. Mater. Sci. 43, 2085–2103.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901501155X/wm5174sup1.cif

e-71-00813-sup1.cif (340KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901501155X/wm5174Isup2.hkl

e-71-00813-Isup2.hkl (71.4KB, hkl)

CCDC reference: 1406819

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES