Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jun 24;71(Pt 7):844–846. doi: 10.1107/S2056989015011500

Crystal structure of cis-2-(2-carb­oxy­cyclo­prop­yl)glycine (CCG-III) monohydrate

Sergey Lindeman a, Nathaniel J Wallock a, William A Donaldson a,*
PMCID: PMC4518997  PMID: 26279882

The title compound is an example of a ‘false conglomerate’ with two mol­ecules of opposite handedness in the asymmetric unit. Each mol­ecule exists as a zwitterion, with proton transfer from the amino acid carb­oxy­lic acid group to the amine group. In the crystal, the components are linked by N—H⋯O and O—H⋯O hydrogen bonds, generating (100) sheets.

Keywords: crystal structure, cyclo­propane, conformationally restricted glutamate analog

Abstract

The title compound, C6H9NO4·H2O [systematic name: (αR,1R,2S)-rel-α-amino-2-carb­oxy­cyclo­propane­acetic acid monohydrate], crystallizes with two organic mol­ecules and two water mol­ecules in the asymmetric unit. The space group is P21 and the organic mol­ecules are enanti­omers, thus this is an example of a ‘false conglomerate’ with two mol­ecules of opposite handedness in the asymmetric unit (r.m.s. overlay fit = 0.056 Å for one mol­ecule and its inverted partner). Each mol­ecule exists as a zwitterion, with proton transfer from the amino acid carb­oxy­lic acid group to the amine group. In the crystal, the components are linked by N—H⋯O and O—H⋯O hydrogen bonds, generating (100) sheets. Conformationally restricted glutamate analogs are of inter­est due to their selective activation of different glutamate receptors, and the naturally occurring (+)-CCG-III is an inhibitor of glutamate uptake and the key geometrical parameters are discussed.

Chemical context  

2-(2′-Carb­oxy­cyclo­prop­yl)glycines CCG-I, CCG-III and CCG-IV (Fig. 1) are naturally occuring conformationally restricted analogs of glutamate isolated from Aesculus parviflora, Blighia sapida (Fowden, et al., 1969), Ephedra foeminea (Caveney & Starratt, 1994), and Ephedra altissima (Starratt & Caveney, 1995). While not naturally occurring, both enanti­omers of CCG-II (Fig. 1) have been prepared in the laboratory (Shimamoto, et al., 1991) and all of the diastereomeric CCGs are useful tools for investigating the mechanism of glutamate function. The crystal structure of the title hydrate, (±)-CCG-III·H2O, is now reported.graphic file with name e-71-00844-scheme1.jpg

Figure 1.

Figure 1

Structures of the diastereomers of 2-(2′-carb­oxy­cyclo­prop­yl)glycine.

Structural commentary  

The racemic title compound (Fig. 2) crystallizes as a ‘false conglomerate’ with two mol­ecules of opposite handedness in the asymmetric unit. Each of mol­ecules of 2-(2′-carb­oxy­cyclo­prop­yl)glycine has a mol­ecule of water hydrogen bonded to the glycine carboxyl­ate group. It has been estimated that only 1% of organic compounds are false conglomerates (Bishop & Scudder, 2009).

Figure 2.

Figure 2

The asymmetic unit of the title compound, showing 50% displacement ellipsoids.

The torsion angles O3—C6—C2—X = −4.3° and O3A—C6A—C2AX = −11.1° (where X is the midpoint of the distal cyclo­propane bond) indicate that the carb­oxy­lic acid attached to the cyclpropane ring adopts a bis­ected conform­ation (Allen, 1980). The cyclo­propane C—C bonds proximal to the C2 carb­oxy­lic group are roughly equal [C1—C2 = 1.532 (3); C2—C3 = 1.512 (3); C1A—C2A = 1.520 (3); C2A—C3A = 1.516 (2) Å] and are longer than the cyclo­propane bonds distal to the C2 carb­oxy­lic acid [C1—C3 = 1.489 (2); C1A—C3A = 1.484 (2) Å]. These distances and torsion angles are consistent with other cyclo­propane carb­oxy­lic acids (Allen, 1980).

Conformationally restricted glutamic acid analogs can be classified into one of four categories, which are characterized by the distances between the nitro­gen atom of the amino group and the γ-carboxyl­ate carbon atom (d1), between the α- and γ-carboxyl­ate carbon atoms (d2), and their sum (d1 + d2). The classifications ‘folded’, ‘semi-folded’, ‘semi-extended’, and ‘extended’ are defined by (d1 + d 2) ≤ 7.5 Å, 7.5 Å ≤ (d1 + d 2) ≤ 8.0 Å, 8.0 Å ≤ (d1 + d 2) ≤ 8.5 Å, and (d1 + d 2) ≥ 8.5 Å, respectively (Pellicciari, et al., 2002). The two enanti­omeric moleclules in the crystal structure evidence the following distances/sums: d1, 3.65 and 3.71 Å; d2, 4.59 and 4.59 Å; (d1 + d2), 8.24 and 8.30 Å, respectively. From these values, these conformers of CCG-III can be considered to be in the ‘semi-extended’ class.

Supra­molecular features  

In the crystal, the mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen bonds, forming sheets parallel to (100); Table 1 and Fig. 3.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H1AO3A i 0.94(2) 2.03(2) 2.9444(18) 162.1(17)
N1H1BO2A ii 0.86(2) 2.39(2) 2.9454(18) 123.1(16)
N1H1CO1WA i 0.98(3) 1.83(3) 2.795(2) 167(2)
O4H4O1iii 0.81(3) 1.79(3) 2.5851(18) 166(3)
O1WH1WAO2A iv 0.82(3) 2.01(3) 2.8072(19) 166(2)
O1WH1WBO1 0.86(2) 1.90(2) 2.7449(16) 169(2)
N1AH1AAO3v 0.90(2) 2.01(2) 2.9087(18) 173(2)
N1AH1ABO3A vi 0.87(2) 2.38(2) 3.1151(19) 141.7(17)
N1AH1ACO1W v 0.93(2) 1.87(2) 2.785(2) 165.6(18)
O4AH4AAO1A vii 0.98(3) 1.60(3) 2.5672(16) 168(2)
O1WAH1WCO2viii 0.83(3) 2.07(3) 2.8628(19) 158(2)
O1WAH1WDO1A 0.81(2) 1.98(3) 2.7717(17) 166(3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Figure 3.

Figure 3

The packing for the title compound viewed approximately down [100], with hydrogen bonds shown as dashed lines.

Synthesis and crystallization  

The racemic title compound was prepared according to the literature procedure (Wallock & Donaldson, 2004). A sample for X-ray diffraction analysis was recrystallized from water.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C6H9NO4H2O
M r 177.16
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c () 8.9688(8), 8.0063(8), 10.9628(10)
() 106.015(4)
V (3) 756.65(12)
Z 4
Radiation type Cu K
(mm1) 1.18
Crystal size (mm) 0.37 0.32 0.10
 
Data collection
Diffractometer Bruker APEXII CCD detector
Absorption correction Multi-scan (SADABS; Bruker, 2005)
T min, T max 0.669, 0.891
No. of measured, independent and observed [I > 2(I)] reflections 6086, 2164, 2154
R int 0.018
max () 61.0
(sin /)max (1) 0.567
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.021, 0.055, 1.06
No. of reflections 2164
No. of parameters 305
No. of restraints 1
H-atom treatment All H-atom parameters refined
max, min (e 3) 0.15, 0.16
Absolute structure Flack (1983), 836 Friedel pairs
Absolute structure parameter 0.57(15)

Computer programs: APEX2 and SAINT (Bruker, 2005), SHELXTL and SHELXL97 (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015011500/hb7407sup1.cif

e-71-00844-sup1.cif (20.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015011500/hb7407Isup2.hkl

e-71-00844-Isup2.hkl (106.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015011500/hb7407Isup3.cml

CCDC reference: 1406594

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C6H9NO4·H2O F(000) = 376
Mr = 177.16 Dx = 1.555 Mg m3
Monoclinic, P21 Cu Kα radiation, λ = 1.54178 Å
a = 8.9688 (8) Å Cell parameters from 5577 reflections
b = 8.0063 (8) Å θ = 4–61°
c = 10.9628 (10) Å µ = 1.18 mm1
β = 106.015 (4)° T = 100 K
V = 756.65 (12) Å3 Plate, colorless
Z = 4 0.37 × 0.32 × 0.10 mm

Data collection

Bruker APEXII CCD detector diffractometer 2164 independent reflections
Radiation source: fine-focus sealed tube 2154 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.018
ω scans θmax = 61.0°, θmin = 4.2°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −10→9
Tmin = 0.669, Tmax = 0.891 k = −8→9
6086 measured reflections l = 0→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 All H-atom parameters refined
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.0652P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
2164 reflections Δρmax = 0.15 e Å3
305 parameters Δρmin = −0.16 e Å3
1 restraint Absolute structure: Flack (1983), 836 Friedel pairs
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.57 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.16905 (12) −0.14281 (15) 0.09397 (9) 0.0171 (3)
O2 0.16680 (12) −0.14746 (15) −0.11118 (10) 0.0182 (3)
O3 0.17732 (12) 0.43933 (15) 0.13921 (10) 0.0179 (3)
O4 0.36153 (14) 0.61213 (15) 0.11160 (11) 0.0187 (3)
N1 0.10810 (17) 0.18398 (19) −0.14010 (12) 0.0163 (3)
C1 0.34487 (17) 0.1610 (2) 0.03879 (15) 0.0167 (3)
C2 0.40767 (18) 0.3278 (2) 0.10039 (15) 0.0169 (3)
C3 0.42184 (19) 0.1692 (3) 0.17765 (16) 0.0203 (4)
C4 0.17508 (18) 0.1174 (2) −0.00932 (14) 0.0147 (4)
C5 0.16579 (16) −0.0746 (2) −0.01143 (14) 0.0143 (4)
C6 0.30359 (18) 0.4620 (2) 0.11880 (14) 0.0139 (4)
H1A 0.150 (2) 0.128 (3) −0.1987 (17) 0.020 (5)*
H1B 0.010 (3) 0.166 (3) −0.1641 (18) 0.029 (5)*
H1C 0.131 (3) 0.303 (4) −0.143 (2) 0.050 (7)*
H4 0.297 (3) 0.681 (4) 0.115 (2) 0.044 (7)*
H1 0.407 (2) 0.114 (2) −0.0118 (16) 0.020 (5)*
H2 0.499 (2) 0.364 (2) 0.0793 (15) 0.017 (4)*
H3A 0.522 (2) 0.127 (3) 0.2107 (17) 0.020 (4)*
H3B 0.354 (2) 0.154 (3) 0.2312 (15) 0.017 (4)*
H4A 0.1176 (17) 0.159 (3) 0.0430 (14) 0.006 (4)*
O1W 0.15198 (15) −0.01307 (17) 0.32148 (12) 0.0218 (3)
H1WA 0.152 (3) −0.106 (3) 0.352 (2) 0.038 (7)*
H1WB 0.149 (2) −0.042 (3) 0.246 (2) 0.034 (6)*
O1A 0.81679 (12) 1.13479 (15) 0.40666 (10) 0.0161 (3)
O2A 0.86473 (13) 1.14792 (16) 0.61824 (10) 0.0175 (3)
O3A 0.80378 (12) 0.55765 (16) 0.36274 (10) 0.0177 (3)
O4A 0.63822 (12) 0.38208 (15) 0.41642 (10) 0.0162 (3)
N1A 0.92671 (16) 0.8177 (2) 0.64801 (12) 0.0142 (3)
C1A 0.66918 (17) 0.8314 (2) 0.49476 (14) 0.0144 (4)
C2A 0.59847 (17) 0.6653 (2) 0.44103 (14) 0.0156 (3)
C3A 0.56440 (18) 0.8249 (2) 0.36381 (16) 0.0173 (4)
C4A 0.83802 (17) 0.8786 (2) 0.51986 (14) 0.0133 (4)
C5A 0.84454 (16) 1.0708 (2) 0.51702 (14) 0.0129 (4)
C6A 0.69085 (18) 0.5329 (2) 0.40323 (13) 0.0149 (4)
H1AA 0.892 (2) 0.864 (3) 0.710 (2) 0.028 (5)*
H1AB 1.025 (2) 0.842 (3) 0.6644 (16) 0.018 (4)*
H1AC 0.917 (2) 0.703 (3) 0.6570 (18) 0.024 (5)*
H4AA 0.709 (3) 0.295 (3) 0.404 (2) 0.044 (6)*
H1AD 0.6284 (17) 0.868 (2) 0.5597 (16) 0.008 (4)*
H2A 0.522 (2) 0.630 (2) 0.4774 (15) 0.013 (4)*
H3AA 0.6122 (17) 0.830 (3) 0.2982 (15) 0.006 (4)*
H3AB 0.465 (2) 0.868 (2) 0.3501 (14) 0.011 (4)*
H4AB 0.8848 (19) 0.827 (3) 0.4588 (16) 0.016 (4)*
O1WA 0.79114 (15) 1.00902 (16) 0.16619 (12) 0.0216 (3)
H1WC 0.796 (3) 1.099 (3) 0.130 (2) 0.041 (7)*
H1WD 0.804 (3) 1.030 (3) 0.241 (2) 0.041 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0227 (6) 0.0139 (7) 0.0160 (6) 0.0011 (5) 0.0077 (4) 0.0020 (5)
O2 0.0242 (6) 0.0144 (7) 0.0163 (6) 0.0019 (5) 0.0061 (4) −0.0010 (5)
O3 0.0197 (6) 0.0162 (7) 0.0203 (6) −0.0010 (5) 0.0093 (5) −0.0007 (5)
O4 0.0202 (6) 0.0130 (7) 0.0240 (6) −0.0006 (5) 0.0082 (5) −0.0009 (5)
N1 0.0187 (8) 0.0155 (9) 0.0154 (7) 0.0016 (7) 0.0057 (6) 0.0006 (6)
C1 0.0181 (8) 0.0125 (9) 0.0217 (8) 0.0024 (7) 0.0090 (6) 0.0006 (8)
C2 0.0145 (7) 0.0144 (9) 0.0217 (8) −0.0031 (7) 0.0051 (6) 0.0013 (7)
C3 0.0160 (8) 0.0160 (9) 0.0258 (9) −0.0004 (8) 0.0006 (7) 0.0015 (8)
C4 0.0188 (8) 0.0143 (10) 0.0129 (8) 0.0016 (7) 0.0075 (7) 0.0003 (6)
C5 0.0116 (7) 0.0148 (10) 0.0164 (9) 0.0006 (7) 0.0036 (6) −0.0009 (7)
C6 0.0180 (9) 0.0130 (9) 0.0098 (7) −0.0023 (7) 0.0022 (6) 0.0011 (6)
O1W 0.0361 (7) 0.0127 (7) 0.0171 (6) 0.0008 (6) 0.0081 (5) −0.0008 (5)
O1A 0.0212 (6) 0.0127 (7) 0.0160 (5) 0.0013 (5) 0.0080 (4) 0.0014 (5)
O2A 0.0230 (6) 0.0144 (6) 0.0145 (5) 0.0006 (5) 0.0039 (4) −0.0032 (5)
O3A 0.0196 (6) 0.0160 (7) 0.0203 (6) −0.0017 (5) 0.0099 (5) −0.0011 (5)
O4A 0.0178 (5) 0.0092 (7) 0.0228 (6) −0.0013 (5) 0.0074 (5) 0.0003 (5)
N1A 0.0147 (7) 0.0116 (9) 0.0170 (7) 0.0001 (6) 0.0057 (6) −0.0005 (6)
C1A 0.0184 (8) 0.0107 (9) 0.0159 (8) 0.0015 (7) 0.0076 (6) 0.0018 (7)
C2A 0.0143 (8) 0.0151 (9) 0.0177 (7) −0.0001 (7) 0.0050 (6) 0.0011 (7)
C3A 0.0144 (8) 0.0155 (10) 0.0215 (8) 0.0015 (7) 0.0044 (7) 0.0006 (7)
C4A 0.0154 (8) 0.0112 (10) 0.0140 (8) 0.0005 (7) 0.0052 (6) −0.0006 (6)
C5A 0.0101 (7) 0.0131 (10) 0.0166 (9) 0.0004 (7) 0.0056 (6) 0.0011 (7)
C6A 0.0155 (8) 0.0163 (10) 0.0108 (7) −0.0012 (7) 0.0000 (6) 0.0015 (7)
O1WA 0.0342 (7) 0.0147 (7) 0.0160 (6) 0.0014 (6) 0.0068 (5) −0.0003 (6)

Geometric parameters (Å, º)

O1—C5 1.271 (2) O1A—C5A 1.273 (2)
O2—C5 1.2417 (19) O2A—C5A 1.239 (2)
O3—C6 1.2270 (19) O3A—C6A 1.2289 (19)
O4—C6 1.320 (2) O4A—C6A 1.319 (2)
O4—H4 0.81 (3) O4A—H4AA 0.98 (3)
N1—C4 1.492 (2) N1A—C4A 1.492 (2)
N1—H1A 0.94 (2) N1A—H1AA 0.90 (2)
N1—H1B 0.86 (2) N1A—H1AB 0.87 (2)
N1—H1C 0.98 (3) N1A—H1AC 0.93 (2)
C1—C2 1.532 (3) C1A—C2A 1.520 (3)
C1—C3 1.489 (2) C1A—C3A 1.484 (2)
C1—C4 1.509 (2) C1A—C4A 1.510 (2)
C1—H1 0.963 (19) C1A—H1AD 0.933 (17)
C2—C3 1.512 (3) C2A—C3A 1.516 (2)
C2—C6 1.473 (2) C2A—C6A 1.474 (3)
C2—H2 0.953 (18) C2A—H2A 0.925 (17)
C3—H3A 0.93 (2) C3A—H3AA 0.934 (16)
C3—H3B 0.965 (18) C3A—H3AB 0.929 (18)
C4—C5 1.539 (2) C4A—C5A 1.541 (2)
C4—H4A 0.932 (17) C4A—H4AB 0.976 (19)
O1W—H1WA 0.82 (3) O1WA—H1WC 0.83 (3)
O1W—H1WB 0.86 (2) O1WA—H1WD 0.81 (2)
C6—O4—H4 108.5 (19) C6A—O4A—H4AA 111.5 (14)
C4—N1—H1A 110.8 (12) C4A—N1A—H1AA 111.9 (13)
C4—N1—H1B 110.0 (14) C4A—N1A—H1AB 111.6 (12)
C4—N1—H1C 110.3 (14) C4A—N1A—H1AC 112.4 (11)
H1A—N1—H1B 106.2 (19) H1AA—N1A—H1AB 107.1 (18)
H1A—N1—H1C 108.4 (19) H1AA—N1A—H1AC 105 (2)
H1B—N1—H1C 111 (2) H1AB—N1A—H1AC 108.5 (19)
C2—C1—H1 113.3 (11) C2A—C1A—H1AD 111.2 (10)
C3—C1—C2 60.03 (12) C3A—C1A—C2A 60.61 (11)
C3—C1—C4 120.41 (14) C3A—C1A—C4A 121.37 (13)
C3—C1—H1 115.3 (10) C3A—C1A—H1AD 118.2 (9)
C4—C1—C2 124.66 (14) C4A—C1A—C2A 125.40 (14)
C4—C1—H1 113.3 (10) C4A—C1A—H1AD 111.5 (9)
C1—C2—H2 113.0 (11) C1A—C2A—H2A 112.3 (11)
C3—C2—C1 58.57 (11) C3A—C2A—C1A 58.51 (11)
C3—C2—H2 116.3 (11) C3A—C2A—H2A 116.0 (11)
C6—C2—C1 121.77 (14) C6A—C2A—C1A 122.11 (13)
C6—C2—C3 119.62 (14) C6A—C2A—C3A 119.45 (14)
C6—C2—H2 115.7 (11) C6A—C2A—H2A 116.1 (11)
C1—C3—C2 61.40 (11) C1A—C3A—C2A 60.89 (12)
C1—C3—H3A 120.3 (11) C1A—C3A—H3AA 116.1 (9)
C1—C3—H3B 115.1 (10) C1A—C3A—H3AB 117.8 (10)
C2—C3—H3A 116.6 (12) C2A—C3A—H3AA 113.7 (12)
C2—C3—H3B 118.6 (12) C2A—C3A—H3AB 115.9 (11)
H3A—C3—H3B 114.6 (15) H3AA—C3A—H3AB 119.0 (14)
N1—C4—C1 110.69 (13) N1A—C4A—C1A 109.69 (13)
N1—C4—C5 109.68 (13) N1A—C4A—C5A 109.39 (13)
N1—C4—H4A 108.6 (10) N1A—C4A—H4AB 106.7 (11)
C1—C4—C5 106.36 (14) C1A—C4A—C5A 106.73 (14)
C1—C4—H4A 112.3 (10) C1A—C4A—H4AB 111.6 (11)
C5—C4—H4A 109.2 (12) C5A—C4A—H4AB 112.7 (13)
O1—C5—C4 115.33 (14) O1A—C5A—C4A 114.98 (14)
O2—C5—O1 126.49 (17) O2A—C5A—O1A 126.36 (17)
O2—C5—C4 117.97 (14) O2A—C5A—C4A 118.46 (14)
O3—C6—O4 122.97 (16) O3A—C6A—O4A 122.89 (16)
O3—C6—C2 124.64 (16) O3A—C6A—C2A 124.66 (17)
O4—C6—C2 112.39 (14) O4A—C6A—C2A 112.45 (14)
H1WA—O1W—H1WB 99 (2) H1WC—O1WA—H1WD 107 (3)
N1—C4—C5—O1 −157.34 (12) N1A—C4A—C5A—O1A 159.17 (12)
N1—C4—C5—O2 27.53 (18) N1A—C4A—C5A—O2A −25.74 (18)
C1—C2—C6—O3 31.9 (2) C1A—C2A—C6A—O3A −30.4 (2)
C1—C2—C6—O4 −148.40 (15) C1A—C2A—C6A—O4A 150.15 (14)
C1—C4—C5—O1 82.93 (15) C1A—C4A—C5A—O1A −82.23 (15)
C1—C4—C5—O2 −92.20 (16) C1A—C4A—C5A—O2A 92.87 (16)
C2—C1—C4—N1 83.47 (18) C2A—C1A—C4A—N1A −85.57 (18)
C2—C1—C4—C5 −157.45 (15) C2A—C1A—C4A—C5A 156.02 (14)
C3—C1—C2—C6 −107.63 (17) C3A—C1A—C2A—C6A 107.23 (16)
C3—C1—C4—N1 156.11 (16) C3A—C1A—C4A—N1A −159.79 (16)
C3—C1—C4—C5 −84.81 (19) C3A—C1A—C4A—C5A 81.8 (2)
C3—C2—C6—O3 −37.4 (2) C3A—C2A—C6A—O3A 38.8 (2)
C3—C2—C6—O4 142.30 (14) C3A—C2A—C6A—O4A −140.58 (14)
C4—C1—C2—C3 108.16 (17) C4A—C1A—C2A—C3A −109.43 (17)
C4—C1—C2—C6 0.5 (2) C4A—C1A—C2A—C6A −2.2 (2)
C4—C1—C3—C2 −115.01 (18) C4A—C1A—C3A—C2A 115.80 (19)
C6—C2—C3—C1 111.25 (16) C6A—C2A—C3A—C1A −111.72 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O3Ai 0.94 (2) 2.03 (2) 2.9444 (18) 162.1 (17)
N1—H1B···O2Aii 0.86 (2) 2.39 (2) 2.9454 (18) 123.1 (16)
N1—H1C···O1WAi 0.98 (3) 1.83 (3) 2.795 (2) 167 (2)
O4—H4···O1iii 0.81 (3) 1.79 (3) 2.5851 (18) 166 (3)
O1W—H1WA···O2Aiv 0.82 (3) 2.01 (3) 2.8072 (19) 166 (2)
O1W—H1WB···O1 0.86 (2) 1.90 (2) 2.7449 (16) 169 (2)
N1A—H1AA···O3v 0.90 (2) 2.01 (2) 2.9087 (18) 173 (2)
N1A—H1AB···O3Avi 0.87 (2) 2.38 (2) 3.1151 (19) 141.7 (17)
N1A—H1AC···O1Wv 0.93 (2) 1.87 (2) 2.785 (2) 165.6 (18)
O4A—H4AA···O1Avii 0.98 (3) 1.60 (3) 2.5672 (16) 168 (2)
O1WA—H1WC···O2viii 0.83 (3) 2.07 (3) 2.8628 (19) 158 (2)
O1WA—H1WD···O1A 0.81 (2) 1.98 (3) 2.7717 (17) 166 (3)

Symmetry codes: (i) −x+1, y−1/2, −z; (ii) x−1, y−1, z−1; (iii) x, y+1, z; (iv) −x+1, y−3/2, −z+1; (v) −x+1, y+1/2, −z+1; (vi) −x+2, y+1/2, −z+1; (vii) x, y−1, z; (viii) −x+1, y+3/2, −z.

References

  1. Allen, F. H. (1980). Acta Cryst. B36, 81–96.
  2. Bishop, R. & Scudder, M. L. (2009). Cryst. Growth Des. 9, 2890–2894.
  3. Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madision, Wisconsin, USA.
  4. Caveney, S. & Starratt, A. (1994). Nature, 372, 509.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Fowden, L., Smith, A., Millington, D. S. & Sheppard, R. C. (1969). Phytochemistry, 8, 437–443.
  7. Pellicciari, R., Marinozzi, M., Camaioni, E., del Carmen Nùnez, M., Costantino, G., Gasparini, F., Giorgi, G., Macchiarulo, A. & Subramanian, N. (2002). J. Org. Chem. 67, 5497–5507. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]
  9. Shimamoto, K., Ishida, M., Shinozaki, H. & Ohfune, Y. (1991). J. Org. Chem. 56, 4167–4176.
  10. Starratt, A. N. & Caveney, S. (1995). Phytochemistry, 40, 479–481.
  11. Wallock, N. J. & Donaldson, W. A. (2004). J. Org. Chem. 69, 2997–3007. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015011500/hb7407sup1.cif

e-71-00844-sup1.cif (20.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015011500/hb7407Isup2.hkl

e-71-00844-Isup2.hkl (106.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015011500/hb7407Isup3.cml

CCDC reference: 1406594

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES